首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Synaptic responses of different functional groups of interneurons in segments T10 and T11 to stimulation of the ipsilateral and contralateral medullary reticular formation were investigated in anesthetized cats with only the ipsilateral lateral funiculus remaining intact. Activation of reticulospinal fibers of the lateral funiculus with conduction velocities of 30–100 m/sec was shown to induce short-latency and, in particular, monosynptic EPSPs in all types of cells tested: in interneurons excited by group Ia muscle afferents, in cells activated only by high-threshold cutaneous and muscle afferents (afferents of the flexor reflex), in cells activated mainly by descending systems, and, to a lesser degree, in neurons connected with low-threshold cutaneous afferents. These cell populations are located mainly in the central and lateral parts of Rexed's lamina VII. Most neurons in laminae I–V of the dorsal horn, except six cells located in the superficial layers of the dorsal horn, received no reticulofugal influences. The functional organization of connections of the lateral reticulospinal tract with spinal neurons is discussed and compared with the analogous organization of the medial reticulospinal tract, and also of the "lateral" (cortico- and rubrospinal) descending systems.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 150–161, March–April, 1978.  相似文献   

3.
4.
Synaptic processes of 119 thoracic spinal interneurons (T10–11) were investigated in anesthetized cats in response to stimulation of the medial and central zones of the gigantocellular nucleus in the medulla and the ventral columns of the spinal cord. Fast (90–130 m/sec) reticulospinal fibers running in the ventral column were found to produce monosynaptic or disynaptic excitation of interneurons of Rexed's layers VII–VIII, which are connected monosynaptically with group I muscle afferents, and interneurons excited both by group I muscle afferents and low-threshold cutaneous afferents. In most neurons of layer IV, connected monosynaptically with low-threshold cutaneous afferents, and in neurons of layers VII–VIII excited by afferents of the flexor reflex no marked postsynaptic processes were observed during stimulation of the reticular formation. Excitatory, inhibitory, and mixed PS Ps during activation of reticulospinal fibers were found in 14 neurons, high-threshold afferents in which evoked predominantly polysynaptic IPSPs. Seventeen neurons activated monosynaptically by reticulospinal fibers and not responding to stimulation of segmental afferents were found in the medial part of the ventral horn (layers VII–VIII).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 566–578, November–December, 1972.  相似文献   

5.
The distribution and ultrastructure of terminals of the propriospinal fibers of the lateral funiculus in the cervical segments of the cat spinal cord were studied by the experimental degeneration method. A preliminary lateral hemisection of the spinal cord was carried out 5–6 months earlier at the level of segments C2 or C3 to destroy all the long descending pathways; the lateral funiculus was then divided at the level of C4 or C5. It was shown by the method of Fink and Heimer that terminals of descending and ascending propriospinal pathways damaged by the second division are distributed in the gray matter ipsilaterally in the lateral zones of Rexed's laminase V–VII and also in the dorsolateral motor nuclei. An electron-microscopic study showed that the synapses of the degenerating terminals are mainly axo-dendritic in type and account for 14.5% of the total number of terminals counted. Residual synaptic vesicles in these terminals were spherical in shape. The mean diameter of the degenerating myelinated propriospinal fibers in the lateral funiculus was 10±3 µ. The results of this investigation were compared with those of electrophysiological investigations of the function of propriospinal neurons.  相似文献   

6.
Sun YY  Li KC  Chen J 《生理学报》2004,56(4):444-450
脊髓背角感觉神经元不仅在感觉信息的传递和调节中起到重要作用,也是各种内源性和外源性药物的作用靶位.为了解静脉麻醉剂异丙酚是否对背角感觉神经元的反应性具有调节作用,本实验采用在体单细胞胞外记录技术,观察了脊髓背表面直接滴注0.5 μmol异丙酚对戊巴比妥钠麻醉大鼠脊髓背角广动力域(WDR)神经元和低阈值机械感受型(LTM)神经元反应性的影响.实验发现,异丙酚能抑制背角WDR神经元由施加于外周感受野伤害性热刺激(45、47、49和53℃,15 s)和夹捏机械刺激(10 s)诱发的反应性,与DMSO对照组比较具有显著性统计学差异(P<0.05);同样,异丙酚对非伤害性机械刺激诱发的WDR或LTM神经元的反应性也具有显著的抑制作用(P<0.05).本结果提示,异丙酚可直接作用于正常大鼠脊髓背角神经元,对由非伤害性和伤害性纤维介导的神经元反应性均产生抑制作用,因此异丙酚的脊髓抗伤害作用可能不是特异性的.  相似文献   

7.
The character of activation of medullary reticulospinal neurons by collaterals of pyramidal fibers was investigated in cats anesthetized with pentobarbital (40 mg/kg) or a mixture of chloralose (45 mg/kg) and pentobarbital (15 mg/kg). The experiments were carried out on animals after preliminary destruction of the contralateral red nucleus and division of the ipsilateral dorsolateral fasciculus in segment C4. A conditioning technique showed that pre- and postsynaptic effects arising in the medullary gigantocellular nucleus to stimulation of the cortex and of the isolated dorsolateral funiculus are due to activation of collaterals of pyramidal fibers projecting into the brain stem. In most reticulospinal neurons tested, stimulation of the fasciculus induced monosynaptic EPSPs. Their generation was due to influences transmitted via fast- and slow-conducting pyramidal fibers. Pyramidal fibers with different conduction velocities are distributed irregularly in the pyramidal tract in the cervical region of the spinal cord. Mainly slowly-conducting fibers are found in its medial zones and fast-conducting pyramidal fibers in its lateral zones. The results are evidence that in cats fibers of the pyramidal tract, running into the spinal cord, can activate medullary reticulospinal neurons directly.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 495–503, September–October, 1977.  相似文献   

8.
9.
10.
Activity of reticulospinal neurons evoked by stimulation of the ventral, ventrolateral, dorsolateral, and dorsal funiculi of the spinal cord was recorded extracellularly in cats anesthetized with chloralose. Responses of 57 reticulospinal neurons, of which 22 projected into the ventral funiculus, 20 into the ventrolateral, and 15 into the dorsolateral, were studied. The functional properties (conduction velocity and refractory period) and the location of the neurons of the above-mentioned groups in the medulla did not differ appreciably. The most effective synaptic activation of all neurons was observed during stimulation of the dorsal and dorsolateral funiculi. Responses to stimulation of the dorsal funiculus had the lowest threshold. These responses arose in reticulospinal neurons of the ventral and ventrolateral funiculi after the shortest latent period. The effectiveness of synaptic influences from the dorsal and dorsolateral funiculi was identical in the group of neurons of the dorsolateral funiculus. Correlation between activity evoked by stimulation of the dorsal funiculus in reticulospinal neurons and peripheral nerves indicated that the responses appeared in these cells to stimulation of muscular (groups I and II) and cutaneous (group II) afferent fibers. The results indicate that impulses from low-threshold muscular and cutaneous afferents, which effectively activate reticulospinal neurons, are transmitted along ascending pathways of the dorsal funiculi.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 254–263, May–June, 1979.  相似文献   

11.
12.
The localization of reticulospinal neurons responding antidromically to stimulation of fibers in the dorsolateral parts of the lateral funiculi (shown previously to be the principal collector of fibers conveying bulbar pressor influences) was determined in experiments on anesthetized and curarized cats. Most of these neurons were found to occupy the medioventral portions of the medulla, but they were concentrated in the rostral portions of the gigantocellular and ventral nuclei of the reticular formation. The velocity of conduction of excitation along axons of most reticulospinal neurons was 10–50 m/sec. Reflex responses to stimulation of the sciatic nerve with a latent period of 10–40 msec were found in 35 of 125 such cells. Stimulation of the sinus nerve did not activate them. Spontaneous activity occurred in 29 reticulospinal neurons; the mean firing rate of the various cells varied from 5 to 20/sec.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 6, No. 3, pp. 266–272, May–June, 1974.  相似文献   

13.
After stereotaxis lexions in the nucleus reticularis gigantocellularis of the modulla oblongata and nucleus reticularis pontis caudalis, the distribution of degenerating nerve fibers in the lumbar segments of the spinal cord has been studied by silver impregnation methods of Nauta and Fink-Heimer. Degenerating reticulo-spinal fibers and fragments of axonal terminations were found in the area of n. motorius ventro-medialis and n. motorius ventro-lateralis, as well as partly in n. motorius dorso-lateralis close to motoneurons and their dendrites. Mainly they pass into layers VII and VIII. This fact indicates the existence of direct-reticulo-motoneuronal synaptic connections in rats, which coincides with electrophysiological data.  相似文献   

14.
15.
16.
Following tetanic afferent stimulation of a monosynaptic reflex pathway, the transmission through that pathway of isolated reflex volleys is enhanced for some minutes. Post-tetanic potentiation is comparable in the monosynaptic reflex arcs of flexor and extensor muscles. The facilitator and inhibitor actions of monosynaptic reflex afferent fibers, as well as the transmitter action, are potentiated following tetanization. Little post-tetanic change attends reflex transmission through plurisynaptic reflex arcs. Various tests for excitability change made independently of the tetanized afferent fibers reveal none or a slight depression. Hence the potentiating influence of a tetanus is limited to subsequent action on the part of the recently tetanized fibers themselves. Increase in the size of the individual impulses comprising an afferent volley such as might occur during positive after-potential, would accommodate the requirement for a limited process and provide for increased synaptic action. The proposed association between post-tetanic potentiation and positive after-potential (i.e. hyperpolarization) is supported by the following lines of evidence:- 1. Changes in intensity and duration of potentiation with change in frequency and duration of tetanic stimulation are characteristic of, and parallel to, the changes of positive after-potential in similar circumstances. 2. Afferent impulses are increased following a tetanus, and in a fashion that parallels the course of monosynaptic reflex potentiation. Post-tetanic potentiation, as here described, and after-discharge, whatever may be its mechanism, are unrelated phenomena.  相似文献   

17.
Interneurons of the lumbar division of the cat spinal cord responding after a short latent period with intensive excitation to stimulation of the medullary pyramids and red nucleus but not responding (or excited after a long latent period) to stimulation of peripheral nerves were investigated by microelectrode recording. Most of these neurons, located in the lateral zones of Rexed's laminae IV–VII of the gray matter, were identified as propriospinal cells sending axons into the dorsolateral funiculus of the white matter (mean velocity of antidromic conduction in the group 34.6 m/sec). Marked convergence of corticofugal and rubrofugal excitatory influences was found on the overwhelming majority of neurons. Some neurons were activated monosynaptically by fast-conducting fibers of both descending systems. The minimal and mean values of the latent periods of the pyramidal EPSPs for the neurons tested were 4.5 and 6.28 msec, and for the rubral EPSPs 3.3 and 4.94 msec respectively. A distinguishing feature of the activation of these neurons is the intensive potentiation of their synaptic action on the arrival of a series of corticofugal and rubrofugal waves.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 489–500, September–October, 1972.  相似文献   

18.
19.
Summary A model of mammalian neuro-muscular systems described previously (Ouztöreli and Stein, 1975) has been extended to include multiple reflex pathways, as have been shown to exist in primates, including man (Milner-Brown et al., 1975). A number of general mathematical properties of the extended system are described. In the final section, using computer solutions, it is shown that the presence of multiple reflex pathways can effectively reduce the tendency for oscillation which will exist if high reflex gain were concentrated in a single pathway. High loop gain is desirable for good control in any negative feedback system, so the presence of multiple reflex pathways could improve reflex control, while limiting the magnitude of tremor or other unwanted oscillations in neuromuscular systems.This work was partly supported by the National Research Council of Canada (Grant NRC-A4345) and by the Medical Research Council of Canada (Grant MRC-MA 3307) through the University of Alberta.  相似文献   

20.
It was shown by intracellular recording that stimulation of the motor cortex evokes E PS Ps and I PS Ps in reticulospinal neurons of the gigantocellular nucleus of the cat medulla. The E PS Ps appeared in 94.3% and the I PS Ps in 5.7% of neurons tested. Analysis of the presynaptic pathway showed that 77.4% of E PS Ps studied arose through monosynaptic, and 22.6% through polysynaptic corticoreticular connections. By their latent period, duration, and rise time up to a maximum the monosynaptic E PS Ps were divided into two groups: "fast" and "slow." It is postulated that "fast" E PS Ps are generated in reticulospinal neurons which are activated by fast-conducting fibers and "slow" E PS Ps by slowly conducting corticobulbar fibers. I PS Ps were recorded from reticulospinal neurons that also were inhibited by stimulation of the ventral columns of the spinal cord. The hypothesis is put forward that cortical motor signals in cats can be transmitted to the spinal cord via monosynaptic and polysynaptic connections of "fast" and "slow" pyramidal neurons with reticulospinal neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 250–257, May–June, 1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号