首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The redox potential dependence of the light-induced absorption changes of bacteriochlorophyll in chromatophores and subchromatophore pigment-protein complexes from Rhodospirillum rubrum has been examined. The highest values of the absorption changes due to the bleaching of P-870 and the blue shift of P-800 in chromatophores and subchromatophore complexes are observed in the 360-410mV redox potential range. At potentials below 300 mV (pH 7.0), the 880 nm band of bacteriochlorophyll shifts to shorter wavelengths in subchromatophore complexes and to longer wavelengths in chromatophores. The data on redox titration show that the red and blue shifts of 880-nm bacteriochlorophyll band represent the action of a non-identified component (C340) which has an oxidation-reduction midpoint potential close to 340 mV (n=1) at pH 6.0--7.6. The Em of this component varies by 60 mV/pH unit between pH 7.6 and 9.2. The results suggest that the red shift is due to the transmembrane, and the blue shift to the local intramembrane electrical field. The generation of both the transmembrane and local electrical fields is apparently governed by redox transitions of the component C340.  相似文献   

2.
The redox potential dependency of the light-induced absorption changes of bacteriochlorophyll in the chromatophores and subchromatophore particles from Rhodospirillum rubrum has been studied. The highest values of the absorption changes due to the bleaching of P870 and the blue shift of P800 are observed within the redox potential range of 360--410. At the potential values below 300 mV the 880 nm band of bacteriochlorophyll shifts to shorter wavelengths in the subchromatophore particles and to longer wavelengths in the chromatophores. Redox titration revealed that the red and blue shifts of 880 nm bacteriochlorophyll band are caused by the functioning of a non-identified component (X) which has an oxidation -- reduction midpoint potential close to 340 mV (n = 1) within the pH range of 6,0--7,6. The Em for this component decreases by 60 mV/pH unit within the pH range of 7.6--9,2. The results obtained suggest that the red shift is due to the transmembrane, while the blue shift -- to the local intramembrane electric field. The generation of both the transmembrane and local intramembrane electric fields apparently depends on redox transitions of the component X.  相似文献   

3.
G.D. Case  W.W. Parson 《BBA》1973,325(3):441-453
Shifts in the absorption bands of bacteriochlorophyll and carotenoids in Chromatium vinosum chromatophores were measured after short actinic flashes, under various conditions. The amplitude of the bacteriochlorophyll band shift correlated well with the amount of cytochrome c-555 that was oxidized by P870+ after a flash. No bacteriochlorophyll band shift appeared to accompany the photooxidation of P870 itself, nor the oxidation of cytochrome c-552 by P870+. The carotenoid band shift also correlated with cytochrome c-555 photooxidation, although a comparatively small carotenoid shift did occur at high redox potentials that permitted only P870 oxidation.

The results explain earlier observations on infrared absorbance changes that had suggested the existence of two different photochemical systems in Chromatium. A single photochemical system accounts for all of the absorbance changes.

Previous work has shown that the photooxidations of P870 and cytochrome c-555 cause similar changes in the electrical charge on the chromatophore membrane. The specific association of the band shifts with cytochrome c-555 photooxidation therefore argues against interpretations of the band shifts based on a light-induced membrane potential.  相似文献   


4.
Initial rates of the light-induced absorption decrease in Chromatium chromatophores due to the oxidation of cytochromes were measured under various experimental conditions. The initial rate in the presence of 10 mM potassium ferrocyanide and 50 μM potassium ferricyanide was about one-half to two-thirds of that in the presence of 30 mM ascorbate or in a medium with a redox potential (Eh) of − 78 mV.

Light-minus-dark difference spectrum indicated that, in the presence of 10 mM ferrocyanide and 50 μM ferricyanide, only cytochrome c-555 was photooxidized. In the presence of 30 mM ascorbate or at Eh values lower than about 0 mV, both cytochrome c-555 and cytochrome c-552 were photooxidized. The quantum yield of cytochrome c-555 photooxidation was calculated to be about 0.4.

The results obtained in the present study are compared with other investigators' and the possibility of the presence of two types of associations between the cytochromes and reaction-center bacteriochlorophyll is discussed.  相似文献   


5.
Bacon Ke  Thomas H. Chaney 《BBA》1971,226(2):341-353
Triton treatment of chromatophores of carotenoid-deficient Chromatium followed by density-gradient centrifugation led to a separation into three subchromatophore fractions. Unlike the case with chromatophores of regular Chromatium, Triton releases about 1/3 of the total bulk bacteriochlorophyll into one fraction (designated G, for green) whose major absorption-band maximum is at 780 nm. One fraction (H, for heavy) absorbs at 805 and 885 nm, with an absorbance ratio A885 nm/A805 nm between 1.5 and 2; another fraction (L, for light) absorbs at 805 nm and has a shoulder at 825 nm. The absorption and fluorescence emission spectra of the three fractions at room temperature and 77°K indicate that the different bacteriochlorophyll forms are efficiently separated by Triton treatment.

The reaction center P890 is concentrated exclusively in the H-fraction, at a level of 5–7% of the bulk bacteriochlorophyll. The solubilized bacteriochlorophyll absorbing at 780 nm can be totally and irreversibly bleached by 5 mM ferricyanide. The other bacteriochlorophyll forms in the H- and L-fractions are also irreversibly bleached by ferricyanide to variable extents. P890 is the only component that can be re-reduced by ascorbate after ferricyanide oxidation. The P890 content estimated by reversible chemical bleaching agrees well with that obtained by reversible light bleaching. The different bacteriochlorophyll forms, with the exception of the 780-nm absorbing form, are relatively stable toward light bleaching. Again, only P890 is reversibly bleached by light.

Cytochromes-555 and -553 are distributed in both the H-and L-fractions, but not in the solubilized-bacteriochlorophyll G-fraction. However, only cytochromes in the H-fraction which contains all of the P890 can undergo coupled oxidation. Excitation with 20-nsec ruby-laser pulses shows that cytochrome-555 can be oxidized in 2–3 μsec by photooxidized P890, indicating that necessary conformation for rapid electron transport is retained in the subchromatophore particles.

The data on fractionation and redox reactions obtained here, together with direct kinetic measurements recently reported in the literature lend further support to the view that oxidation of these two cytochromes is mediated by the same reaction center, P890.  相似文献   


6.
Yasuo Suzuki  Atusi Takamiya 《BBA》1972,275(3):358-368
Time courses and the emission spectra of fluorescence and light-induced absorption changes of P890 in chromatophores of the photosynthetic bacteria Chromatium D, Rhodopseudomonas spheroides and Rhodospirillum rubrum were investigated.

The time course of fluorescence in chromatophores was separated into two phases, i.e. an initial rapid rise (ƒi) and a subsequent slow increase towards a steady level of emission (ƒv). The ƒi and the ƒv components showed different emission spectra having different peak position. The ƒv component was emitted from the longest wavelength-absorbing form of bulk bacteriochlorophyll (B890), the ƒi component from both B890 and B850.

The magnitude of the ƒv component depended on experimental conditions controlling the states of the cyclic electron transport in chromatophores, including changes in levels of redox potential of the medium, additions of electron donors and inhibitors. The magnitude of the ƒi component was not affected by these experimental conditions. It was, therefore, concluded that only the ƒv component is related to the cyclic electron transport, and that the magnitude of ƒv is controlled by the oxidation-reduction state of the primary electron acceptor for the photochemical reaction center in chromatophores.  相似文献   


7.
George D. Case  William W. Parson   《BBA》1973,292(3):677-684
The isoionic pH of Chromatium chromatophores is 5.2±0.1. At pH 7.7, the net charge on the chromatophore is approx. −1·104. If a change in this charge accompanies the oxidation of an electron carrier, the midpoint redox potential (Em) of that carrier should be a function of the solution ionic strength (I). of that carrier should be a function of the solution ionic strength (I).

The Em values of P870 and cytochrome c-555 increase strongly with increasing I at low values of I. The Em of cytochrome c-552 also increases with increasing I, though not so strongly. These effects probably cannot be attributed to an influence of I on the activity coefficient of a dissociable ion. We conclude that, when either P870 or cytochrome c-555 loses an electron, no specific ions (including protons) are bound or released in significant amounts, and the absolute value of the charge on the chromatophore decreases.

The Em values of the primary and secondary electron acceptors, X and Y, do not depend on I. Because these Em values have been shown previously to depend on pH, we conclude that the uptake of a proton keeps the charge on the chromatophore constant when either X or Y accepts an electron. This means that the primary and secondary electron transfer reactions in Chromatium result in a net decrease in the charge on the photosynthetic membrane. They do not result in the translocation of protons across the membrane.

The Em of the soluble flavocytochrome c-552 from Chromatium depends only weakly on I, but depends strongly on the pH. The uptake of a proton appears to keep the net charge on this cytochrome constant upon reduction.  相似文献   


8.
E.L. Barsky  V.D. Samuilov 《BBA》1973,325(3):454-462
The energization of Rhodospirillum rubrum chromatophores by the light, ATP, PPi, by dark electron transfer via energy-coupling sites of the redox chain, by the combination of KC1 and valinomycin causes absorption changes of carotenoids and bacteriochlorophyll. These changes due to the absorption-band shifts of the pigments are sensitive to the uncoupler p-trifluoromethoxycarbonyl cyanide phenylhydrazone (FCCP) but not to the combination of KC1 and nigericin, which abolishes fluorescence changes of atebrin. Dithionite and ferricyanide depress the light-induced absorption changes of bacteriochlorophyll but have no inhibitory effect on the PPi-induced changes. Analysis of bacteriochlorophyll absorption changes in the infra-red region shows that the photooxidation of bacteriochlorophyll reaction centers with the negative peak in the region of 890 nm is accompanied by red and blue shifts of bacteriochlorophyll absorption bands. These shifts are due to a transmembrane electrochemical gradient of H+ and a local electric field arising as a result of oxidation of the reaction centers. It appears that the superposition of the (1) red shift which is characterized by negative and positive peaks at 865 and 895 nm, respectively, and (2) photobleaching of bacteriochlorophyll reaction centers in the region of 890 nm cause overall absorption changes with the negative peak at 865 nm.  相似文献   

9.
David B. Knaff  Bob B. Buchanan 《BBA》1975,376(3):549-560
Chromatophores isolated from the purple sulfur bacterium Chromatium and the green sulfur bacterium Chlorobium exhibit absorbance changes in the cytochrome -band region consistent with the presence of a b-type cytochrome. Cytochrome content determined by reduced minus oxidized difference spectra and by heme analysis suggests that each bacterium contains one cytochrome b per molecule of photochemically active bacteriochlorophyll (reaction-center bacteriochlorophyll).

The b-type cytochrome in Chromatium has an -band maximum at 560 nm and a midpoint oxidation-reduction potential of −5 mV at pH 8.0. The b-type cytochrome in Chlorobium has an -band maximum at 564 nm and an apparent midpoint oxidation-reduction potential near −90 mV.

Chromatophores isolated from both Chromatium and Chlorobium cells catalyze a photoreduction of cytochrome b that is enhanced in the presence of antimycin A. Antimycin A and 2-n-heptyl-4-hydroxyquinoline-N-oxide inhibit endogenous (but not phenazine methosulfate-mediated) cyclic photophosphorylation in Chromatium chromatophores and non-cyclic electron flow from Na2S to NADP in Chlorobium chromatophores. These observations suggest that b-type cytochromes may function in electron transport reactions in photosynthetic sulfur bacteria.  相似文献   


10.
We have performed X-ray diffraction studies on photosynthetic units of Rhodospirillum rubrum and solubilized *B800 + B890 complex from chromatophores of Chromatium vinosum, to investigate the homology of their molecular structures. The native chromatophores of Chromatium vinosum, which contain other bacteriochlorophyll forms, were examined by an X-ray diffraction technique, in order to assess the interactions between the complexes as well as the molecular structures of the bacteriochlorophyll forms. The subchromatophore particles, solubilized by Triton X-100 from cells of Chromatium vinosum, exhibit a major absorption maximum at 881 nm and a minor one at 804 nm, consisting of bacteriochlorophyll form *B800 + B890. The near-IR absorption spectrum of the particle is very similar to that of chromatophores of Rhodospirillum rubrum although the major absorption maximum is shifted slightly. The X-ray diffraction pattern of the subchromatophore particles is very similar to that of chromatophores of Rhodospirillum rubrum. Thus, the subchromatophore particles are considered to be the "photoreaction unit" of Rhodospirillum rubrum. Since the bacteriochlorophyll form, *B800 + B890, is common in the purple bacteria, it is strongly suggested that the photoreaction unit is the basic and common structure existing in the photosynthetic units of purple bacteria. Chromatium vinosum cells exhibit different near-IR absorption spectra, depending on the culture media and also on the intensity of the illumination during culture. The chromatophores from these cells give different equatorial X-ray diffraction patterns. These patterns are much broader than that of solubilized subchromatophore particles, though they have common features. Thus, the molecular structures in the photosynthetic units are different, depending on their constituent bacteriochlorophyll forms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Mild proteolysis of Rhodopseudomonas capsulata chromatophores results in a parallel loss of the 800 nm bacteriochlorophyll absorption band and a blue shift in the carotenoid absorption bands associated with the B-800–850 light-harvesting complex. Both the light-induced and the salt-induced electrochromic carotenoid band shift disappear in parallel to the loss of the 800 nm bacteriochlorophyll absorption upon pronase treatment of chromatophores. During the time required for the loss of the 800 nm bacteriochlorophyll absorption and the loss of the electrochromic carotenoid band shift photochemistry is not inhibited and the ionic conductance of the membrane remains very low. We conclude that the carotenoid associated with the B-800–850 light-harvesting complex is the one that responds electrochromically to the transmembrane electric field. Analysis of the pigment content of Rps. capsulata chromatophores indicates that all of the carotenoid may be accounted for in the well defined pigment-protein complexes.  相似文献   

12.
Androgen aromatase was found to also be estrogen 2-hydroxylase. The substrate specificity among androgens and estrogens and multiplicity of aromatase reactions were further studied. Through purification of human placental microsomal cytochrome P-450 by monoclonal antibody-based immunoaffinity chromatography and gradient elution on hydroxyapatite, aromatase and estradiol 2-hydroxylase activities were co-purified into a single band cytochrome P-450 with approx. 600-fold increase of both specific activities, while other cytochrome P-450 enzyme activities found in the microsomes were completely eliminated. The purified P-450 showed Mr of 55 kDa, specific heme content of 12.9 ± 2.6 nmol·mg−1 (±SD, N = 4), reconstituted aromatase activity of 111 ± 19 nmol·min−1·mmg−1 and estradiol 2-hydroxylase activity of 5.85 ± 1.23 nmol·min−1·mg−1. We found no evidence for the existence of catechol estrogen synthetase without concomitant aromatase activity. The identity of the P-450 for the two different hormone synthetases was further confirmed by analysis of the two activities in the stable expression system in Chinese hamster ovarian cells transfected with human placental aromatase cDNA, pH β-Aro. Kinetic analysis of estradiol 2-hydroxylation by the purified and reconstituted aromatase P-450 in 0.1 M phosphate buffer (pH 7.6) showed Km of 1.58 μM and Vmax of 8.9 nmol·min−1·mg−1. A significant shift of the optimum pH and Vmax, but not the Km, for placental estrogen 2-hydroxylase was observed between microsomal and purified preparations. Testosterone and androstenedione competitively inhibited estradiol 2-hydroxylation, and estrone and estradiol competitively inhibited aromatization of both testosterone and androstenedione. Estrone and estradiol showed Ki of 4.8 and 7.3 μM, respectively, for testosterone aromatization, and 5.0 and 8.1 μM, respectively, for androstenedione aromatization. Androstenedione and testosterone showed Ki of 0.32 and 0.61 μM, respectively, for estradiol 2-hydroxylation. Our studies showed that aromatase P-450 functions as estrogen 2-hydroxylase as well as androgen 19-, 1β-,and 2β-hydroxylase and aromatase. The results indicate that placental aromatase is responsible for the highly elevated levels of the catechol estrogen and 19-hydroxyandrogen during pregnancy. These results also indicate that the active site structure holds the steroid ssubstrates to face their β-side of the A-ring to the heme, tilted in such a way as to make the 2-position of estrogens and 19-, 1-, and 2-positions of androgens available for monooxygenation.  相似文献   

13.
An in vitro study was conducted to examine the effect of adding monensin, fish oil, or their combination on rumen fermentation and conjugated linoleic acid (CLA) production by mixed ruminal bacteria when incubated with safflower oil. Concentrate (1 g/100 ml) with safflower oil (0.2 g/100 ml) was added to a mixed solution (600 ml) of strained rumen fluid and buffer (control). Monensin (10 ppm), fish oil (0.02 g/100 ml), or monensin plus fish oil was also added into control mixture. All the culture solutions prepared were incubated anaerobically at 39 °C for 12 h. A higher pH and ammonia concentration were observed from the culture solution containing monensin at 12 h of incubation than those from the control or the culture containing fish oil. Monensin increased (P < 0.007) the C3 content over all the collection times of culture solution while reducing the C4 content at 6 h (P < 0.018) and 12 h (P < 0.001) of incubations. Supplementation of monensin, fish oil or their combination changed the content of C18-fatty acids of ruminal culture. Monensin alone reduced (P < 0.021) the content of cis-9, trans-11 CLA compared to fish oil at all sampling times, but increased (P < 0.041) the trans-10, cis-12 CLA production compared to fish oil addition and the control which were similar at incubation for 12 h. The combination of monensin and fish oil increased the content of cis-9, trans-11 CLA (P < 0.023) and transvaccenic acid (TVA, P < 0.018) significantly compared to the control or monensin alone at incubation for 12 h.  相似文献   

14.
Shigeru Itoh 《BBA》1980,593(2):212-223
1. Electrogenic steps in photosynthetic cyclic electron transport in chromatophore membrane of Chromatium vinosum were studied by measuring absorption changes of added merocyanin dye and of intrinsic carotenoid.

2. The change in dye absorbance was linear with the membrane potential change induced either by light excitation or by application of diffusion potential by adding valinomycin in the presence of K+ concentration gradient.

3. It was estimated that chromatophore membrane became 40–60 mV and 110–170 mV inside positive upon single and multiple excitations with single-turnover flashes, respectively, from the responses of the dye and the carotenoid.

4. Electron transfers between cytochrome c-555 or c-552 and reaction center bacteriochlorophyll dimer (BChl2) and between BChl2 and the primary electron acceptor were concluded to be electrogenic from the redox titration of the dye response.

5. No dye response which corresponded to the change of redox level of cytochrome b was observed in the titration curve. Addition of antimycin A slightly decreased the dye response.

6. The dye response was decreased under phosphorylating conditions.

7. From the results obtained localization of the electron transfer components in chromatophore membrane is discussed.  相似文献   


15.
Proteoliposomes were reconstituted from detergent-solubilized pigment · protein complexes of chromatophores of Rhodopseudomonas sphaeroides and soybean phospholipids. The reconstituted vesicles showed a photooxidation of reaction center bacteriochlorophyll and a light-induced spectral shift of carotenoid to longer wavelengths. The red shift similar to that in intact cells or chromatophores, indicates the generation of local fields in the membrane of proteoliposomes. When inside-positive membrane potential was induced by adding valinomycin and potassium salt, a shift of carotenoid spectrum to shorter wavelengths was observed. Therefore, the reconstituted vesicles, at least in the major part of population, produced the light-induced local field in the same direction as in intact cells, which is inside negative. Sidedness of the membrane structure and the direction of electric field formation in reconstituted vesicles were opposite to those in chromatophores (inside-out vesicles).  相似文献   

16.
The ester cleavage of R- and S-isomers N-CBZ-leucine p-nitrophenyl ester intermolecularly catalyzed by R- (a) and S-stereoisomers (b) of the Pd(II) metallacycle [Pd(C6H4C*HMeNMe2)Cl(py)] (3) follows the rate expression kobs = ko + kcat [3], where the rate constants kcat equal 25.8 ± 0.4 and 7.6 ± 0.5 dm3 mol−1 s−1 for the S- and R-ester, respectively, in the case of 3a, but are 5.7 ± 0.6 and 26.7 ± 0.5 dm3 mol−1 s−1 for the S- and R-ester, respectively, in the case of 3b (pH 6.23 and 25°C). Thus, the best catalysis occurs when the asymmetric carbons of the leucine ester and Pd(II) complex are R and S, or S and R configured, respectively. Molecular modeling suggests that the stereoselection results from the spatial interaction between the CH2CHMe2 radical of the ester and the -methyl group of 3. A hydrophobic/stacking contact between the leaving 4-nitrophenolate and the coordinated pyridine also seems to play a role. Less efficient intramolecular enantioselection was observed for the hydrolysis of N-t-BOC-S-metthionine p-nitrophenyl ester with R- and S-enantiomers of [Pd(C6H4C*HMeNMe2)Cl] coordinated to sulfur.  相似文献   

17.
Chromatophores from Rhodopseudomonas sphaeroides were oriented by allowing aqueous suspensions to dry on glass plates. Orientation of reaction center pigments was investigated by studying the linear dichroism of chromatophores in which the absorption by antenna bacteriochlorophyll had been attenuated through selective oxidation. Alternatively the light-induced absorbance changes, in the ranges 550–650 and 700–950 nm, were studied in untreated chromatophores. The long wave transition moment of reaction center bacteriochlorophyll (P-870) was found to be nearly parallel to the plane of the membrane, whereas the long wave transition moments of bacteriopheophytin are polarized out of this plane. For light-induced changes the linear dichroic ratios, defined as Δavah, are nearly the same for untreated and for oxidized chromatophores. Typical values are 1.60 at 870 nm, 0.80 at 810 nm, 1.20 at 790 nm, 0.70 at 765 nm, 0.30 at 745 nm, and 0.50 at 600 nm. The different values for the absorbance decrease at 810 nm (0.80) and the increase at 790 nm (1.20) are incompatible with the hypothesis that these changes are due to the blue-shift of a single band. We propose that the decreases at 870 and 810 nm reflect bleaching of the two components of a bacteriochlorophyll dimer, the “special pair” that shares in the photochemical donation of a single electron. The increase at 790 nm then represents the appearance of a monomer band in place of the dimer spectrum, as a result of electron donation. This hypothesis is consistent with available data on circular dichroism. It is confirmed by the presence of a shoulder at 810 nm in the absorption spectrum of reaction centers at low temperature; this band disappears upon photooxidation of the reaction centers. For the changes near 760 nm, associated with bacteriopheophytin, the polarization and the shape of the “light-dark” difference spectrum (identical to the first derivative of the absorption spectrum) show that the 760 nm band undergoes a light-induced shift to greater wavelengths.  相似文献   

18.
M  rten K. F. Wikstr  m  Jan A. Berden 《BBA》1972,283(3):403-420
1. The effect of oxidizing equivalents on the redox state of cytochrome b in the presence of antimycin has been studied in the presence and absence of various redox mediators.

2. The antimycin-induced extra reduction of cytochrome b is always dependent on the initial presence of an oxidant such as oxygen. After removal of the oxidant this effect remains or is partially (under some conditions even completely) abolished depending on the redox potential of the substrate used and the leak through the antimycin-inhibited site.

3. The increased reduction of cytochrome b induced by oxidant in the presence of antimycin involves all three spectroscopically resolvable b components (b-562, b-566 and b-558.

4. Redox mediators with an actual redox potential of less than 100–170 mV cause the oxidation of cytochrome b reduced under the influence of antimycin and oxidant.

5. Redox titrations of cytochrome b with the succinate/fumarate couple were performed aerobically in the presence of cyanide. In the presence of antimycin two b components are separated potentiometrically, one with an apparent midpoint potential above 80 mV (at pH 7.0), outside the range of the succinate/fumurate couple, and one with an apparent midpoint potential of 40 mV and an n value of 2. In the absence of antimycin cytochrome b titrates essentially as one species with a midpoint potential of 39 mV (at pH 7.0) and n = 1.14.

6. The increased reducibility of cytochrome b induced by antimycin plus oxidant is considered to be the result of two effects: inhibition of oxidation of ferrocytochrome b by ferricytochrome c1 (the effect of antimycin), and oxidation of the semiquinone form of a two-equivalent redox couple such as ubiquinone/ubiquinol by the added oxidant, leading to a decreased redox potential of the QH2/QH couple and reduction of cytochrome b.  相似文献   


19.
The antimycin-sensitive ubisemiquinone radical (QC) of the ubiquinol-cytochrome c oxidoreductase of submitochondrial particles and chromatophores of Rhodopseudomonas sphaeroides Ga has been studied by a combination of redox potentiometry and EPR spectroscopy. This g = 2.005 radical signal appears at physiological pH values and increases in intensity with increasing pH up to pH 7.6 in submitochondrial particles and pH 9.0 in R. sphaeroides after which its intensity remains unchanged. The Em7 (ubiquinone/quinol) of the signal, estimated from redox titration data is 80 mV for submitochondrial particles, and 150 mV in chromatophores. Each of these values is higher than that of the quinone pool by 20 mV in submitochondrial particles and 60 mV in R. sphaeroides. This indicates that the quinone at the binding site is out of equilibrium with the pool, and that binding site preferentially binds quinol over quinone. Analysis of the shapes of the semiquinone titration curves, taken together with the midpoint elevation, indicates a quinone-binding site: cytochrome c1 stoichiometry of 1:1 in both submitochondrial particles and chromatophores. At its maximal intensity, the semiquinone concentration at the binding site is 0.26 in submitochondrial particles (greater than pH 7.6) and 0.4 in chromatophores (greater than pH 9.0). In both systems, the midpoint of the ubiquinone/ubisemiquinone couple is constant as the pH is raised up to the pH of maximal semiquinone formation whereafter it becomes more negative at the rate of -60 mV/pH unit. The midpoint of the ubisemiquinone/quinol couple, on the other hand, varies by -120 mV/pH unit at pH values up to the transition pH, after which it, too, changes by -60 mV/pH unit. This seemingly anomalous behavior may be explained by invoking a protonated group at or near the quinone-binding site whose pK corresponds to the pH transition point in the quinone/semiquinone/quinol redox chemistry when the site is free or when quinone or quinol occupies the site. This pK is elevated to at least pH 9.0 in submitochondrial particles and 10.5 in R. sphaeroides when semiquinone is bound to the site.  相似文献   

20.
Shigeru Itoh 《BBA》1979,548(3):579-595
Salt- or pH-induced change of the rate of reduction of the phtooxidized membrane bound electron transfer components, P-700, by ionic and nonionic reductants added in the outer medium was studied in sonicated chloroplasts.

The rate with the negatively charged reductants increased with the increase of salt concentration at a neutral pH or with the decrease of medium pH. Salts of divalent cations were much more effective than those of monovalent cations. A trivalent cation was even more effective. The rate with a nonionic reductant was little affected by salts.

The change of the reduction rate was analyzed using the Gouy-Chapman theory, which explains the change of reduction rate by the changes of activities of ionic reductants at the charged membrane surface where the reaction takes place. This analysis gave more useful parameters and explained more satisfactorily the case with high-valence cation salts than the Brönsted type analysis. The values for the surface charge density and the surface potential of the membrane surface in the vicinity of P-700 estimated from the analysis were lower than those estimated for the surface in the vicinity of Photosystem II primary acceptor, suggesting the heterogeneity of the thylakoid surface.

The salt-induced surface potential change was shown to affect the activation energy of the reaction between P-700 and the ionic reagent.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号