首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The two BRCT domains (BRCT1 and BRCT2) of XRCC1 mediate a network of protein–protein interactions with several key factors of the DNA single-strand breaks (SSBs) and base damage repair pathways. BRCT1 is required for the immediate poly(ADP–ribose)-dependent recruitment of XRCC1 to DNA breaks and is essential for survival after DNA damage. To better understand the biological role of XRCC1 in the processing of DNA ends, a search for the BRCT1 domain-associated proteins was performed by mass spectrometry of GST-BRCT1 pulled-down proteins from HeLa cell extracts. Here, we report that the double-strand break (DSB) repair heterotrimeric complex DNA-PK interacts with the BRCT1 domain of XRCC1 and phosphorylates this domain at serine 371 after ionizing irradiation. This caused XRCC1 dimer dissociation. The XRCC1 R399Q variant allele did not affect this phosphorylation. We also show that XRCC1 strongly stimulates the phosphorylation of p53-Ser15 by DNA-PK. The pseudo phosphorylated S371D mutant was a much weaker stimulator of DNA-PK activity whereas the non-phosphorylable mutant S371L endowed with a DNA-PK stimulating capacity failed to fully rescue the DSB repair defect of XRCC1-deficient EM9 rodent cells. The functional association between XRCC1 and DNA-PK in response to IR provides the first evidence for their involvement in a common DSB repair pathway.  相似文献   

3.
The p53 response to DNA damage   总被引:12,自引:0,他引:12  
Meek DW 《DNA Repair》2004,3(8-9):1049-1056
  相似文献   

4.
The role of the checkpoint kinase 2 (Chk2) as an upstream activator of p53 following DNA damage has been controversial. We have recently shown that Chk2 and the DNA-dependent protein kinase (DNA-PK) are both involved in DNA damage-induced apoptosis but not G(1) arrest in mouse embryo fibroblasts. Here we demonstrate that Chk2 is required to activate p53 in vitro as measured by its ability to bind its consensus DNA target sequence following DNA damage and is in fact the previously unidentified factor working synergistically with DNA-PK to activate p53. The gene mutated in ataxia telangiectasia is not involved in this p53 activation. Using wortmannin, serine 15 mutants of p53, DNA-PK null cells and Chk2 null cells, we demonstrate that DNA-PK and Chk2 act independently and sequentially on p53. Furthermore, the p53 target of these two kinases represents a latent (preexisting) population of p53. Taken together, the results from these studies are consistent with a model in which DNA damage causes an immediate and sequential modification of latent p53 by DNA-PK and Chk2, which under appropriate conditions can lead to apoptosis.  相似文献   

5.
6.
Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.  相似文献   

7.
Bhat KR  Benton BJ  Ray R 《Biochemistry》2006,45(20):6522-6528
DNA-dependent protein kinase (DNA-PK) phosphorylates several cellular proteins in vitro, but its cellular function and natural substrate(s) in vivo are not established. We reported activation of DNA ligase in cultured normal human epidermal keratinocytes (NHEK) on exposure to the DNA-damaging compound bis-(2-chloroethyl) sulfide. The activated enzyme was identified as DNA ligase I, and this activation was attributed to phosphorylation of the enzyme. Here, we show that the phosphorylation is mediated by DNA-PK and that DNA ligase I is one of its natural substrates in vivo. DNA ligase I phosphorylation-cum-activation is a response specific to DNA double-strand breaks. We also demonstrate that affinity-purified inactive DNA ligase I is phosphorylated and activated in vitro by HeLa Cell DNA-PK confirming the in vivo observations. The findings specify the roles of DNA-PK and DNA ligase I in mammalian DNA double-strand break repair.  相似文献   

8.
DNA damage is a key initiator of neuronal death. We have previously shown that the tumor suppressor p53, in conjunction with cyclin-dependent kinases (CDKs), regulates the mitochondrial pathway of death in neurons exposed to genotoxic agents. However, the mechanisms by which p53 is regulated is unclear. Presently, we show that p53 is phosphorylated on Ser-15 following DNA damage and this occurs independently of the CDK pathway. Instead, we show that p53 phosphorylation, stability, as well as neuronal death is regulated, in part, by the ataxia telangiectasia-mutated (ATM) protein. Previous reports have suggested that ATM regulation of p53 occurs through Chk2. However, in our present paradigms, we show that ATM functions separately from Chk2 to regulate p53 stability and neuronal death. Chk2 deficiency does not affect p53 stability or neuronal death induced by Topoisomerase I or II inhibition. Taken together, our results provide a model by which DNA damage can activate an ATM-dependent, Chk2-independent pathway of p53-mediated neuronal death.  相似文献   

9.
Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.  相似文献   

10.
11.
DNA damage induces accumulation and activation of p53 via various posttranslational modifications. Among them, several lines of evidence indicated the phosphorylation of Ser46 as an important mediator of DNA damage-induced apoptosis but the responsible kinase remains to be clarified, especially in the case of ionizing radiation (IR). Here we showed that DNA-dependent protein kinase (DNA-PK) could phosphorylate Ser46 of p53 in addition to reported phosphorylation sites Ser15 and Ser37. However, IR-induced phosphorylation of Ser46 was seen even in M059J, a human glioma cell line lacking DNA-PKcs, and it was, at most, only slightly less than in control M059K. On the other hand, a related kinase ataxia-telangiectasia mutated (ATM), which was shown to be essential for IR-induced phosphorylation of Ser46, could poorly phosphorylate Ser46 by itself. These results collectively suggested two pathways for IR-induced phosphorylation of Ser46, i.e., direct phosphorylation by DNA-PK and indirect phosphorylation via ATM.  相似文献   

12.
Woo RA  Jack MT  Xu Y  Burma S  Chen DJ  Lee PW 《The EMBO journal》2002,21(12):3000-3008
Mouse embryo fibroblasts (MEFs) expressing the adenovirus E1A protein undergo apoptosis upon exposure to ionizing radiation. We show here that immediately following gamma-irradiation, latent p53 formed a complex with the catalytic subunit of the DNA-dependent protein kinase (DNA-PK(CS)). The complex formation was DNase sensitive, suggesting that the proteins came together on the DNA, conceivably at strand breaks. This association was accompanied by phosphorylation of pre-existing, latent p53 at Ser18 (corresponding to Ser15 in human p53), which was not found in DNA-PK(CS)(-/-) cells. Most significantly, DNA damage-induced apoptosis was abolished in both DNA-PK(CS)(-/-) and p53(-/-) cells. In addition, blocking synthesis of inducible p53 by cycloheximide did not abrogate apoptosis, suggesting that the latent population of p53 is sufficient for executing the apoptotic program. Finally, E1A-expressing MEFs from a p53 "knock-in" mouse where Ser18 was mutated to an alanine had an attenuated apoptotic response, indicating that phosphorylation of this site by DNA-PK is a contributing factor for apoptosis.  相似文献   

13.
Human T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation. Here we demonstrate that DNA-dependent protein kinase (DNA-PK) is a member of the Tax.Chk2 nuclear complex. The catalytic subunit, DNA-PKcs, and the regulatory subunit, Ku70, were present. Tax-containing nuclear extracts showed increased DNA-PK activity, and specific inhibition of DNA-PK prevented Tax-induced activation of Chk2 kinase activity. Expression of Tax induced foci formation and phosphorylation of H2AX. However, Tax-induced constitutive signaling of the DNA-PK pathway impaired cellular response to new damage, as reflected in suppression of ionizing radiation-induced DNA-PK phosphorylation and gammaH2AX stabilization. Tax co-localized with phospho-DNA-PK into nuclear speckles and a nuclear excluded Tax mutant sequestered endogenous phospho-DNA-PK into the cytoplasm, suggesting that Tax interaction with DNA-PK is an initiating event. We also describe a novel interaction between DNA-PK and Chk2 that requires Tax. We propose that Tax binds to and stabilizes a protein complex with DNA-PK and Chk2, resulting in a saturation of DNA-PK-mediated damage repair response.  相似文献   

14.
15.
Questioning the role of checkpoint kinase 2 in the p53 DNA damage response   总被引:7,自引:0,他引:7  
Cdc25C and p53 have been reported to be physiological targets of checkpoint kinase 2 (Chk2). Surprisingly, although Chk2 purified from DNA damage sustaining cells has dramatically increased ability to phosphorylate Cdc25C when compared with untreated cells, its ability to phosphorylate p53 is weak before treatment, and there is no increase in its activity toward p53 after DNA damage by gamma irradiation or the radiomimetic agent neocarzinostatin. Furthermore, introduction of Chk2 short interfering RNA into three different human tumor cell lines leads to marked reduction of Chk2 protein, but p53 is still stabilized and active after DNA damage. The results with Chk1 short interfering RNA indicate as well that Chk1 does not play a role in human p53 stabilization after DNA damage. Thus, Chk1 and Chk2 are unlikely to be regulators of p53 in at least some human tumor cells. We discuss our results in the context of previous findings demonstrating a requirement for Chk2 in p53 stabilization and activity.  相似文献   

16.
17.
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) are the two major kinases involved in DNA double-strand break (DSB) repair, and are required for cellular resistance to ionizing radiation. Whereas ATM is the key upstream kinase for DSB signaling, DNA-PKcs is primarily involved in DSB repair through the nonhomologous end-joining (NHEJ) mechanism. In addition to DSB repair, ATM has been shown to be involved in the oxidative stress response and could be activated directly in vitro on hydrogen peroxide (H2O2) treatment. However, the role of DNA-PKcs in cellular response to oxidative stress is not clear. We hypothesize that DNA-PKcs may participate in the regulation of ATM activation in response to oxidative stress, and that this regulatory role is independent of its role in DNA double-strand break repair. Our findings reveal that H2O2 induces hyperactivation of ATM signaling in DNA-PKcs-deficient, but not Ligase 4-deficient cells, suggesting an NHEJ-independent role for DNA-PKcs. Furthermore, DNA-PKcs deficiency leads to the elevation of reactive oxygen species (ROS) production, and to a decrease in cellular survival against H2O2. For the first time, our results reveal that DNA-PKcs plays a noncanonical role in the cellular response to oxidative stress, which is independent from its role in NHEJ. In addition, DNA-PKcs is a critical regulator of the oxidative stress response and contributes to the maintenance of redox homeostasis. Our findings reveal that DNA-PKcs is required for cellular resistance to oxidative stress and suppression of ROS buildup independently of its function in DSB repair.  相似文献   

18.
Protein kinase C (PKC) delta is cleaved by caspase-3 to a kinase-active catalytic fragment (PKCdeltaCF) in the apoptotic response of cells to DNA damage. Expression of PKCdeltaCF contributes to the induction of apoptosis by mechanisms that are presently unknown. Here we demonstrate that PKCdeltaCF associates with p73beta, a structural and functional homologue of the p53 tumor suppressor. The results show that PKCdeltaCF phosphorylates the p73beta transactivation and DNA-binding domains. One PKCdeltaCF-phosphorylation site has been mapped to Ser-289 in the p73beta DNA-binding domain. PKCdeltaCF-mediated phosphorylation of p73beta is associated with accumulation of p73beta and induction of p73beta-mediated transactivation. By contrast, PKCdeltaCF-induced activation of p73beta is attenuated by mutating Ser-289 to Ala (S289A). The results also demonstrate that PKCdeltaCF stimulates p73beta-mediated apoptosis and that this response is attenuated with the p73beta(S289A) mutant. These findings demonstrate that cleavage of PKCdelta to PKCdeltaCF induces apoptosis by a mechanism in part dependent on PKCdeltaCF-mediated phosphorylation of the p73beta Ser-289 site.  相似文献   

19.
p53 is required for DNA damage‐induced apoptosis, which is central to its function as a tumour suppressor. Here, we show that the apoptotic defect of p53‐deficient cells is nearly completely rescued by inactivation of any of the three subunits of the DNA repair holoenzyme DNA‐dependent protein kinase (DNA‐PK). Intestinal crypt cells from p53 nullizygous mice were resistant to radiation‐induced apoptosis, whereas apoptosis in DNA‐PKcs/p53, Ku80/p53 and Ku70/p53 double‐null mice was quantitatively equivalent to that seen in wild‐type mice. This p53‐independent apoptotic response was specific to the loss of DNA‐PK, as it was not seen in ligase IV (Lig4)/p53 or ataxia telangiectasia mutated (Atm)/p53 double‐null mice. Furthermore, it was associated with an increase in phospho‐checkpoint kinase 2 (CHK2), and cleaved caspases 3 and 9, the latter indicating engagement of the intrinsic apoptotic pathway. This shows that there are two separate, but equally effective, apoptotic responses to DNA damage: one is p53 dependent and the other, engaged in the absence of DNA‐PK, does not require p53.  相似文献   

20.
The dynamics of the tumor suppressor protein p53 have been previously investigated in single cells using fluorescently tagged p53. Such approach reports on the total abundance of p53 but does not provide a measure for functional p53. We used fluorescent protein-fragment complementation assay (PCA) to quantify in single cells the dynamics of p53 tetramers, the functional units of p53. We found that while total p53 increases proportionally to the input strength, p53 tetramers are formed in cells at a constant rate. This breaks the linear input–output relation and dampens the p53 response. Disruption of the p53-binding protein ARC led to a dose-dependent rate of tetramers formation, resulting in enhanced tetramerization and induction of p53 target genes. Our work suggests that constraining the p53 response in face of variable inputs may protect cells from committing to terminal outcomes and highlights the importance of quantifying the active form of signaling molecules in single cells.Quantification of the dynamics of p53 tetramers in single cells using a fluorescent protein-fragment complementation assay reveals that, while total p53 increases proportionally to the DNA damage strength, p53 tetramers are formed at a constant rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号