首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of plant polysomes with the actin cytoskeleton   总被引:2,自引:0,他引:2  
Protein composition and functional activity of various polysome subpopulations isolated from Vicia faba L. leaves and Triticum aestivum L. and Hordeum vulgare L. seedlings were studied. Membrane- and cytoskeleton-bound polysomes were more active in the wheat germ cell-free translational system than free polysomes. Several non-ribosomal proteins were detected in the polysome preparations by gel electrophoresis and Western blot analysis: (1) a canonical actin of mol wt 42 kDa; (2) a 40 kDa protein, demonstrating affinity for ribosomes, sharing some determinants with actin, and present predominantly in the subpopulations of bound polysomes; and (3) an acidic ribosome-associated p40 evenly distributed between free and bound polysomes. The possibility of involvement of these proteins in interactions between polysomes and the actin cytoskeleton is discussed.  相似文献   

2.
Polysome stability and the formation of various polysomal populations in pea stem and root tissue were examined. Both total ribosomal fraction and four polysome populations were isolated: FP (free polysomes), MBP (membrane-bound polysomes), CBP (cytoskeleton-bound polysomes) and CMBP (cytoskeleton-membrane-bound polysomes). The content of above mentioned populations decreased in roots and stems during germination. In both roots and stems a gradual decrease of FP participation in the total polysomal population was also observed during germination. On the other hand, an obvious increase in participation of CMBP population in the total polysomes pool was observed in later stages of germination. Increase of CMBP participation in pea root and stem tissues in later stages of germination is probably due to intensive enzymatic protein synthesis taking place in them. These proteins may participate in elongating growth of cells. The results of investigation on polysomes stability showed that total polysomes isolated from pea roots appeared to be more resistant to digestion by exogenous ribonuclease (EC 3.1.27.5) than polysomes isolated from stems. As protein-mRNA interactions are widely known and ribosomes are also very adhesive structures, numerous non-ribosomal proteins are present in the polysome preparations. We suppose that changes in proteins bound to polysomes indicated by us previously, significantly influence both the stability and also translatability of polysomes isolated from different plant organs.  相似文献   

3.
A procedure for isolating undegraded polysomes from radish cotyledons is described. The current method for plant polysome preparation using buffers of high pH and high ionic strength was unable to prevent the breakdown of large polysomes occurring during the extraction. Proteinase K was very efficient in protecting polysomes from degradation. However, this yielded a high monosome content in the preparations. When proteinase K was combined with cycloheximide, a more satisfactory recovery of polysomes was achieved. This procedure could facilitate investigations of the in vitro protein synthesis activity and mRNA isolation in tissues possessing a high ribonuclease content.  相似文献   

4.
The formation and in vitro translational activity of total, free and membrane-bound polysomes from various stages of developing cotyledons of yellow lupin seeds (Lupinus luteus L. cv. Iryd) has been investigated. The early stages of seed formation were characterized by a low level of polysomes that progressively increased. The main features of the cotyledons at the middle phase of development were full expansion growth and the highest amount of polysomes observed in all three poly so me fractions. In The final stages of emhryogenesis. the seed dehydration was accompanied by-gradual loss of all types of polysomes, at which the membrane-attached formations were degraded earlier than the free ones. By means of a wheat germ-derived cell-free system for protein synthesis, a correlation was demonstrated between cotyledon growth, polysome formation and their capacity for protein synthesis in vitro. As compared to the free polysomes, both the total and membrane-bound formations were more active in protein synthesis in vitro. Analysis of the translational products by means of immunoprecipitation and gel electrophoresis followed by fluorography showed that only membrane-bound polysomes produced polypeptides of higher molecular weight, including subunits of a legumin-like protein.  相似文献   

5.
The Drosophila gene, pixie, is an essential gene required for normal growth and translation. Pixie is the fly ortholog of human RLI, which was first identified as an RNase L inhibitor, and yeast Rli1p, which has recently been shown to play a role in translation initiation and ribosome biogenesis. These proteins are all soluble ATP-binding cassette proteins with two N-terminal iron-sulfur clusters. Here we demonstrate that Pixie can be isolated from cells in complex with eukaryotic translation initiation factor 3 and ribosomal proteins of the small subunit. In addition, our analysis of polysome profiles reveals that double-stranded RNA interference-mediated depletion of Pixie results in an increase in empty 80 S ribosomes and a corresponding decrease in polysomes. Thus Pixie is required for normal levels of translation initiation. We also find that Pixie associates with the 40 S subunit on sucrose density gradients in an ATP-dependent manner. Our observations are consistent with Pixie playing a catalytic role in the assembly of complexes required for translation initiation. Thus, the function of this soluble ATP-binding cassette domain protein family in translation initiation has been conserved from yeast through to higher eukaryotes.  相似文献   

6.
Previous studies have demonstrated that the mRNAs encoding the prolamine and glutelin storage proteins are localized to morphologically distinct membranes of the endoplasmic reticulum (ER) complex in developing rice (Oryza sativa L.) endosperm cells. To gain insight about this mRNA localization process, we investigated the association of prolamine polysomes on the ER that delimit the prolamine protein bodies (PBs). The bulk of the prolamine polysomes were resistant to extraction by 1% Triton X-100 either alone or together with puromycin, which suggests that these translation complexes are anchored to the PB surface through a second binding site in addition to the well-characterized ribosome-binding site of the ER-localized protein translocation complex. Suppression of translation initiation shows that these polysomes are bound through the mRNA, as shown by the simultaneous increase in the amounts of ribosome-free prolamine mRNAs and decrease in prolamine polysome content associated with the membrane-stripped PB fraction. The prolamine polysome-binding activity is likely to be associated with the cytoskeleton, based on the association of actin and tubulin with the prolamine polysomes and PBs after sucrose-density centrifugation.  相似文献   

7.
Intravenous administration of LSD to young adult rabbits induces a transient disaggregation of brain polysomes and a relocalization of mRNA from polysomes to monosomes. To analyze the spectrum of mRNA molecules which were associated with either the residual polysomes or the translationally inactive monosome complex, these two fractions were isolated on sucrose gradients and translated in a reticulocyte cell-free system. Analysis of [35S]methionine labeled translation products by one and two dimensional gel electrophoresis revealed that a full spectrum of mRNA molecules was relocalized from polysomes to monosomes following drug induced polysome disaggregation. The only exception was the mRNA coding for the LSD-induced 74K protein which was associated with the residual polysome fraction and not with the monosome complex. This brain protein is similar in molecular weight to one of the major heat shock proteins which are induced in tissue culture cells following elevation of ambient temperature and disaggregation of existing polysomes. The mRNA coding for the 74K brain protein was not observed in polysomes isolated following blockage of LSD-induced hyperthermia but it was noted when hyperthermia was induced by elevation of ambient temperature. The mRNA species coding for the 74K protein was polyadenylated.  相似文献   

8.
The primary storage protein synthesized during oat (Avena sativa L.) groat development is a globulin. Polysomes were isolated from oat groats 12 days after anthesis. These polysomes directed the incorporation of radioactive amino acids into protein in a cell-free protein synthesis system containing wheat germ supernatant. The Mg(2+) optimum was 4 mm, the pH optimum was 6-8, and the amount of amino acid incorporation depended on polysome concentration. Incorporation of amino acids was linear for about 10 min and approached a maximum after 20 min. Using the initiation inhibitor, T-2 toxin, it was determined that about 36% of the amino acid incorporation was due to the initiation of new polypeptide chains. The in vitro product co-electrophoresed with authentic oat groat globulin on polyacrylamide-sodium dodecyl sulfate (SDS) gels. The cyanogen bromide peptides of the in vitro product partially corresponded with those from authentic globulin when electrophoresed on polyacrylamide-SDS gels. These data suggest that the in vitro product is primarily oat globulin. The polysome population was separated into membrane-bound and free polysomes. Membrane-bound polysomes synthesized about twice the amount of protein as did free polysomes. Products synthesized in vitro on both types of polysomes were essentially the same.  相似文献   

9.
QSR1 is an essential Saccharomyces cerevisiae gene, which encodes a 60S ribosomal subunit protein required for joining of 40S and 60S subunits. Truncations of QSR1 predicted to encode C-terminally truncated forms of Qsr1p do not substitute for QSR1 but do act as dominant negative mutations, inhibiting the growth of yeast when expressed from an inducible promoter. The dominant negative mutants exhibit a polysome profile characterized by 'half-mer' polysomes, indicative of a subunit joining defect like that seen in other qsr1 mutants (D. P. Eisinger, F. A. Dick, and B. L. Trumpower, Mol. Cell. Biol. 17:5136-5145, 1997.) By screening a high-copy yeast genomic library, we isolated several clones containing overlapping inserts of a novel gene that rescues the slow-growth phenotype of the dominant negative qsr1 truncations. The suppressor of qsr1 truncation mutants, SQT1, is an essential gene, which encodes a 47.1-kDa protein containing multiple WD repeats and which interacts strongly with Qsr1p in a yeast two-hybrid system. SQT1 restores growth and the "half-mer" polysome profile of the dominant negative qsr1 mutants to normal, but it does not rescue temperature-sensitive qsr1 mutants or the original qsr1-1 missense allele. In yeast cell lysates, Sqt1p fractionates as part of an oligomeric protein complex that is loosely associated with ribosomes but is distinct from known eukaryotic initiation factor complexes. Loss of SQT1 function by down regulation from an inducible promoter results in formation of half-mer polyribosomes and decreased Qsr1p levels on free 60S subunits. Sqt1p thus appears to be involved in a late step of 60S subunit assembly or modification in the cytoplasm.  相似文献   

10.
In this study, we determine that Saccharomyces cerevisiae Not4 E3 ligase ubiquitinates Rps7A in vivo and in vitro, but not its paralogue, Rps7B. Ubiquitinated Rps7A is detectable only in 80S and polysomes, but not in free 40S fractions. A different role of the Rps7 paralogues in vivo is supported by the observation that the deletion of Rps7A but not Rps7B is sensitive to translational inhibitors and leads to an accumulation of aggregated proteins. An important accumulation of aggregated proteins that include ribosomal proteins and ribosome-associated chaperones is also observed in cells lacking Not4. A contribution of Not4 to ribosomal function extending beyond Rps7A ubiquitination is supported by the observation that the deletion of Not4 displays a synthetic slow growth phenotype when combined with the deletion of either one of the two Rps7 paralogues. Not4 is detectable in polysome fractions, as are other subunits of the Ccr4-Not complex such as Not5. The optimal presence of Not5 in polysomes is dependent upon Not4 and the deletion of Not5 leads to a dramatic reduction of polysomes. These results lead us to suggest that Not4 contributes to normal polysome levels and is important for cellular protein solubility maybe in part by ubiquitination of Rps7A.  相似文献   

11.
Using dissociation in 0.8 M KCl, it was established that in freshly excised Jerusalem artichoke (Helianthus tuberosus L.) tuber slices less than 8% of the ribosomes were in polysomes. The first hour of aging in water was the period of most rapid polysome accumulation; over 32% of the ribosomes carried nascent polypeptide chains at the end of this time. Thereafter polysome accumulation continued to increase, but more gradually. While synthesis of high-molecular-weight RNA (presumed mRNA) was inhibited more than 95% by -amanitin during the first hour of aging, the inhibitor had no effect on polysome formation. As determined by [3H]polyuridylic acid hybridization, unaged cells contained polyadenylated RNA with a size range of 6–30S. The amount of polyadenylated RNA did not change during the first hour of aging. In control cells in water the in-vivo rate of protein synthesis increased exponentially during the first 4 h of aging without a comparable increase in polysomes. In -amanitintreated tissues a similar increase in protein synthesis was not observed despite the presence of near control levels of polysomes. It is suggested that early polysome formation depends on stored mRNA. Inhibition of mRNA synthesis by -amanitin prevents the normal development of an enhanced rate of protein synthesis which is not directly related to numbers of ribosomes in polysomes.Abbreviations Poly(A) polyadenylic acid - Poly(A)+RNA polyadenylated RNA - Poly(U) polyuridylic acid - TCA trichloroacetic acid  相似文献   

12.
Apparent large size-classes of zein-synthesizing polysomes from developing kernels of Zea mays L. were converted to smaller polysomes after treatment with Protease K. The reduction in polysome size was not a result of ribonuclease activity, inasmuch as the enzyme did not affect the free polysomes or the size of the mRNA from the membrane-bound polysomes. High concentrations of MgCl(2) in polysome buffer inhibited ribonuclease activity and appeared to cause protein interaction between nascent zein polypeptides. Although Protease K inhibited the polysome's capacity for protein synthesis, it was a useful reagent for determining if polysomes were aggregated by protein.  相似文献   

13.
Changes in the polysome content of developing Xenopus laevis embryos   总被引:13,自引:0,他引:13  
A method for preparing polysomes from all embryonic stages of Xenopus laevis is described. In the oocyte only about 1–2% of the total ribosomes are present in polysomes, the remainder being a developmental reserve. Upon conversion to an egg the polysome content rises by up to 3-fold, and by about a further 2-fold after fertilization. There is only a small further increase during cleavage, but by the tailbud stage, when organogenesis begins, there is a more rapid rise. Most of the ribosomes are incorporated into polysomes by stage 42, shortly before feeding begins.At very early stages, the changes in polysome content seem to mirror the changes in protein synthesis. At later stages the polysome contents reported here provide the only available guide to changes in the rate of protein synthesis. Judged by polysome content, the stage 42 tadpole seems to make protein about 20 times faster than the unfertilized egg, though it contains very few more ribosomes. The relationship between polysome content and the synthesis of various types of RNA is discussed.  相似文献   

14.
Summary Polysomes from Krebs II ascites and 3T3 cells were separated into three populations by using a sequential extraction method. Free polysomes were released by using a combination of low salt (25 mM KCl) and NP-40 detergent in the lysis buffer. The cytoskeletal bound polysomes were subsequently released by raising the salt concentration to 130 mM and finally, polysomes bound to the membranes of the endoplasmic reticulum were extracted by the combined treatment with Triton X-100 and deoxycholate. The results presented here illustrate that the three polysome-containing fractions differ in many parameters such as polysome profiles, cytoskeletal components and phospholipid content. When polyA-containing mRNA was isolated from the three polysome fractions and translated in an in vitro system, some differences were observed in the patterns of proteins being synthesized.  相似文献   

15.
Translational alterations occur in maize (Zea mays L.) leaves stressed by pathogen infection or herbicide paraquat treatment. These translational changes include: (a) dissociation of large polysomes to small polysomes, monosomes, and subunits; (b) a decreased rate of total protein synthesis; and (c) a reduced synthesis of several proteins by polysomes in vitro. The polysome dissociation was neither due to an extraction artifact nor to degradation of RNA by RNase. The protein patterns of polysomes isolated from leaves inoculated with Bipolaris maydis at 6 to 48 hours showed an increase in the intensity of a 57 kilodalton protein. When inoculated with less virulent pathogens, such as B. zeicola, Exserohilum turcicum, or Colletotrichum graminicola, the protein was accumulated in polysomes of leaves at 24 to 48 hours after inoculation. The 57 kilodalton protein was also accumulated in polysomes of maize leaves responding to heat shock or herbicide paraquat treatments. The purified 57 kilodalton protein reassociated with polysomes isolated from healthy leaves and inhibited polysomal translation in vitro. Since the 57 kilodalton protein is rapidly accumulated in maize polysomes in response to various biological and environmental stresses and may affect protein synthesis, it may be involved in translational regulation of maize leaves during stress response.  相似文献   

16.
17.
The Synechococcus sp. PCC7942 strain carrying a missense mutation in the peptide-binding domain of DnaK3, one of the essential dnaK gene products, revealed temperature-sensitive growth. We also isolated suppressor mutants of this strain. One of the suppressors was mapped in the ribosomal protein gene rpl24 (syc1876), which encodes the 50S ribosomal protein L24. Subcellular localization of three DnaK proteins was determined, and the results indicated that a quantity of DnaK3 was dislocated from membrane-bound polysomes when dnaK3 temperature-sensitive mutant was incubated at non-permissive temperatures. Furthermore, we examined the photosystem II reaction center protein D1 and detected a translational intermediate polypeptide in membrane-bound polysome fractions prepared from dnaK3 temperature-sensitive cells grown at high temperature. These characteristic features of DnaK3 localizations and detection of D1 protein intermediate were not observed in the suppressor mutant even at high temperatures.  相似文献   

18.
Rat liver polysomes washed with 0.5–1.5 M KCl at 37°C keep a constant protein kinase activity revealed only by auto-phosphorylation of ribosomal proteins. The enzyme catalyzes the transfer of the -phosphate group from ATP to serine (75%) but also to threonine residues (25%). It is released when polysomes are dissociated into subunits using centrifugation through a sucrose gradient containing a high K+/Mg++ ratio. Its properties have been compared with those of the two other enzymatic activities which are, in contrast, washed out during salt treatment of polysomes. After release upon polysome dissociation, this third activity is able to phosphorylate histone II A. Protection of the enzyme in the polysome structure against salt treatment, suggests that it is located at the junction of the two subunits.  相似文献   

19.
Abstract: The biosynthesis of brain intermediate filament proteins [neurofilament proteins and glial fibrillary acidic protein (GFA)] was studied with cell-free systems containing either rat spinal cord polysomes (free polysomes or rough microsomes) and rabbit reticulocyte factors or wheat germ homogenate containing spinal cord messenger RNA. The products of translation were isoated by immunoaffinity chromatography and then analyzed by two-dimensional gel electrophoresis (2DGE) followed by fluorography. The free polysome population was found to synthesize two neurofilament proteins (MW 145K, p15.4, and MW 70K, pl 5.3) and three isomers of GFA (α, β, and γ) that differ in isoelectric point. Wheat germ homogenate containing messenger RNA extracted from free cord polysomes synthesized two proteins that comigrated with neurofilament protein standards at 145K 5.4 and 70K 5.3; these proteins were partially purified by neurofilament affinity chromatography. The wheat germ system also synthesized the α, β, and γ isomers of GFA as characterized by immunoaffinity chromatographic purification and comigration with standards in 2DGE analysis. Our data are consistent with the conclusion that synthesis of neurofilament proteins requires multiple messenger RNAs. Also, synthesis of intermediate filament proteins occurs in the free polysome population; detectable amounts of these proteins were not synthcsized by the rough microsomes.  相似文献   

20.
The ability of ricin to act as an endonuclease was examined using labelled polysomes isolated from mouse L cells grown in [32P] orthophosphate. No change was detected in the electrophoretic mobility of any ribosomal RNA species whether L cells were first treated with ricin or the isolated polysomes were treated with ricin. No trichloroacetic acid soluble counts over control levels were released by ricin treatment of isolated polysomes and no changes were observed in sucrose density gradient polysome profile with ricin treatment. The action of ricin on polysomes which results in inhibition of translation does not appear to involve endonuclease activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号