首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast cellular models are widely used for research on fatty acid metabolism. Due to the importance of L-carnitine in intermediary metabolism we studied the effects of L-carnitine on healthy human skin fibroblasts and fibroblasts without functional peroxisomes (Zellweger Syndrome) cultivated under carnitine deficiency, which is caused by standard media compositions. The application of physiological (0.1mM) or super-physiological (1mM) doses of L-carnitine causes a significant decrease of the specific activity of nitric oxide synthase (NOS, 2.25+/-0.10 to 1.36 pmol/(minmg)+/-0.09 pmol/(minmg) at 0.1mM), proliferation and a tendentious decrease of the antioxidant defence potential against hydrogen peroxide only in control cells. Simultaneous application of L-carnitine and 100 micro M N-acetylcysteine (NAC) prevents the alterations in control cells. Thus, L-carnitine alters the cellular regulation of the NOS probably by reactive oxygen species (ROS), which suggests that carnitine deficient media neither reflect physiological conditions for cellular models for fatty acid metabolism nor for the regulation of NOS.  相似文献   

2.
The decrease of steady-state transmembrane potential (delta psi) and loss of accumulated Ca2+ are magnified if palmitoyl-CoA is added to rat liver mitochondria exposed to Ca2+ and phosphate. The extent of this damage increases with increasing concentration of long-chain acyl-CoA. Addition of L-carnitine with or without the addition of palmitoyl-CoA considerably delays the deenergization. In the latter case, there is a substantial decrease in the assayed endogenous long-chain acyl-CoA content. This protective action of L-carnitine is abolished by L-aminocarnitine, a powerful inhibitor of carnitine palmitoyl transferase (palmitoyl-CoA: L-carnitine O-palmitoyltransferase, EC 2.3.1.21.). The removal of Ca2+ by EGTA, or the inhibition of its uptake by Ruthenium red or Mg2+ further enhances the degree of protection.  相似文献   

3.
The study aimed to examine whether L-carnitine and its derivatives, acetyl-L-carnitine and propionyl-L-carnitine, were equally effective and able to improve postischemic cardiac function, reduce the incidence of reperfusion-induced ventricular fibrillation, infarct size, and apoptotic cell death in ischemic/reperfused isolated rat hearts. There are several studies indicating that L-carnitine, a naturally occurring amino acid and an essential cofactor, can improve mechanical function and substrate metabolism not only in hypertrophied or failing myocardium but also in ischemic/reperfused hearts. The effects of L-carnitine, acetyl-L-carnitine, and propionyl-L-carnitine, on the recovery of heart function, incidence of reperfusion-induced ventricular fibrillation (VF), infarct size, and apoptotic cell death after 30 min ischemia followed by 120 min reperfusion were studied in isolated working rat hearts. Hearts were perfused with various concentrations of L-carnitine (0.5 and 5 mM), acetyl-L-carnitine (0.5 and 5 mM), and propionyl-L-carnitine (0.05, 0.5, and 5 mM), respectively, for 10 min before the induction of ischemia. Postischemic recovery of CF, AF, and LVDP was significantly improved in all groups perfused with 5 mM of L-carnitine, acetyl-L-carnitine, and propionyl-L-carnitine. Significant postischemic ventricular recovery was noticed in the hearts perfused with 0.5 mM of propionyl-L-carnitine, but not with the same concentration of L-carnitine or L-acetyl carnitine. The incidence of reperfusion VF was reduced from its control value of 90 to 10% (p < 0.05) in hearts perfused with 5 mM of propionyl-L-carnitine only. Other doses of various carnitines failed to reduce the incidence of VF. The protection in CF, AF, LVDP, and VF reflected in a reduction in infarct size and apoptotic cell death in hearts treated with various concentrations of carnitine derivatives. The difference between effectiveness of various carnitines on the recovery of postischemic myocardium may be explained by different membrane permeability properties of carnitine and its derivatives.  相似文献   

4.
D-Carnitine was converted to L-carnitine by resting and permeabilized cells as well as with purified stereospecific carnitine dehydrogenases from Agrobacterium sp. With permeabilized cells only 11% of D-carnitine was converted into L-carnitine. Using highly stereospecific D- and L-carnitine dehydrogenases from Agrobacterium sp. (pH 8.5, 50 mM D-carnitine, 1 mM NAD + , 0.1 mM NADH, 25-fold excess of L-carnitine dehydrogenase) almost 50% of the D-carnitine could be converted into L-carnitine.  相似文献   

5.
The kinetics of purified beef heart mitochondrial carnitine palmitoyltransferase have been extensively investigated with a semiautomated system and the computer program TANKIN and shown to be sigmoidal with both acyl-CoA and L-carnitine. In contrast, Michaelis-Menten kinetics were found with carnitine octanoyltransferase. The catalytic activity of carnitine palmitoyltransferase is strongly pH dependent. The K0.5 and Vmax are both greater at lower pH. The K0.5 for palmitoyl-CoA is 1.9 and 24.2 microM at pH 8 and 6, respectively. The K0.5 for L-carnitine is 0.2 and 2.9 mM at pH 8 and 6, respectively. Malonyl-CoA (20-600 microM) had no effect on the kinetic parameters for palmitoyl-CoA at both saturating and subsaturating levels of L-carnitine. We conclude that malonyl-CoA is not a competitive inhibitor of carnitine palmitoyltransferase. The purified enzyme contained 18.9 mol of bound phospholipid/mol of enzyme which were identified as cardiolipin, phosphatidylethanolamine, and phosphatidylcholine by thin-layer chromatography. The data are consistent with the conclusion that native carnitine palmitoyltransferase exhibits different catalytic properties on either side of the inner membrane of mitochondria due to its non-Michaelis-Menten kinetic behavior, which can be affected by pH differences and differences in membrane environment.  相似文献   

6.
L-Carnitine transport by rat renal brush border membrane vesicles was stimulated by a Na+ gradient (extravesicular greater than intravesicular). Total carnitine entry was 2.7 and 3.2 times higher at 15 S in the presence of a 100 mM NaCl gradient than when the vesicles were incubated isoosmotically in buffered 100 mM KCl or buffered mannitol, respectively. Specific carnitine transport (total entry minus contribution from diffusion) was stimulated 3.6- and 5.7-fold, respectively. An "overshoot" was observed for total carnitine entry in the presence of a Na+ gradient but not in the presence of a K+ gradient or in the absence of an ion gradient. L-Carnitine transport was saturable. KT and Vmax for total carnitine transport were 0.11 mM and 11.6 pmol S-1 mg protein-1, respectively, and for Na+-gradient-dependent carnitine transport, 0.055 mM and 5.09 pmol S-1 mg protein-1, respectively. The transport process was structure-specific for a quaternary nitrogen and carboxyl groups attached by a 4- to 6-carbon chain, but without other charged functional groups. Other evidence for a carrier-mediated process included trans-stimulation of transport by intravesicular carnitine and a peak of activity at near physiological temperature. Kinetic data derived from this study, coupled with data from previous physiological studies from this laboratory, suggests that carnitine transport by the brush border membrane is not limiting for carnitine reabsorption. Dietary carnitine (1% of diet for 10 days) reduced by 52% the rate of carnitine transport across the brush border membrane in vitro, without affecting rates of D-glucose, L-lysine, L-glutamic acid, or L-alanine transport. Down-regulation of carnitine transport may prevent excessive or toxic accumulation of L-carnitine in renal tubular cells exposed to high extracellular carnitine concentrations.  相似文献   

7.
The study investigated the influence of L-carnitine on the formation of malondialdehyde, an indicator of lipid peroxidation, in isolated Langendorff rat hearts. Earlier investigations of hemodynamic parameters and the recovery of ATP and creatine phosphate, carried out by means of 31P-NMR spectroscopy, had demonstrated that, depending on the composition of the perfusates (content of glucose, fatty acids, and carnitine), quite strong differences may occur in the reperfusion period after ischemia.In order to determine a possible relationship between these differences and the addition of carnitine, the study investigated whether carnitine penetrated into the tissue during the experiments, and whether it was able to reduce the concentration of detrimental substances. The concentrations of free and total carnitine as well as the malondialdehyde content as an indicator of ischemia/reperfusion damage were determined in different parts of the cardiac tissue as follows: After the Langendorff-experiments the hearts were dissected, homogenized and reconditioned; then carnitine and malondialdehyde were determined. The study included 63 hearts, which were divided into 8 different perfusion groups.Carnitine concentrations in heart tissue perfused with L-carnitine were much higher than those of the controls. Since exogenous L-carnitine and formed esters could be found in the tissue after the experiment, they must have permeated the cellular membrane rapidly. The concentrations of malondialdehyde behaved in an inverted way; as expected they were lower in carnitine-perfused hearts. The favourable effects of L-carnitine, expressed both by improved cardiac dynamics and ATP and CrP recovery in the reperfusion period, are obviously due to the fact that L-carnitine reduces ischemic damage.  相似文献   

8.
The effect of malonyl-CoA on the kinetic parameters of carnitine palmitoyltransferase (outer) the outer form of carnitine palmitoyltransferase (palmitoyl-CoA: L-carnitine O-palmitoyltransferase, EC 2.3.1.21) from rat heart mitochondria was investigated using a kinetic analyzer in the absence of bovine serum albumin with non-swelling conditions and decanoyl-CoA as the cosubstrate. The K0.5 for decanoyl-CoA is 3 microM for heart mitochondria from both fed and fasted rats. Membrane-bound carnitine palmitoyltransferase (outer) shows substrate cooperativity for both carnitine and acyl-CoA, similar to that exhibited by the enzyme purified from bovine heart mitochondria. The Hill coefficient for decanoyl-CoA varied from 1.5 to 2.0, depending on the method of assay and the preparation of mitochondria. Malonyl-CoA increased the K0.5 for decanoyl-CoA with no apparent increase in sigmoidicity or Vmax. With 20 microM malonyl-CoA and a Hill coefficient of n = 2.1, the K0.5 for decanoyl-CoA increased to 185 microM. Carnitine palmitoyltransferase (outer) from fed rats had an apparent Ki for malonyl-CoA of 0.3 microM, while that from 48-h-fasted rats was 2.5 microM. The kinetics with L-carnitine were variable: for different preparations of mitochondria, the K0.5 ranged from 0.2 to 0.7 mM and the Hill coefficient varied from 1.2 to 1.8. When an isotope forward assay was used to determine the effect of malonyl-CoA on carnitine palmitoyltransferase (outer) activity of heart mitochondria from fed and fasted animals, the difference was much less than that obtained using a continuous rate assay. Carnitine palmitoyltransferase (outer) was less sensitive to malonyl-CoA at low compared to high carnitine concentrations, particularly with mitochondria from fasted animals. The data show that carnitine palmitoyltransferase (outer) exhibits substrate cooperativity for both acyl-CoA and L-carnitine in its native state. The data show that membrane-bound carnitine palmitoyltransferase (outer) like carnitine palmitoyltransferase purified from heart mitochondria exhibits substrate cooperativity indicative of allosteric enzymes and indicate that malonyl-CoA acts like a negative allosteric modifier by shifting the acyl-CoA saturation to the right. A slow form of membrane-bound carnitine palmitoyltransferase (outer) was not detected, and thus, like purified carnitine palmitoyltransferase, substrate-induced hysteretic behavior is not the cause of the positive substrate cooperativity.  相似文献   

9.
Fatty acid oxidation by washed intact ejaculated bull spermatozoa was depressed by carnitine concentrations as low as 5 mM, whereas oxygen uptake was only depressed by concentrations of 20 mM or above. Incorporation of (U-14C)-palmitate into 1,2-diglycerides was stimulated, and there was some stimulation of incorporation into phospholipids.  相似文献   

10.
Carnitine acetyltransferase (CrAT; EC 2.3.1.7) catalyzes the reversible transfer of acetyl groups between acetyl-coenzyme A (acetyl-CoA) and L-carnitine; it also regulates the cellular pool of CoA and the availability of activated acetyl groups. In this study, biochemical measurements, saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, and molecular docking were applied to give insights into the CrAT binding of a synthetic inhibitor, the cardioprotective drug mildronate (3-(2,2,2-trimethylhydrazinium)-propionate). The obtained results show that mildronate inhibits CrAT in a competitive manner through binding to the carnitine binding site, not the acetyl-CoA binding site. The bound conformation of mildronate closely resembles that of carnitine except for the orientation of the trimethylammonium group, which in the mildronate molecule is exposed to the solvent. The dissociation constant of the mildronate CrAT complex is approximately 0.1?mM, and the Ki is 1.6?mM. The results suggest that the cardioprotective effect of mildronate might be partially mediated by CrAT inhibition and concomitant regulation of cellular energy metabolism pathways.  相似文献   

11.
The beneficial effects of in vivo injections (200 mg/kg, twice daily) or in vitro perfusion (5.0 mM) of L-carnitine on an intrinsic abnormality in energy metabolism was investigated in isolated, perfused diabetic rat heart. Hearts were aerobically perfused for 60 min with elevated fatty acid substrate to simulate diabetic conditions. Phosphorus-31 nuclear magnetic resonance spectroscopy revealed a temporal decline in myocardial ATP levels (to approx 82%) during perfusion of diabetic hearts, but not in control hearts. This reduction was prevented by prior treatment in vivo with L-carnitine or by providing L-carnitine acutely in the perfusion medium. Chemical analysis of tissue extracts indicated that L-carnitine injections were effective in replenishing the decrease in total myocardial carnitine content which was present in diabetic hearts and in preventing the accumulation of long chain fatty acyl CoA. Perfusion with L-carnitine also attenuated the elevation of long chain fatty acyl CoA in diabetic hearts. This study gives additional support to the hypothesis that decreases in ATP which occur in the isolated, perfused diabetic heart are correlated with a concomitant elevation in long chain fatty acyl CoA, a known inhibitor of adenine nucleotide translocase. In the presence of elevated exogenous fatty acids, a primary deficiency in the total myocardial carnitine pool would result in elevations in tissue concentrations of long chain fatty acyl CoA since carnitine is a required carrier for transport of fatty acids into mitochondria. Replenishment of the carnitine in vivo was shown to be sufficient to prevent subsequent alteration in long chain fatty acyl CoA and ATP in isolated perfused diabetic hearts despite the burden of elevated fatty acid substrates.  相似文献   

12.
Experiments were performed to further the understanding of epididymal processes involved in the acquisition of sperm motility. Samples of luminal contents were collected by micropuncture from four regions of the rat epididymis. These samples were incubated in various diluents to observe the effects of the diluents on sperm motility. Consonant with previous reports, 40 mM glycerylphosphorylcholine (GPC) and 60 mM DL-carnitine reduced overall motility scores of cauda epididymidal spermatozoa but did not prevent normal initiation of motility. Additionally, control sperm cells and cells treated with carnitine could reinitiate full motility after becoming immotile. Spermatozoa treated with GPC could not reinitiate motility. The sperm cells in our system thus react to GPC and carnitine in fundamentally different ways, the exact nature of which remains to be determined. Spermatozoa from the distal caput epididymidis evidenced high motility scores when diluted in a 5% egg yolk + 10 mM caffeine diluent. It was demonstrated, however, that the subjective appearance of full motility in these immature cells was not supported by actual progressive motility as measured in an assay of linear distance traveled. It was concluded that neither 10 mM caffeine, 5% egg yolk, nor their combination was sufficient to induce progressive motility in immature rat spermatozoa.  相似文献   

13.
Uptake and metabolism of L-carnitine, D-carnitine and acetyl-L-carnitine were studied utilizing isolated guinea-pig enterocytes. Uptake of the D- and L-isomers of carnitine was temperature dependent. Uptake of L-[14C]carnitine by jejunal cells was sodium dependent since replacement by lithium, potassium or choline greatly reduced uptake. L- and D-carnitine developed intracellular to extracellular concentration gradients for total carnitine (free plus acetylated) of 2.7 and 1.4, respectively. However, acetylation of L-carnitine accounted almost entirely for the difference between uptake of L- and D-carnitine. About 60% of the intracellular label was acetyl-L-carnitine after 30 min, and the remainder was free L-carnitine. No other products were observed. D-Carnitine was not metabolized. Acetyl-L-carnitine was deacetylated during or immediately after uptake into intestinal cells and a portion of this newly formed intracellular free carnitine was apparently reacetylated. L-Carnitine and D-carnitine transport (after adjustment for metabolism and diffusion) were evaluated over a concentration range of 2-1000 microM. Km values of 6-7 microM and 5 microM, were estimated for L- and D-carnitine, respectively. Ileal-cell uptake was about half that found for jejunal cells, but the labeled intracellular acetylcarnitine-to-carnitine ratios were similar for both cell populations. Carnitine transport by guinea-pig enterocytes demonstrate characteristics of a carrier-mediated process since it was inhibited by D-carnitine and trimethylaminobutyrate, as well as being temperature and concentration dependent. The process appears to be facilitated diffusion rather than active transport since L-carnitine did not develop a significant concentration gradient, and was unaffected by ouabain or actinomycin A.  相似文献   

14.
The concentration of total carnitine (i.e. carnitine plus acetylcarnitine) was measured in seminal plasma and spermatozoa of men and rams. In ram semen, there was a close correlation between the concentration of spermatozoa and that of total carnitine in the seminal plasma, indicating that the epididymal secretion was the sole source of seminal carnitine. The percentage of total carnitine present as acetylcarnitine was 40% in seminal plasma and 70-80% in spermatozoa. The acetylation state of carnitine in seminal plasma was apparently not influenced by the metabolic activity of spermatozoa in ejaculated ram semen as no change was found in the plasma concentration of carnitine or acetylcarnitine up to 45 min after ejaculation. In spermatozoa, the activity of carnitine acetyltransferase (EC 2.3.1.7) was approximately equivalent to that of carnitine palmitoyltransferase (EC 2.3.1.21); and the activity of these enzymes was similar in ram and human spermatozoa but greater in rat spermatozoa. It is concluded that there is no correlation between the content of either total carnitine or the carnitine acyltransferases and the respiratory capacity of spermatozoa.  相似文献   

15.
Synaptosomes isolated from guinea pig cerebral cortex accumulate L-carnitine from the medium in an active process, dependent on the sodium gradient across the plasma membrane and on (Na+ + K+)-ATPase activity. L-Carnitine uptake is inhibited by oxidative phosphorylation uncouplers and by ouabain, a known inhibitor of (Na+ + K+)-ATPase. In addition, the omission of Na+ or its replacement by Li+ inhibited the transport, which was also competitively inhibited by gamma-aminobutyrate. The kinetics of carnitine uptake show that the overall process would consist of two components: a passive diffusion and a carrier-mediated transport which is saturated at 1-2 mM carnitine concentration.  相似文献   

16.
Amphiphilic compounds such as long-chain acyl carnitine accumulate in ischemic myocardium and potentially contribute to the myocardial damage, and the role of carnitine in protecting the heart against ischemic damage is interesting. It has been reported that palmitoylcarnitine causes alterations in the membrane molecular dynamics, so this study was designed to investigate whether L-carnitine had a stabilizing effect of membrane fluidity using the spin-label technique. Human erythrocytes were spin-labeled with 5-doxylstearic acids, and membrane fluidity was quantified by measuring the change in the order parameter S. The administration of palmitoylcarnitine (100 microM) altered the membrane fluidity of erythrocytes and caused significant morphological changes. L-carnitine (2mM) decreased the alteration of the fluidity of erythrocytes incubated with palmitoylcarnitine (100 microM), and improved the morphological changes in erythrocytes. These results show that L-carnitine has a stabilizing effect of membrane fluidity as a result of interaction with the palmitoylcarnitine which has a detergent effect.  相似文献   

17.
L-Carnitine transport and free fatty acid oxidation have been studied in hearts of rats with 3-month-old aorto-caval fistula. For carnitine transport experiments, the hearts were perfused via the ascending aorta with a bicarbonate buffer containing 11 mM glucose and variable concentrations L-[14C]carnitine (10-200 microM). In some experiments, the active component of carnitine transport was suppressed by the adjunction of 0.05 mM mersalyl acid. The subtraction of passive from total transport allowed reconstruction of the saturation curves of the carrier-mediated transport of L-carnitine. Our data suggest that at a physiological carnitine concentration (50 microM), the rate of [14C]carnitine accumulation was significantly depressed in mechanically overloaded hearts. In addition, according to Lineweaver-Burk analysis, the affinity of the membrane carrier for L-carnitine was considerably diminished (Km carnitine 125 instead of 83 microM, Vmax unchanged). The above alterations of L-carnitine transport did not result from a decrease of the transmembrane gradient of sodium, since the intracellular Na+ content of the hypertrophied hearts was quite similar to that of control hearts. The ability of atrially perfused, working hearts to oxidize the exogenous free fatty acids was assessed from 14CO2 production obtained in the presence of [U-14C]palmitate or [1-14C]octanoate. The total 14CO2 production, expressed per min per g dry weight, was significantly diminished in hearts from rats with the aorto-caval fistula if 1.2 mM palmitate was used. On the other hand, in the presence of 2.4 mM octanoate, a substrate which circumvents the carnitine-acylcarnitine translocase, no such reduction of the 14CO2 production could be detected. Our results suggest that the decrease of L-carnitine transport, resulting in a significant depression of tissue carnitine, may impair long-chain fatty acid activation and/or translocation into mitochondria. In contrast, the oxidation of short-chain fatty acids, the activation of which takes place directly in mitochondrial matrix, is not limited in volume-overloaded hearts.  相似文献   

18.
Carnitine (1, 3-hydroxy-4-trimethylammoniobutyrate) is important in mammalian tissue as a carrier of acyl groups. In order to explore the binding requirements of the carnitine acyltransferases for carnitine, we designed conformationally defined cyclohexyl carnitine analogues. These diastereomers contain the required gauche conformation between the trimethylammonium and hydroxy groups but vary the conformation between the hydroxy and carboxylic acid groups. Here we describe the synthesis and biological activity of the all-trans diastereomer (2), which was prepared by the ring opening of trans-methyl 2,3-epoxycylohexanecarboxylate with NaN3. Racemic 2 was a competitive inhibitor of neonatal rat cardiac myocyte CPT-1 (K(i) 0.5 mM for racemic 2; K(m) 0.2 mM for L-carnitine) and a noncompetitive inhibitor of neonatal rat cardiac myocyte CPT-2 (K(i) 0.67 mM). These results suggest that 2 represents the bound conformation of carnitine for CPT-1.  相似文献   

19.
Detection of choline acetyltransferase (ChAc) in a number of non-neuronal tissues has been extremely overestimated. There are two major types of errors encountered. Type 1 error occurs when endogenous substrates (e.g. L-carnitine) are acetylated by acetyltransferase enzymes (e.g. carnitine acetyltransferase ( CarAc ) ) yielding an acetylated product mistaken for acetylcholine (AcCh). In the past, human sperm and human seminal plasma putative ChAc activity has been extremely overestimated due to Type 1 error. This study demonstrates (1) an endogenous acetyltransferase and substrate activity in human sperm and human seminal plasma forming an acetylated product that is not AcCh but probably acetylcarnitine ( AcCar ); (2) that the addition of 5 mM choline substrate does not significantly increase acetyltransferase activity; (3) that boiled seminal plasma contains an endogenous acetyltransferase substrate which is not choline, but probably L-carnitine. Type 2 error occurs when endogenous carnitine acetyltransferase synthesizes true AcCh, resulting in mistaken evidence for ChAc. This is demonstrated by the fact that the choline substrate Km-value for the neuronal or true ChAc from mouse brain is 0.73 +/- 0.06 mM while the Km-value of choline substrate for purified CarAc from pigeon breast muscle is 108 +/- 4 mM. Type 2 error has occurred for the estimation of putative ChAc in rat heart. The rat heart ChAc was measured in previous studies utilizing a concentration of 30 mM choline substrate. While saturation of neuronal ChAc is observed at 2-5 mM choline, saturation of the rat heart CarAc enzyme is not reached until over 800 mM. Purified CarAc significantly synthesizes AcCh at 30 mM choline. Thus, putative ChAc has been greatly overestimated in the scientific literature for mammalian sperm, human seminal plasma and rat heart.  相似文献   

20.
Prednisolone (10(-8)--10(-5) mol/l) in the growth medium for 24 h increased the rate of uptake of L-[3H]carnitine in an established cell line (CCL 27) to 164 +/- 6% (mean +/-S.E.) of the rate observed in untreated cells. At the same time the intracellular content of free L-carnitine increased about 20%. The simultaneous addition of prednisolone (10(-6) mol/l for 24 h) and L-carnitine (10(-4) mol/l for 96 h) to the growth medium increased the rate of uptake to 225 +/- 8% (mean +/-S.E.) of that in untreated cells. The increase seemed to be mediated through an increase in number of carriers, as judged by the increase in V of the transport process with unchanged Km. Phosphodiesterase I, an enzyme mainly localized in the plasma membrane, increased its activity about 3.5 times when cells were stimulated with prednisolone. Thus, it seems that the increase in the rate of uptake of L-carnitine mediated by glucocorticoids, is part of a more general effect on the plasma membrane. The observations offer an explanation to the observed clinical improvement in patients with muscular carnitine deficiency treated with glucocorticoids and/or L-carnitine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号