首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The heterochronic gene lin-28 of the nematode Caenorhabditis elegans controls the relative timing of diverse developmental events during the animal's larval stages. lin-28 is stage-specifically regulated by two genetic circuits: negatively by the 22-nt RNA lin-4 and positively by the heterochronic gene lin-14. Here, we show that lin-28 is repressed during normal development by a mechanism that acts on its mRNA after translation initiation. We provide evidence that lin-14 inhibits a negative regulation that is independent of the lin-4 RNA and involves the gene daf-12, which encodes a nuclear hormone receptor. The lin-4-independent repression does not affect the initiation of translation on the lin-28 mRNA, and like the lin-4-mediated repression, acts through the gene's 3'-untranslated region. In addition, we find that lin-4 is not sufficient to cause repression of lin-28 if the lin-4-independent circuit is inhibited. Therefore, the lin-4-independent circuit likely contributes substantially to the down-regulation of lin-28 that occurs during normal development. The role of lin-4 may be to initiate or potentiate the lin-4-independent circuit. We speculate that a parallel lin-4-independent regulatory mechanism regulates the expression of lin-14.  相似文献   

3.
4.
5.
Cap-independent initiation of translation is thought to promote protein synthesis on some mRNAs during times when cap-dependent initiation is down-regulated. However, the mechanism of cap-independent initiation is poorly understood. We have previously reported the secondary structure within the yeast minimal URE2 IRES element. In this study, we sought to investigate the mechanism of internal initiation in yeast by assessing the functional role of nucleotides within the minimal URE2 IRES element, and delineating the cis-sequences that modulate levels of internal initiation using a monocistronic reporter vector. Furthermore, we compared the eIF2A sensitivity of the URE2 IRES element with some of the invasive growth IRES elements using ΔeIF2A yeast. We found that the stability of the stem–loop structure within the minimal URE2 IRES element is not a critical determinant of optimal IRES activity, and the downstream sequences that modulate URE2 IRES-mediated translation can be defined to discrete regions within the URE2 coding region. Repression of internal initiation on the URE2 minimal IRES element by eIF2A is not dependent on the stability of the secondary structure within the URE2 IRES element. Our data also indicate that eIF2A-mediated repression is not specific to the URE2 IRES element, as both the GIC1 and PAB1 IRES elements are repressed by eIF2A. These data provide valuable insights into the mRNA requirements for internal initiation in yeast, and insights into the mechanism of eIF2A-mediated suppression.  相似文献   

6.
7.
8.
Members of the nanos gene family are evolutionarily conserved regulators of germ cell development. In several organisms, Nanos protein expression is restricted to the primordial germ cells (PGCs) during early embryogenesis. Here, we investigate the regulation of the Caenorhabditis elegans nanos homolog nos-2. We find that the nos-2 RNA is translationally repressed. In the adult germline, translation of the nos-2 RNA is inhibited in growing oocytes, and this inhibition depends on a short stem loop in the nos-2 3'UTR. In embryos, nos-2 translation is repressed in early blastomeres, and this inhibition depends on a second region in the nos-2 3'UTR. nos-2 RNA is also degraded in somatic blastomeres by a process that is independent of translational repression and requires the CCCH finger proteins MEX-5 and MEX-6. Finally, the germ plasm component POS-1 activates nos-2 translation in the PGCs. A combination of translational repression, RNA degradation, and activation by germ plasm has also been implicated in the regulation of nanos homologs in Drosophila and zebrafish, suggesting the existence of conserved mechanisms to restrict Nanos expression to the germline.  相似文献   

9.
CCN2/CTGF is a multifunctional growth factor. Our previous studies have revealed that CCN2 plays important roles in both growth and differentiation of chondrocytes and that the 3'-untranslated region (3'-UTR) of ccn2 mRNA contains a cis-repressive element of gene expression. In the present study, we found that the stability of chicken ccn2 mRNA is regulated in a differentiation stage-dependent manner in chondrocytes. We also found that stimulation by bone morphogenetic protein 2, platelet-derived growth factor, and CCN2 stabilized ccn2 mRNA in proliferating chondrocytes but that it destabilized the mRNA in prehypertrophic-hypertrophic chondrocytes. The results of a reporter gene assay revealed that the minimal repressive cis-element of the 3'-UTR of chicken ccn2 mRNA was located within the area between 100 and 150 bases from the polyadenylation tail. Moreover, the stability of ccn2 mRNA was correlated with the interaction between this cis-element and a putative 40-kDa trans-factor in nuclei and cytoplasm. In fact, the binding between them was prominent in proliferating chondrocytes and attenuated in (pre)hypertrophic chondrocytes. Stimulation by the growth factors repressed the binding in proliferating chondrocytes; however, it enhanced it in (pre)hypertrophic chondrocytes. Therefore, gene expression of ccn2 mRNA during endochondral ossification is properly regulated, at least in part, by changing the stability of the mRNA, which arises from the interaction between the RNA cis-element and putative trans-factor.  相似文献   

10.
MicroRNAs (miRNAs) control various biological processes by repressing target mRNAs. In plants, miRNAs mediate target gene repression via both mRNA cleavage and translational repression. However, the mechanism underlying this translational repression is poorly understood. Here, we found that Arabidopsis thaliana HYPONASTIC LEAVES1 (HYL1), a core component of the miRNA processing machinery, regulates miRNA-mediated mRNA translation but not miRNA biogenesis when it localized in the cytoplasm. Cytoplasmic HYL1 localizes to the endoplasmic reticulum and associates with ARGONAUTE1 (AGO1) and ALTERED MERISTEM PROGRAM1. In the cytoplasm, HYL1 monitors the distribution of AGO1 onto polysomes, binds to the mRNAs of target genes, represses their translation, and partially rescues the phenotype of the hyl1 null mutant. This study uncovered another function of HYL1 and provides insight into the mechanism of plant gene regulation.

The nuclear miRNA biogenesis factor HYL1 also localizes to the cytoplasm to modulate miRNA-mediated translational repression.  相似文献   

11.
A gene regulatory network (GRN) controls the process by which the endomesoderm of the sea urchin embryo is specified. In this GRN, the program of gene expression unique to the skeletogenic micromere lineage is set in train by activation of the pmar1 gene. Through a double repression system, this gene is responsible for localization of expression of downstream regulatory and signaling genes to cells of this lineage. One of these genes, delta, encodes a Notch ligand, and its expression in the right place and time is crucial to the specification of the endomesoderm. Here we report a cis-regulatory element R11 that is responsible for localizing the expression of delta by means of its response to the pmar1 repression system. R11 was identified as an evolutionarily conserved genomic sequence located about 13 kb downstream of the last exon of the delta gene. We demonstrate here that this cis-regulatory element is able to drive the expression of a reporter gene in the same cells and at the same time that the endogenous delta gene is expressed, and that temporally, spatially, and quantitatively it responds to the pmar1 repression system just as predicted for the delta gene in the endomesoderm GRN. This work illustrates the application of cis-regulatory analysis to the validation of predictions of the GRN model. In addition, we introduce new methodological tools for quantitative measurement of the output of expression constructs that promise to be of general value for cis-regulatory analysis in sea urchin embryos.  相似文献   

12.
RNA interference (RNAi) is a fundamental mechanism of gene regulation in a variety of organisms. In Drosophila cells, long double-stranded RNAs (dsRNAs) are processed into 21- to 23-nucleotide double-stranded fragments, termed short interfering RNAs (siRNAs). The siRNAs trigger sequence-specific mRNA degradation, which results in the inhibition of gene expression. These phenomena can be recapitulated in vitro in lysates of Drosophila syncytial blastoderm embryos. In the present work, we used the common Drosophila cell line, Schneider Line 2 (S2), as a source to establish a cell-free translation system. We demonstrate here that the S2 cell-free translation system can recapitulate RNAi. Both long dsRNAs and siRNAs can trigger RNAi in this system, and the silencing effects are significant. This system should provide an important tool for biochemical analyses of the RNAi mechanism.  相似文献   

13.
14.
15.
16.
17.
18.
General translational repression by activators of mRNA decapping   总被引:31,自引:0,他引:31  
Coller J  Parker R 《Cell》2005,122(6):875-886
Translation and mRNA degradation are affected by a key transition where eukaryotic mRNAs exit translation and assemble an mRNP state that accumulates into processing bodies (P bodies), cytoplasmic sites of mRNA degradation containing non-translating mRNAs, and mRNA degradation machinery. We identify the decapping activators Dhh1p and Pat1p as functioning as translational repressors and facilitators of P body formation. Strains lacking both Dhh1p and Pat1p show strong defects in mRNA decapping and P body formation and are blocked in translational repression. Contrastingly, overexpression of Dhh1p or Pat1p causes translational repression, P body formation, and arrests cell growth. Dhh1p, and its human homolog, RCK/p54, repress translation in vitro, and Dhh1p function is bypassed in vivo by inhibition of translational initiation. These results identify a broadly acting mechanism of translational repression that targets mRNAs for decapping and functions in translational control. We propose this mechanism is competitively balanced with translation, and shifting this balance is an important basis of translational control.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号