首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have demonstrated that glucocorticoids alter biotin metabolism. To extend these studies, the effect of dexamethasone on biotin pools was analyzed in rats consuming a purified diet containing a more physiological level of dietary biotin intake (0.06 mg/kg). Acute (5 h) dexamethasone administration (0.5 mg/kg) elicited elevated urinary glucose output as well as elevated urinary biotin excretion and serum biotin. Renal and hepatic free biotin was also significantly elevated by acute dexamethasone administration. Chow-fed rats treated with an acute administration of dexamethasone demonstrated significantly elevated urinary glucose excretion, urinary biotin excretion, and serum biotin, but no change in tissue associated biotin was detected. Chronic administration of dexamethasone (0.5 mg/kg ip) over 4 days significantly elevated urinary glucose excretion 42% but had no effect on urinary biotin excretion, serum biotin, or hepatic- or renal-associated free biotin. These results demonstrate the existence of potentially novel regulatory pathways for total biotin pools and the possibility that experimental models with high initial biotin status may mask potentially important regulatory mechanisms.  相似文献   

2.
Suppression of glucose reabsorption through the inhibition of sodium-dependent glucose co-transporter 2 (SGLT2) is a promising therapeutic approach for the treatment of type 2 diabetes. To investigate the effect of C6-substitution on inhibition of SGLT2 by N-indolylglucosides, a small library of 6-triazole, 6-amide, 6-urea, and 6-thiourea N-indolylglycosides were synthesized and tested. A detailed structure–activity relationship (SAR) study culminated in the identification of 6-amide derivatives 6a and 6o as potent SGLT2 inhibitors, which were further tested for inhibitory activity against SGLT1. The data obtained indicated that 6a and 6o are mildly to moderately selective for SGLT2 over SGLT1. Both compounds were also evaluated in a urinary glucose excretion test and pharmacokinetic study; 6a was found capable of inducing urinary glucose excretion in normal SD rats.  相似文献   

3.
The 24 hour urinary free cortisol and cortisone excretion after an oral 100 g glucose load was measured in 60 males (aged 22-56) divided into three groups. G-I consisted of 10 healthy men, G-II of 37 surgical patients and G-III comprised 23 patients with atherosclerotic peripheral vascular disease. The followed subjects responded to the glucose ingestion accordingly to their cortisol excretion. Subjects with an urinary cortisol excretion up to 200 micrograms/24 h responded to the glucose load with an increase of excretion in free cortisol and cortisone. Subjects with the excretion of cortisol above 200 micrograms/24 h responded unambiguously with a decrease in their excretion. We suggest that these changes in both directions can be explained by the available amount of NADPH in the liver. In patients with atherosclerotic peripheral vascular disease, in whom disturbances in lipid and carbohydrate metabolism can be proposed, the response of free corticoids, namely the respond of cortisone, are unequal.  相似文献   

4.
Diabetic nephropathy is a serious complication of diabetes mellitus with a pressing need for effective metabolic markers to detect renal impairment. Of potential significance are the inositol compounds, myo-inositol (MI), and the less abundant stereoisomer, D-chiro-inositol (DCI), which are excreted at increased levels in the urine in diabetes mellitus, a phenomenon known as inosituria. There is also a selective urinary excretion of DCI compared to MI. As the biological origins of altered inositol metabolism in diabetes mellitus are unknown, the aim of this study was to determine whether the diabetic kidney was directly responsible. Kidneys isolated from four-week streptozotocin-induced diabetic rats were characterized by a 3-fold reduction in glomerular filtration rate (GFR) compared to matched non-diabetic kidneys. When perfused with fixed quantities of MI (50 µM) and DCI (5 µM) under normoglycemic conditions (5 mM glucose), GFR-normalized urinary excretion of MI was increased by 1.7-fold in diabetic vs. non-diabetic kidneys. By comparison, GFR-normalized urinary excretion of DCI was increased by 4-fold. Perfusion conditions replicating hyperglycemia (20 mM glucose) potentiated DCI but not MI urinary excretion in both non-diabetic and diabetic kidneys. Overall, there was a 2.4-fold increase in DCI urinary excretion compared to MI in diabetic kidneys that was independent of glucose ambience. This increased urinary excretion of DCI and MI in diabetic kidneys occurred despite increased renal expression of the inositol transporters, sodium myo-inositol transporter subtype 1 and 2 (SMIT1 and SMIT2). These findings show that the diabetic kidney primarily mediates inosituria and altered urinary partitioning of MI and DCI. Urinary inositol levels might therefore serve as an indicator of impaired renal function in diabetes mellitus with wider implications for monitoring chronic kidney disease.  相似文献   

5.
Inhibition of renal sodium-dependent glucose cotransporter 2 (SGLT2) increases urinary glucose excretion (UGE), and thus reduces blood glucose levels in hyperglycemia. A series of N-glucosides was synthesized for biological evaluation as human SGLT2 (hSGLT2) inhibitors. Among these compounds, N-glucoside 9d possessing an indole core structure showed good in vitro activity (IC50 = 7.1 nM against hSGLT2). Furthermore, 9d exhibited favorable in vivo potency with regard to UGE in rats based on good pharmacokinetic profiles.  相似文献   

6.
Inositol phosphoglycan molecules containing either D-chiro-inositol or myo-inositol have been isolated from various mammalian tissues and are putative mediators of insulin action. Urinary excretion of inositols appears to be altered in diabetes mellitus; however, the relationships with different types of diabetes are unclear. The objective of this study was to determine the urinary excretion of chiro- and myo-inositol in diabetic animal models, including streptozotocin (STZ) rats, db/db mice, and fa/fa Zucker rats. In STZ rats (type 1 diabetes), 12-hr urinary excretion of chiro-inositol was elevated 336-fold and myo-inositol excretion was elevated 47-fold compared with their nondiabetic counterparts. When corrected for creatinine, chiro-inositol excretion was 259-fold higher and myo-inositol excretion was 36-fold higher in STZ rats than in normal rats. The same pattern was observed in db/db mice (type 2 diabetes), where 12-hr urinary chiro-inositol excretion was elevated 247-fold compared with normal mice. When corrected for creatinine, chiro-inositol excretion was 2455-fold higher and urinary myo-inositol excretion was elevated 8.5-fold in db/db mice compared with normal mice. The fa/fa Zucker rats (impaired glucose tolerance) had a pattern of urinary inositol excretion that was similar to the nondiabetic animals (lean Zucker rats, C57BL/6 mice, and Sprague-Dawley rats). In summary, urinary chiro-inositol and myo-inositol excretion was elevated in animal models of type 1 and type 2 diabetes mellitus, concomitant with hyperglycemia and glucosuria.  相似文献   

7.
PURPOSE: The urinary excretions of myo-inositol and D-chiro-inositol are elevated in diabetes, and have been suggested as possible markers or effectors of insulin action. The aim of the present study was to measure the urinary excretion of these compounds, and to assess possible relationships with the metabolic control of glucose, in older, non-diabetic men and women. SUBJECTS: 32 older (age range 54-71 yrs), moderately overweight (body mass index 29.1 +/- 0.4 kg/m2, mean +/- SEM), non-diabetic men (n = 17) and women (n = 15). METHODS: 75 g oral glucose tolerance testing was done the day after all subjects had consumed nutrient-defined menus for five days. Plasma samples were analyzed for the concentrations of glucose, insulin, and C-peptide, and the 180-minute area under the curve (AUC) for each of these compounds was calculated. Samples from 24-hour urine collections were analyzed for the concentrations of myo-inositol, D-chiro-inositol, L-chiro-inositol, and pinitol. RESULTS: The fasting glucose, insulin, and C-peptide, and the AUC for glucose and insulin, were not different between men and women. C-peptide AUC was greater in the men versus the women (p < 0.001). The median urinary excretions (micromol/g creatinine) of myo-inositol (p < 0.001), D-chiro-inositol (p < 0.001), L-chiro-inositol (p < 0.05), and pinitol (p < 0.001) were higher, and the myo-inositol:D-chiro-inositol ratio was lower (p < 0.001), in the men versus women. For all subjects combined, C-peptide AUC was positively correlated with the urinary excretion of each of the measured inositols, as well as the myo-inositol:D-chiro-inositol ratio. The correlations between C-peptide AUC and these inositols were strongly influenced by the co-linear relationship between C-peptide AUC and gender. CONCLUSIONS: Collectively, these data show that older, moderately overweight, non-diabetic men and women with gender-related differences in glucose-stimulated C-peptide AUC, an indirect indicator of insulin secretion, also display differences in the urinary excretion of myo-inositol, D-chiro-inositol, L-chiro-inositol, and pinitol. The gender-related difference in the myo-inositol:D-chiro-inositol ratio suggests that, while the urinary excretion of all of the inositols measured were higher in the men than the women, the difference was more pronounced for D-chiro-inositol.  相似文献   

8.
Serum albumin and glucose concentrations and urinary excretion of alpha-keto acids and proteins were determined in samples obtained throughout a chronic Trypanosoma brucei gambiense infection in Microtus montanus. An increase in urinary excretion of alpha-keto acids and proteins during the terminal stage of disease was accompanied by a decrease in serum glucose concentration. This terminal hypoglycemia reflected a depletion of liver glycogen in most animals. In contrast (and the major focus of this study) serum albumin concentration was decreased by the second week of infection and in the final sample obtained was less than 50% of that measured in preinfection samples. Female animals survived approximately 1 wk longer than males and were less susceptible during the acute phase of disease. This relative resistance was most likely due to the fact that female animals were relatively more efficient in limiting parasitemia during the first week of infection. The similarity between humans and voles in terms of protein and alpha-keto acid excretion and changes in serum concentrations of glucose and albumin during trypanosome infection further validate the use of Microtus as an experimental model for trypanosomiasis in humans.  相似文献   

9.
We studied urinary calcium and oxalate excretion in response to oral fructose load and to oral glucose load each on two different randomized mornings in twelve healthy subjects. Oral fructose load provoked an increase in calciuria and a decrease in oxaluria while oral glucose load induced an increase in both calciuria and oxaluria. These results suggested that in healthy subject, the decrease in oxaluria observed during fructose load reduced the product urinary [calcium] x [oxalate] which was the main factor in the genesis of urinary calcium oxalate stones while glucose load increased the risks of urolithiasis by means of the rise in both calciuria and oxaluria.  相似文献   

10.
Dapagliflozin is a potent and selective sodium glucose cotransporter-2 (SGLT2) inhibitor which promotes urinary glucose excretion and induces weight loss. Since metabolic compensation can offset a negative energy balance, we explored the potential for a compensatory physiological response to the weight loss induced by dapagliflozin. Dapagliflozin was administered (0.5-5 mpk; p.o.) to diet-induced obese (DIO) rats with or without ad libitum access to food for 38 days. Along with inducing urinary glucose excretion, chronic administration of dapagliflozin dose-dependently increased food and water intake relative to vehicle-treated controls. Despite this, it reduced body weight by 4% (relative to controls) at the highest dose. The degree of weight loss was increased by an additional 9% if hyperphagia was prevented by restricting food intake to that of vehicle controls. Neither oxygen consumption (vO2) or the respiratory exchange ratio (RER) were altered by dapagliflozin treatment alone. Animals treated with dapagliflozin and pair-fed to vehicle controls (5 mpk PF-V) showed a reduction in RER and an elevation in nonfasting β-hydroxybutyrate (BHBA) relative to ad libitum-fed 5 mpk counterparts. Fasting BHBA was elevated in the 1 mpk, 5 mpk, and 5 mpk PF-V groups. Serum glucose was reduced in the fasted, but not the unfasted state. Insulin was reduced in the non-fasted state. These data suggest that in rodents, the persistent urinary glucose excretion induced by dapagliflozin was accompanied by compensatory hyperphagia, which attenuated the weight loss induced by SGLT2 inhibition. Therefore, it is possible that dapagliflozin-induced weight loss could be enhanced with dietary intervention.  相似文献   

11.
In this study, streptozotocin-nicotinamide-induced mildly diabetic mice and streptozotocin-induced severely diabetic mice were created to compare their characteristics and to investigate the effects of antidiabetic drugs on glucose tolerance. In severely diabetic mice, the pancreatic insulin content decreased to approximately 10% of levels found in normal mice. These mice also showed a decrease in body weight, a marked increase in nonfasting blood glucose levels and urinary glucose excretion, and a marked decline in glucose tolerance due to insulin secretory deficiency. In contrast, the pancreatic insulin content was approximately 50% of normal levels in mildly diabetic mice. These mice did not show any change in body weight, but displayed a mild increase in nonfasting blood glucose levels and urinary glucose excretion, and a mild decline in glucose tolerance due to loss of early-phase insulin secretion. Administration of antidiabetic drugs, namely voglibose, metformin, glibenclamide, sitagliptin and insulin, significantly improved glucose tolerance in mildly diabetic mice. In severely diabetic mice, voglibose, metformin and insulin significantly improved glucose tolerance, but no significant effect was observed for glibenclamide and sitagliptin due to a decreased insulinotropic effect. These results demonstrate that streptozotocin-nicotinamide-induced mildly diabetic mice have many pathological features resembling type 2 diabetes, and can serve as models for the pharmacological evaluation of many antidiabetic drugs.  相似文献   

12.
Murine macrophage oxidation of L-arginine guanidino nitrogen to nitrite/nitrate yields an intermediate effector, possibly nitric oxide, with antimicrobial activity. Total body nitrogen oxidation metabolism (NOM) was measured in vivo by determining the urinary nitrate excretion of mice ingesting a chemically defined nitrite/nitrate-free diet. As reported previously, mycobacterial infection with bacillus Calmétte-Guerin led to a large increase in urinary nitrate excretion. This increase was temporally related to macrophage activation in vivo. The substrate for macrophage nitrogen oxidation metabolism in vitro, L-arginine, was deleted from the diet without ameliorating the urinary nitrate excretion response induced by BCG. This suggested that L-arginine was synthesized endogenously because there are no other known natural substrates for NOM. A competitive inhibitor of NOM, the L-arginine analog, NG-monomethyl-L-arginine was fed to mice in their drinking water. NG-monomethyl-L-arginine ingestion blocked both basal and bacillus Calmétte-Guerin-induced urinary nitrate excretion over a 2-4 week time span. These experimental conditions should prove useful for further investigation on the role of macrophage NOM in host defense against intracellular microorganisms.  相似文献   

13.
In an investigation of the involvement of prostanoids in the pathogenesis of nephropathy in type 2 diabetes, we repeatedly measured the urinary excretion of prostanoids in both diabetic and healthy rats as the rats aged. Seven rats of the Otsuka Long-Evans Tokushima Fatty strain were used as rats with a model of type 2 diabetes and seven rats of the Long-Evans Tokushima Otsuka strain were used as rats without diabetes. Thromboxane (TX) B2 and 6-keto-prostaglandin (PG) F1alpha, the amounts of which reflect renal production of TXA2 and PGI2, respectively, and PGE2 in urine collected in metabolic cages were assayed when rats were 14, 30, 46, and 54 weeks old. Plasma glucose and urinary protein excretion also were measured periodically. The mean plasma glucose concentration of the diabetic rats was higher than that of the healthy rats throughout the study. At 30 weeks and later, urinary protein excretion by the diabetic rats was greater than that of the healthy rats, and it increased with age. Urinary excretion of TXB2 by the diabetic rats was higher than that of the healthy rats at 14 weeks (52.4+/-23.5 vs. 27.0+/-2.6 ng/day; mean +/- SD, P = .015) and the difference continued to the end of the experiment. Urinary excretion of 6-keto-PGF1alpha by the diabetic rats was high at 14 weeks (52.3+/-12.8 vs. 26.9+/-4.6 ng/day; mean +/- SD, P<.001) but decreased with age and was the same as that of the healthy rats at 54 weeks. The urinary excretion of PGE2 by the two groups of rats was not significantly different. These results suggest that altered renal production of TXA2 and PGI2 is involved in the pathogenesis of diabetic nephropathy in rats with type 2 diabetes.  相似文献   

14.
Sucrose is converted fructose and glucose, which may increase plasma uric acid concentration (pUA) through increased purine degradation and/or decreased uric acid (UA) excretion. To investigate effects of acarbose, an inhibitor of alpha-glucosidase, on the increased pUA from sucrose administration, we measured pUA and urinary UA excretion in 6 healthy subjects before and after administering sucrose, with and without co-administration of acarbose. Sucrose raised pUA by 10% (p < 0.01). However, excretion and fractional clearance of UA were unchanged. Sucrose and acarbose coadministration also increased pUA, but less than did sucrose alone (sucrose: 4.9 to 5.4 mg/dl; sucrose + acarbose, 4.7 to 4.9 mg/dl, p < 0.05) without changes in urinary excretion and fractional clearance of UA. Acarbose appears to attenuate the rise in pUA by sucrose ingestion by inhibiting sucrose absorption.  相似文献   

15.
This study was done to determine if insulin mediates H+ and NH+4 excretion in the urinary bladder of Bufo marinus. Acidosis was induced by gavaging with 10 ml of 120 mM NH4Cl 3X daily for 2 days. Hemibladders were mounted between Lucite chambers. Insulin (porcine) was added to the serosal solution of the experimental bladder (10(2) mU/ml). After a 15-min equilibration the flux was measured for 2 hr. H+ excretion was measured from change in pH of the mucosal fluid and the NH+4 measured colorimetrically. The excretion was normalized for weight of bladder and reported in units of nanomoles (100 mg bladder)-1(min)-1. Plasma insulin was determined by radioimmunoassay and glucose by the glucose oxidase method. In 14 control bladders H+ excretion was 8.75 +/- 1.28 and experimental was 16.35 +/- 2.50 (P less than 0.025), while NH+4 excretion in control bladder was 3.29 +/- 0.95 and experimental was 6.58 +/- 1.89 (P less than 0.01). This response was absent when the insulin was heat inactivated (P greater than 0.2 and P greater than 0.3 respectively). Plasma insulin-like levels in 10 normal toads was 0.57 +/- 0.16 ngm/ml and in acidotic toads 1.25 +/- 0.16 ng/ml (P less than 0.025). Plasma glucose levels in 10 normal toads were 22.0 +/- 3.5 mg/dl and in 12 acidotic toads 17.8 +/- 0.75 mg/dl (P less than 0.025). We conclude that plasma insulin is increased in acidosis and that insulin stimulates excretion of H+ and NH+4 in the toad urinary bladder.  相似文献   

16.
Sucrose is converted fructose and glucose, which may increase plasma uric acid concentration (pUA) through increased purine degradation and/or decreased uric acid (UA) excretion. To investigate effects of acarbose, an inhibitor of alpha-glucosidase, on the increased pUA from sucrose administration, we measured pUA and urinary UA excretion in 6 healthy subjects before and after administering sucrose, with and without co-administration of acarbose. Sucrose raised pUA by 10% (p < 0.01). However, excretion and fractional clearance of UA were unchanged. Sucrose and acarbose coadministration also increased pUA, but less than did sucrose alone (sucrose: 4.9 to 5.4 mg/dl; sucrose + acarbose, 4.7 to 4.9 mg/dl, p < 0.05) without changes in urinary excretion and fractional clearance of UA. Acarbose appears to attenuate the rise in pUA by sucrose ingestion by inhibiting sucrose absorption.  相似文献   

17.
Glucose metabolism is altered after trauma and those factors that affect glucose metabolism often affect chromium (Cr) metabolism and excretion. To ascertain whether urinary Cr excretion is affected by the elevated serum glucose and other factors associated with trauma, the serum glucose and urinary Cr and Creatinine (Cre) excretion of seven severely traumatized patients were determined. The Cr concentration of intravenous (IV) fluids administered was determined and approximate Cr intake calculated. For all patients, urinary Cr concentration was high in the initial sample collected within 24 h of admission (10.3 ± 2.5 ng/mL, mean ± SEM) and decreased significantly (P < 0.05) by 42 h (2.0 ±0.6 ng/mL). The mean urinary Cr concentration 42 h following admission was 10 times greater than the urinary Cr concentration of normal, healthy subjects (0.2 ± 0.02 ng/mL). There was no significant change in urinary Cre concentration within 42 h of admission, therefore the ratio of urinary Cr to Cre (ng Cr:mg Cre) also decreased. Serum glucose concentration was elevated at admission (170 ± 18 mg/dL, mean ± SD) and decreased to 145 ± 10 mg/dL by 48 h post-admission. The intravenous fluids, dextrose and NaCl, were the lowest in Cr of the samples tested, range 0.02 to 0.20 ng/mL; lactated Ringer’s solution, with or without dextrose, contained 10-20 times more Cr and plasma protein fraction contained approximately 32 ng/mL. The mean calculated Cr intake for the first 24 h postadmission was 37.1 µg/d, significantly greater (P < 0.01) than intake from 24 to 48 h (0.12 µg/d) and 48-72 h (1.63 µg/d). The IV intake of Cr varied for trauma patients depending on fluids required during treatment, but for all patients the relatively high IV Cr intake was rapidly excreted in the urine. These data demonstrate that urinary Cr concentration is elevated several-fold within 24 h of trauma and that Cr contents of intravenous fluids administered in the days immediately following injury vary dramatically. The effects of trauma alone on Cr excretion are difficult to assess because of the variable intake of Cr from IV fluids.  相似文献   

18.
Allyl isothiocyanate (AITC) is a constituent of several plants of the family Cruciferae that are commonly used as food. This study investigated the effect of feeding AITC to male Sprague-Dawley rats on their plasma glucose and uric acid levels as well as on the urinary concentrations of glucose, 17-ketosteroids (17-KS), creatinine, and uric acid. Other test compounds included were thyroxine (T4) and thiouracil (TU). AITC caused a highly significant (P smaller than or equal to 0.01) depression in the plasma glucose and uric acid levels compared with the control. TU caused a significant depression only of the plasma glucose. T4, on the other hand, significantly increased the levels of both glucose and uric acid. The AITC-treated rats voided twice as much urine as the controls or those receiving TU or injected with T4. The 24-h excretion of glucose, uric acid, and creatinine was significantly (P smaller than or equal to 0.01) higher in animals fed AITC than in those consuming the control diet, while the excretion of 17-KS was significantly lower. Results on an equal urine volume basis showed that differences in the excretion of glucose and creatinine were related to differences in the urine volume. TU significantly depressed excretion of all the compounds but glucose. The effect of T4 on the excretion of 17-KS and uric acid resembled that of AITC and TU, thus showing that these compounds depressed the androgenic function of the animal.  相似文献   

19.
The levels of serum monosaccharides (SMO) and hexuronic acids (SHA) were measured in subjects without any metabolic or endocrine disease after a short-time administration of cortisol, dexamethasone and ACTH. The effects of the three hormones were evaluated in regard to the urinary excretion of free cortisol and cortisone at basal conditions. In thirteen subjects a significant increase of SMO during cortisol treatment was registered after 24 hours. A distinct difference in the response of SMO to cortisol treatment was observed in patients with normal or increased cortisol excretion, respectively. In the subjects with high urinary free corticoids a peak of SMO occurred soon after 4 hours after cortisol administration, in the next 48 hours no tendency of return towards basal levels was observed. In the subjects with normal urinary free cortisol excretion only a slight increment was seen after 24 hours. Soon after 4 hours in eight subjects dexamethasone administration resulted in an increase of SMO without regard to the excretion of urinary free corticoids. The highest values were obtained after 28 hours of dexamethasone treatment. Ten hours after cessation of dexamethasone the levels of SMO reached the basal values. In the study in which ACTH was administered, an increment of SMO was registered only in the first four hours. In the group of subjects treated with ACTH a slight difference between subjects with normal and increased corticoid excretion was seen. The levels of SHA successively increased after the administration of all three hormones, without regard to the basal excretion of urinary free corticoids. This increase persisted also 10 hours after cessation of cortisol and dexamethasone, and 40 hours after the last dosis of ACTH, respectively. The possibility of an altered metabolism of glucose through the glucuronate pathway under conditions of glucocorticoid excess is discussed.  相似文献   

20.
Mortality in a cadmium polluted area in Japan   总被引:2,自引:0,他引:2  
A 15-year follow-up study of 3178 inhabitants (1424 men and 1754 women) living in the cadmium (Cd) polluted Kakehashi River basin was conducted. The results clarified effects on mortality of renal dysfunction induced by Cd indicated by urinary beta-2-microglobulin (beta2-MG), total protein, glucose, and total amino acids. This study used Cox's proportional hazard model. The mortality risk ratio of urinary beta2-MG positive (>= 1000 microg/gCr) subjects was significantly increased in both sexes: 1.35 for men and 1.73 for women. The increased mortality ratio of the urinary protein positive (>= 10 mg/dl) subjects was also significant for both sexes, with risk ratios of 1.82 for men and 2.01 for women. Only the women showed significantly increased mortality of the urinary glucose positive (>= 20 mg/dl) subjects and amino acids positive (> = 300 microg/gCr) subjects. When the subjects were divided into four categories according to urinary beta2-MG, <300, 300-1000, 1000-10000, >= 10000 microg/gCr, the mortality risk ratios were increased in proportion to the increase of urinary beta2-MG in both sexes. These results suggest that mortality of Cd-exposed subjects increased with increasing excretion of four urinary markers of renal tubular dysfunction, and in proportion to increases in the amount of urinary beta2-MG excretion including under 1000 microg/gCr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号