首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous research suggested that Pseudomonas spp. may attack the pyrrolidine ring of nicotine in a way similar to mammalian metabolism, resulting in the formation of pseudooxynicotine, the direct precursor of a potent tobacco-specific lung carcinogen. In addition, the subsequent intermediates, 6-hydroxy-3-succinoylpyridine (HSP) and 2,5-dihydroxypyridine (DHP) in the Pseudomonas nicotine degradation pathway are two important precursors for drug syntheses. However, there is little information on the molecular mechanism for nicotine degradation via the pyrrolidine pathway until now. In this study we cloned and sequenced a 4,879-bp gene cluster involved in nicotine degradation. Intermediates N-methylmyosmine, pseudooxynicotine, 3-succinoylpyridine, HSP, and DHP were identified from resting cell reactions of the transformant containing the gene cluster and shown to be identical to those of the pyrrolidine pathway reported in wild-type strain Pseudomonas putida S16. The gene for 6-hydroxy-3-succinoylpyridine hydroxylase (HSP hydroxylase) catalyzing HSP directly to DHP was cloned, sequenced, and expressed in Escherichia coli, and the purified HSP hydroxylase (38 kDa) is NADH dependent. DNA sequence analysis of this 936-bp fragment reveals that the deduced amino acid shows no similarity with any protein of known function.  相似文献   

2.

Objective

Capsular polysaccharide (PS) of Streptococcus pneumoniae is a key virulence factor and typically conjugated with a carrier protein. It is necessary to improve the immunogenicity of the conjugate vaccine against S. pneumoniae.

Results

A phenyl linker between tetanus toxoid (TT) and S. pneumoniae Type 14 PS was used to improve the PS-specific immunogenicity of the conjugate vaccine. As compared with the one with the amyl linker (PS-TT), the conjugate with the phenyl linker (PS-phe-TT) decreased the TT-specific IgG titers and significantly increased the PS-specific IgG titers and the IL-5 level.

Conclusion

The phenyl linker could potentiate a robust humoral immune response to PS by decreasing the carrier-induced epitopic suppression effect. PS-phe-TT was expected to act as an effective vaccine against S. pneumoniae.
  相似文献   

3.
New enzymes of nicotine catabolism instrumental in the detoxification of the tobacco alkaloid by Arthrobacter nicotinovorans pAO1 have been identified and characterized. Nicotine breakdown leads to the formation of nicotine blue from the hydroxylated pyridine ring and of gamma-N-methylaminobutyrate (CH(3)-4-aminobutyrate) from the pyrrolidine ring of the molecule. Surprisingly, two alternative pathways for the final steps in the catabolism of CH(3)-4-aminobutyrate could be identified. CH(3)-4-aminobutyrate may be demethylated to gamma-N-aminobutyrate by the recently identified gamma-N-methylaminobutyrate oxidase. In an alternative pathway, an amine oxidase with noncovalently bound FAD and of novel substrate specificity removed methylamine from CH(3)-4-aminobutyrate with the formation of succinic semialdehyde. Succinic semialdehyde was converted to succinate by a NADP(+)-dependent succinic semialdehyde dehydrogenase. Succinate may enter the citric acid cycle completing the catabolism of the pyrrolidine moiety of nicotine. Expression of the genes of these enzymes was dependent on the presence of nicotine in the growth medium. Thus, two enzymes of the nicotine regulon, gamma-N-methylaminobutyrate oxidase and amine oxidase share the same substrate. The K(m) of 2.5 mM and k(cat) of 1230 s(-1) for amine oxidase vs. K(m) of 140 microM and k(cat) of 800 s(-1) for gamma-N-methylaminobutyrate oxidase, determined in vitro with the purified recombinant enzymes, may suggest that demethylation predominates over deamination of CH(3)-4-aminobutyrate. However, bacteria grown on [(14)C]nicotine secreted [(14)C]methylamine into the medium, indicating that the pathway to succinate is active in vivo.  相似文献   

4.
The application of light-directed combinatorial peptide synthesis to epitope mapping is described. Photolithography and solid phase peptide synthesis were combined in an automated fashion to assemble arrays containing 1024 peptide sequences on a glass support in ten steps with the precise location of each peptide known. The simultaneous synthesis of two slides containing three arrays of peptidtes each allowed for the independent screening of both a monoclonal antibody (mAb) and its Fab fragment at two different concentrations. A binary synthesis strategy was used to assemble the arrays, resulting in all deletions and truncations possible within the FLRRQFKVVT sequence being present and available for screening. The relative binding interactions of each peptide was determined by incubating the arrays with either mAb D32.39 and goat antimouse immunoglobulin G–FITC or mAb D32.39 Fab-FITC conjugate, followed by scanning the surface for fluorescence with an epifluorescence microscope. The fragment RQFKVVT was found to bind lightly to both the mAb and Fab fragment while tethered to the surface, and was measured to have 0.49 n M affinity in solution. The frame-shifted RRQFKVV sequence was found to have lower affinity both in solution (1.3 m M) and on the surface. The fragment RQFKVV was determined to be responsible for antibody recognition and was found to bind tightly when tethered to the surface, yet exhibited no binding in solution as the free acid, suggesting the requirement of an amidated C-terminus or an additional flunking residue. A deletion analysis revealed that the novel RQFKVT sequence exhibited higher affinity than the RQFKVV sequence while tethered to the surface. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Carbohydrate antigens resulting from aberrant glycosylation of tumor cells, such as SialylTn, represent attractive targets for cancer vaccination. However, T-cell-independent carbohydrate antigens are poorly immunogenic and fail to induce memory and IgG class switch. Clustered expression patterns of some carbohydrates on the cell surface add further complexity to the design of carbohydrate-based vaccines. We describe here a vaccine consisting of SialylTn carbohydrate epitopes coupled to a highly immunogenic carrier molecule, mAb17-1A, adsorbed on alhydrogel and coformulated with a strong adjuvant, QS-21. The SialylTn-mAb17-1A conjugate vaccine was administered in Rhesus monkeys, and the immune responses against mAb17-1A, SialylTn, ovine submaxillary mucin, and tumor cells were analyzed. The data demonstrate that the density of carbohydrate epitopes on the carrier is an essential parameter for induction of anti-carbohydrate specific memory IgG immune responses. Furthermore, the influence of different types of presentation of SialylTn (monomeric vs trimers vs clustered via a branched polyethylenimine linker) on antibody titers and specificity was studied. High-density coupling of SialylTn epitopes to mAb17-1A induced the strongest immune response against synthetic SialylTn and showed also the highest reactivity against natural targets, such as OSM and tumor cells.  相似文献   

6.
The biosynthesis of the pyrrolidine ring of nicotine has been studied using short-term steady-state exposures of Nicotiana glutinosa seedlings to 14CO2. The pyrrolidine ring of the labeled nicotine has been degraded in a systematic manner to ascertain the radioactivity at each carbon, and a new method has been developed for obtaining C-2′ with complete radiochemical integrity. Some of the labeling patterns obtained were symmetrical while others were clearly unsymmetrical. The duality of the labeling patterns found in these 14CO2 biosyntheses, together with other data on pyrrolidine ring biosynthesis which are critically examined, is best rationalized by postulating two biosynthetic pathways for formation of the pyrrolidine ring, one involving a symmetrical precursor and the other an unsymmetrical one.  相似文献   

7.
Summary Radioiodine-labelled 791T/36 monoclonal antibody (mAb) and its Fab/c fragment, consisting of one Fab arm and the Fc portion, have identical whole-body survival curves in BALB/c mice (t1/2 = 3.75 days). Therefore, these two forms of this antibody provide a suitable model for studying the role of valency in the targeting efficiency of antibodies to tumours in vivo. 791/T36 antibody and its Fab/c fragment were labelled either by direct iodination using the iodogen method (125I) or by dilactitol-125I-tyramine (125I-DLT), a residualizing label, which accumulates in the cells involved in degradation of the carrier protein. In tumour-bearing nude mice, the percentage of injected dose of mAb or Fab/c fragment reaching the specific 791T tumour was similar, and these proteins appeared to be catabolized at a similar rate in this tissue. mAb, but not the Fab/c fragment, was found to be very actively catabolized by the liver and spleen of tumour-bearing mice compared to control nude mice, this probably resulting from clearance of immune complexes. This effect was most pronounced when the mAb was labelled with125I-DLT, the percentage of injected dose of mAb reaching the spleen and liver being higher than the percentage of injected dose reaching the tumour. This effect was not seen with the Fab/c fragment. Autoradiographic studies on tumour sections, which exhibit antigenic sites throughout the tumour mass, showed that the Fab/c fragment was already homogeneously distributed in the tumour 12 h after injection whereas the whole antibody was mainly localized at the periphery of the tumour. Those results suggest a binding site barrier effect. Overall, these results indicate that the highest valency and affinity may not be the optimal choice for mAb to be used for therapeutic purposes.  相似文献   

8.
Spermidine, which was labeled asymmetrically in its four-carbon moiety ([6-14C]-1,5,10-triazadecane), was administered to Nicotiana glutinosa plants. After 7 days the plants were harvested, yielding radioactive nicotine (0.43 % incorporation) and nornicotine (0.07 % inc.). A systematic degradation of the alkaloids indicated that they were labelled equally at C-2′ and C-5′ of their pyrrolidine rings. These results are consistent with the hypothesis that spermidine is degraded to putrescine prior to its incorporation into the pyrrolidine rings of nicotine and nornicotine.  相似文献   

9.
Nicotine is a main alkaloid in tobacco and is also the primary toxic compound in tobacco wastes. It can be degraded by bacteria via either pyridine pathway or pyrrolidine pathway. Previously, a fused pathway of the pyridine pathway and the pyrrolidine pathway was proposed for nicotine degradation by Agrobacterium tumefaciens S33, in which 6-hydroxy-3-succinoylpyridine (HSP) is a key intermediate connecting the two pathways. We report here the purification and properties of an NADH-dependent HSP hydroxylase from A. tumefaciens S33. The 90-kDa homodimeric flavoprotein catalyzed the oxidative decarboxylation of HSP to 2,5-dihydroxypyridine (2,5-DHP) in the presence of NADH and FAD at pH 8.0 at a specific rate of about 18.8±1.85 µmol min−1 mg protein−1. Its gene was identified by searching the N-terminal amino acid residues of the purified protein against the genome draft of the bacterium. It encodes a protein composed of 391 amino acids with 62% identity to HSP hydroxylase (HspB) from Pseudomonas putida S16, which degrades nicotine via the pyrrolidine pathway. Considering the application potential of 2,5-DHP in agriculture and medicine, we developed a route to transform HSP into 2,5-DHP with recombinant HSP hydroxylase and an NADH-regenerating system (formate, NAD+ and formate dehydrogenase), via which around 0.53±0.03 mM 2,5-DHP was produced from 0.76±0.01 mM HSP with a molar conversion as 69.7%. This study presents the biochemical properties of the key enzyme HSP hydroxylase which is involved in the fused nicotine degradation pathway of the pyridine and pyrrolidine pathways and a new green route to biochemically synthesize functionalized 2,5-DHP.  相似文献   

10.
Nicotine and its N-demethylation product nornicotine are two important alkaloids in Nicotiana tabacum L. (tobacco). Both nicotine and nornicotine have two stereoisomers that differ from each other at 2′-C position on the pyrrolidine ring. (S)-Nicotine is the predominant form in the tobacco leaf, whereas the (R)-enantiomer only accounts for ∼0.2% of the total nicotine pool. Despite considerable past efforts, a comprehensive understanding of the factors responsible for generating an elevated and variable enantiomer fraction of nornicotine (EFnnic of 0.04 to 0.75) from the consistently low EF observed for nicotine has been lacking. The objective of this study was to determine potential roles of enantioselective demethylation in the formation of the nornicotine EF. Recombinant CYP82E4, CYP82E5v2, and CYP82E10, three known tobacco nicotine demethylases, were expressed in yeast and assayed for their enantioselectivities in vitro. Recombinant CYP82E4, CYP82E5v2, and CYP82E10 demethylated (R)-nicotine 3-, 10-, and 10-fold faster than (S)-nicotine, respectively. The combined enantioselective properties of the three nicotine demethylases can reasonably account for the nornicotine composition observed in tobacco leaves, which was confirmed in planta. Collectively, our studies suggest that an enantioselective mechanism facilitates the maintenance of a reduced (R)-nicotine pool and, depending on the relative abundances of the three nicotine demethylase enzymes, can confer a high (R)-enantiomer percentage within the nornicotine fraction of the leaf.  相似文献   

11.
A novel linker system based on 3-aminoxypropionate was designed and evaluated for drug release using proteolysis as an activation trigger followed by intramolecular cyclization. The hydroxylamine moiety present in the linker system enabled faster release of the parent drug from the linker–drug conjugate at lower pH as compared to an aliphatic amine moiety. Introduction of two methyl groups strategically at the α position to the carboxylate in the linker further improved the rate of cyclization by nearly 2-fold. The 3-aminoxypropionate linker was successfully applied to a model prodrug for protease activation using α-chymotrypsin as the activating enzyme; the activation of the model prodrug bearing the 3-aminoxypropionate linker was 136 times faster than the corresponding model prodrug bearing an amine linker.  相似文献   

12.
We developed a specific adenoviral gene delivery system with monoclonal antibody (mAb) AF-20 that binds to a 180 kDa antigen highly expressed on human hepatocellular carcinoma (HCC) cells. A bifunctional Fab-antibody conjugate (2Hx-2-AF-20) was generated through AF-20 mAb crosslinkage to an anti-hexon antibody Fab fragment. Uptake of adenoviral particles and gene expression was examined in FOCUS HCC and NIH 3T3 cells by immunofluorescence; beta-galactosidase expression levels were determined following competitive inhibition of adenoviral CAR receptor by excess fibre knob protein. The chimeric complex was rapidly internalized at 37 degrees C, and enhanced levels of reporter gene expression was observed in AF-20 antigen positive HCC cells, but not in AF-20 antigen negative NIH 3T3 control cells. Targeting of recombinant adenoviral vectors to a tumor associated antigen by a bifunctional Fab-antibody conjugate is a promising approach to enhance specificity and efficiency of gene delivery to HCC.  相似文献   

13.
14.
A newly isolated strain, SJY1, identified as Ochrobactrum sp., utilizes nicotine as a sole source of carbon, nitrogen, and energy. Strain SJY1 could efficiently degrade nicotine via a variant of the pyridine and pyrrolidine pathways (the VPP pathway), which highlights bacterial metabolic diversity in relation to nicotine degradation. A 97-kbp DNA fragment containing six nicotine degradation-related genes was obtained by gap closing from the genome sequence of strain SJY1. Three genes, designated vppB, vppD, and vppE, in the VPP pathway were cloned and heterologously expressed, and the related proteins were characterized. The vppB gene encodes a flavin-containing amine oxidase converting 6-hydroxynicotine to 6-hydroxy-N-methylmyosmine. Although VppB specifically catalyzes the dehydrogenation of 6-hydroxynicotine rather than nicotine, it shares higher amino acid sequence identity with nicotine oxidase (38%) from the pyrrolidine pathway than with its isoenzyme (6-hydroxy-l-nicotine oxidase, 24%) from the pyridine pathway. The vppD gene encodes an NADH-dependent flavin-containing monooxygenase, which catalyzes the hydroxylation of 6-hydroxy-3-succinoylpyridine to 2,5-dihydroxypyridine. VppD shows 62% amino acid sequence identity with the hydroxylase (HspB) from Pseudomonas putida strain S16, whereas the specific activity of VppD is ∼10-fold higher than that of HspB. VppE is responsible for the transformation of 2,5-dihydroxypyridine. Sequence alignment and phylogenetic analysis suggested that the VPP pathway, which evolved independently from nicotinic acid degradation, might have a closer relationship with the pyrrolidine pathway. The proteins and functional pathway identified here provide a sound basis for future studies aimed at a better understanding of molecular principles of nicotine degradation.  相似文献   

15.
Nicotine, a major toxic alkaloid in tobacco wastes, is degraded by bacteria, mainly via pyridine and pyrrolidine pathways. Previously, we discovered a new hybrid of the pyridine and pyrrolidine pathways in Agrobacterium tumefaciens S33 and characterized its key enzyme 6-hydroxy-3-succinoylpyridine (HSP) hydroxylase. Here, we purified the nicotine dehydrogenase initializing the nicotine degradation from the strain and found that it forms a complex with a novel 6-hydroxypseudooxynicotine oxidase. The purified complex is composed of three different subunits encoded by ndhAB and pno, where ndhA and ndhB overlap by 4 bp and are ∼26 kb away from pno. As predicted from the gene sequences and from chemical analyses, NdhA (82.4 kDa) and NdhB (17.1 kDa) harbor a molybdopterin cofactor and two [2Fe-2S] clusters, respectively, whereas Pno (73.3 kDa) harbors an flavin mononucleotide and a [4Fe-4S] cluster. Mutants with disrupted ndhA or ndhB genes did not grow on nicotine but grew well on 6-hydroxynicotine and HSP, whereas the pno mutant did not grow on nicotine or 6-hydroxynicotine but grew well on HSP, indicating that NdhA and NdhB are responsible for initialization of nicotine oxidation. We successfully expressed pno in Escherichia coli and found that the recombinant Pno presented 2,6-dichlorophenolindophenol reduction activity when it was coupled with 6-hydroxynicotine oxidation. The determination of reaction products catalyzed by the purified enzymes or mutants indicated that NdhAB catalyzed nicotine oxidation to 6-hydroxynicotine, whereas Pno oxidized 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde pyridine. These results provide new insights into this novel hybrid pathway of nicotine degradation in A. tumefaciens S33.  相似文献   

16.
《Seminars in Virology》1995,6(4):233-242
Antibodies represent a major component of the mammalian immunological defense against picornavirus infection. The work reviewed here examines structural details of antibody-mediated neutralization of human rhinovirus 14 (HRV14) using a combination of crystallography, molecular biology and electron microscopy. The atomic structures of the Fab fragment from a neutralizing monoclonal antibody (Fab17-IA) and HRV14 were used to interpret the ∼25Å resolution cryo-electron microscopy structure of the Fab17-IA/HRV14 complex. While there were not any observable antibody-induced conformational changes in the HRV14 upon antibody binding, there was evidence that charge interactions dominate the paratope-epitope interface and that the intact antibody might bind bivalently across icosahedral two-fold axes. Site-directed mutagenesis results confirmed that charge interactions dominate antibody binding and electron microscopy studies on the mAb17-IA/HRV14 complex confirmed that this neutralizing antibody binds bivalently across icosahedral two-fold axes.  相似文献   

17.
Two single‐chain antibodies (scFv) that bind the superpotent sweetener ligand, NC‐174, were generated from mouse monoclonal antibodies (mAb) NC6.8 (IgG, κ) and NC10.14 (IgG, λ). These scFv were constructed by cloning the variable region sequences of the mAb, connecting them in tandem with a 25‐amino‐acid polypeptide linker, and expressing them in E. coli using the pET‐11a system. The recombinant proteins were purified using Ni2+–NTA–agarose by virtue of a hexahistidine sequence introduced to the C‐terminus of the heavy chain variable region during the cloning process. The secondary structure and ligand binding properties of the two scFv, the parent mAbs and proteolytically derived Fab fragments were examined using radioligand binding, circular dichroism (CD) and fluorescence spectroscopy. The far‐UV CD spectra of both scFv possessed predominantly β character, as did those of the Fab, and the near‐UV CD spectral data for scFvNC10.14, NC6.8 and NC10.14 Fab indicated that chromophore perturbation occurred upon ligand binding. The affinity constants determined for the two scFv, Fab and mAb were nearly equivalent. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
This is a preliminary cross multidisciplinary theoretical-computational approach for the design of a drug delivery system based on immunoconjugated carbon nanotube against HER2- overexpressing cancer cells. This drug delivery system allows the release of an encapsulated cytotoxic cocktail in a controlled manner under pulsed radio frequency (RF) irradiation. Our effort is focused on the computational aided design of a high affinity bispecific anti-HER2 antibody and an opening mechanism of the carbon nanotube (CNT) based cytotoxic carrier for controlling multiple drug release. We study the main interactions between the antibody and the antigen by a computational scanning mutagenesis approach of trastuzumab and pertuzumab fragment antigen binding (Fab) structures in order to enhance their binding affinity. Then, each Fab fragments is joined by a polypeptide linker which should be stable enough to avoid the “open form” of antibody. On the other hand, we also conjugate the engineered antibody to functionalized CNTs (f-CNTs), which encapsulate the inhibitors of the HER2/PI3K/Akt/mTOR signaling pathway. We take advantage of the fact that f-CNT converts the RF radiation absorption into heat release. A pulsed laser at 13.45 MHz increments the temperature around 40 °C for triggering the nano-caps destabilization, which allows the switching of the opening mechanism of the drug carrier. Nano-caps will be a dual pH/temperature responsive in order to take advantage of lysosome characteristic (acidic pH) and heat release from the carrier. Nano-caps are functionalized with organic amide moieties, which hydrolyze quickly at an acidic pH into primary amines, and protonated amines generate repulsion interactions with other charged species, which trigger the cytotoxics release.
Figure
Immunoconjugated-CNT drug delivery against HER2 receptor. (1) Design of a high affinity bispecific anti-HER2 antibody based on trastuzumab and pertuzumab Fabs; and (2) controllable multiple drug release of the CNT carrier (opening mechanism) under external stimuli  相似文献   

19.
A series of chemiluminescent 17beta-estradiol probes were synthesized. Relative equilibrium dissociation constants (K(D)) for the interaction of an anti-E(2) Fab fragment for the probes in solution were evaluated using a single E(2)-analog biosensor surface on a BIAcore surface plasmon resonance instrument. The results show the antibody fragment binds all chemiluminescent conjugates tested with high affinity showing only minor preferences for site of substitution (C6 versus C7), stereochemistry (alpha versus beta), or linker moiety.  相似文献   

20.
(−)-Δ9-Tetrahydrocannabinol (THC) is the main psychoactive compound found in cannabis. In this study, an anti-THC Fab fragment, designed T3, was isolated from a display library cloned from the spleen cells of a mouse immunized with a THC-bovine serum albumin conjugate, and the crystal structures of the T3 Fab in its free form and in complex with THC were determined at 1.9 Å and 2.0 Å resolution, respectively. The THC binding site of the T3 Fab is a narrow cavity: the n-pentyl group of THC protrudes deep into the interface area between the variable domains and the C10 monoterpene moiety of the hapten is partially exposed to solvent. The metabolites of THC, with modifications in the C10 monoterpene moiety, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol and 11-hydroxy-Δ9-tetrahydrocannabinol, are bound by the T3 Fab with a higher affinity than THC. The crystal structures suggest that Ser52H and Arg53H of the T3 Fab are able to make hydrogen bonds with the metabolites, which leads to an increased binding against these metabolites. By developing a T3 Fab-Δ9-THC immunocomplex binding antibody from a naïve antibody phage display library, the specificity of the Δ9-THC binding is highly increased, which allows a one-step, homogeneous, fluorescence resonance energy transfer-based sensitive immunoassay, with a detection limit of 20 ng/ml from saliva samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号