首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cbb3-type cytochrome c oxidases (cbb3-Cox) constitute the second most abundant cytochrome c oxidase (Cox) group after the mitochondrial-like aa3-type Cox. They are present in bacteria only, and are considered to represent a primordial innovation in the domain of Eubacteria due to their phylogenetic distribution and their similarity to nitric oxide (NO) reductases. They are crucial for the onset of many anaerobic biological processes, such as anoxygenic photosynthesis or nitrogen fixation. In addition, they are prevalent in many pathogenic bacteria, and important for colonizing low oxygen tissues. Studies related to cbb3-Cox provide a fascinating paradigm for the biogenesis of sophisticated oligomeric membrane proteins. Complex subunit maturation and assembly machineries, producing the c-type cytochromes and the binuclear heme b3-CuB center, have to be coordinated precisely both temporally and spatially to yield a functional cbb3-Cox enzyme. In this review we summarize our current knowledge on the structure, regulation and assembly of cbb3-Cox, and provide a highly tentative model for cbb3-Cox assembly and formation of its heme b3-CuB binuclear center. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

2.
Cytochrome oxidases are perfect model substrates for analyzing the assembly of multisubunit complexes because the need for cofactor incorporation adds an additional level of complexity to their assembly. cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) consist of the catalytic subunit CcoN, the membrane-bound c-type cytochrome subunits CcoO and CcoP, and the CcoQ subunit, which is required for cbb(3)-Cox stability. Biogenesis of cbb(3)-Cox proceeds via CcoQP and CcoNO subcomplexes, which assemble into the active cbb(3)-Cox. Most bacteria expressing cbb(3)-Cox also contain the ccoGHIS genes, which encode putative cbb(3)-Cox assembly factors. Their exact function, however, has remained unknown. Here we analyzed the role of CcoH in cbb(3)-Cox assembly and showed that CcoH is a single spanning-membrane protein with an N-terminus-out-C-terminus-in (N(out)-C(in)) topology. In its absence, neither the fully assembled cbb(3)-Cox nor the CcoQP or CcoNO subcomplex was detectable. By chemical cross-linking, we demonstrated that CcoH binds primarily via its transmembrane domain to the CcoP subunit of cbb(3)-Cox. A second hydrophobic stretch, which is located at the C terminus of CcoH, appears not to be required for contacting CcoP, but deleting it prevents the formation of the active cbb(3)-Cox. This suggests that the second hydrophobic domain is required for merging the CcoNO and CcoPQ subcomplexes into the active cbb(3)-Cox. Surprisingly, CcoH does not seem to interact only transiently with the cbb(3)-Cox but appears to stay tightly associated with the active, fully assembled complex. Thus, CcoH behaves more like a bona fide subunit of the cbb(3)-Cox than an assembly factor per se.  相似文献   

3.
We have recently established that the facultative phototrophic bacterium Rhodobacter sphaeroides, like the closely related Rhodobacter capsulatus species, contains both the previously characterized mobile electron carrier cytochrome c2 (cyt c2) and the more recently discovered membrane-anchored cyt cy. However, R. sphaeroides cyt cy, unlike that of R. capsulatus, is unable to function as an efficient electron carrier between the photochemical reaction center and the cyt bc1 complex during photosynthetic growth. Nonetheless, R. sphaeroides cyt cy can act at least in R. capsulatus as an electron carrier between the cyt bc1 complex and the cbb3-type cyt c oxidase (cbb3-Cox) to support respiratory growth. Since R. sphaeroides harbors both a cbb3-Cox and an aa3-type cyt c oxidase (aa3-Cox), we examined whether R. sphaeroides cyt cy can act as an electron carrier to either or both of these respiratory terminal oxidases. R. sphaeroides mutants which lacked either cyt c2 or cyt cy and either the aa3-Cox or the cbb3-Cox were obtained. These double mutants contained linear respiratory electron transport pathways between the cyt bc1 complex and the cyt c oxidases. They were characterized with respect to growth phenotypes, contents of a-, b-, and c-type cytochromes, cyt c oxidase activities, and kinetics of electron transfer mediated by cyt c2 or cyt cy. The findings demonstrated that both cyt c2 and cyt cy are able to carry electrons efficiently from the cyt bc1 complex to either the cbb3-Cox or the aa3-Cox. Thus, no dedicated electron carrier for either of the cyt c oxidases is present in R. sphaeroides. However, under semiaerobic growth conditions, a larger portion of the electron flow out of the cyt bc1 complex appears to be mediated via the cyt c2-to-cbb3-Cox and cyt cy-to-cbb3-Cox subbranches. The presence of multiple electron carriers and cyt c oxidases with different properties that can operate concurrently reveals that the respiratory electron transport pathways of R. sphaeroides are more complex than those of R. capsulatus.  相似文献   

4.
The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa(3)-type CcO containing a di-copper Cu(A) center and mono-copper Cu(B), plus a cbb(3)-type CcO that contains Cu(B) but lacks Cu(A). Three copper chaperones are located in the periplasm of R. sphaeroides, PCu(A)C, PrrC (Sco) and Cox11. Cox11 is required to assemble Cu(B) of the aa(3)-type but not the cbb(3)-type CcO. PrrC is homologous to mitochondrial Sco1; Sco proteins are implicated in Cu(A) assembly in mitochondria and bacteria, and with Cu(B) assembly of the cbb(3)-type CcO. PCu(A)C is present in many bacteria, but not mitochondria. PCu(A)C of Thermus thermophilus metallates a Cu(A) center in vitro, but its in vivo function has not been explored. Here, the extent of copper center assembly in the aa(3)- and cbb(3)-type CcOs of R. sphaeroides has been examined in strains lacking PCu(A)C, PrrC, or both. The absence of either chaperone strongly lowers the accumulation of both CcOs in the cells grown in low concentrations of Cu(2+). The absence of PrrC has a greater effect than the absence of PCu(A)C and PCu(A)C appears to function upstream of PrrC. Analysis of purified aa(3)-type CcO shows that PrrC has a greater effect on the assembly of its Cu(A) than does PCu(A)C, and both chaperones have a lesser but significant effect on the assembly of its Cu(B) even though Cox11 is present. Scenarios for the cellular roles of PCu(A)C and PrrC are considered. The results are most consistent with a role for PrrC in the capture and delivery of copper to Cu(A) of the aa(3)-type CcO and to Cu(B) of the cbb(3)-type CcO, while the predominant role of PCu(A)C may be to capture and deliver copper to PrrC and Cox11. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

5.
Amino acid sequence data have revealed that the bo-type ubiquinol oxidase from Escherichia coli is closely related to the eukaryotic aa3-type cytochrome c oxidases. In the cytochrome c oxidases, the reduction of oxygen to water occurs at a binuclear center comprised of heme a3 and Cu(B). In this paper, Fourier transform infrared (FTIR) spectroscopy of CO bound to the enzyme is used to directly demonstrate that the E. coli bo-type ubiquinol oxidase also contains a heme-copper binuclear center. Photolysis of CO ligated to heme o at low temperatures (e.g., 30 K) results in formation of a CO-Cu complex, showing that there is a heme-Cu(B) binuclear center similar to that formed by heme a3 and Cu(B) in the eukaryotic oxidase. It is further demonstrated that the cyoE gene product is required for the correct assembly of this binuclear center, although this polypeptide is not required as a component of the active enzyme in vitro. The cyoE gene product is homologous to COX10, a nuclear gene product from Saccharomyces cerevisiae, which is required for the assembly of yeast cytochrome c oxidase. Deletion of the cyoE gene results in an inactive quinol oxidase that is, however, assembled in the membrane. FTIR analysis of bound CO shows that Cu(B) is present in this mutant but that the heme-Cu(B) binuclear center is abnormal. Analysis of the heme content of the membrane suggests that the cyoE deletion results in the insertion of heme B (protoheme IX) in the binuclear center, rather than heme O.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The oxidative part of the catalytic cycle of the caa(3)-type cytochrome c oxidase from Thermus thermophilus was followed by time-resolved optical spectroscopy. Rate constants, chemical nature and the spectral properties of the catalytic cycle intermediates (Compounds A, P, F) reproduce generally the features typical for the aa(3)-type oxidases with some distinctive peculiarities caused by the presence of an additional 5-th redox-center-a heme center of the covalently bound cytochrome c. Compound A was formed with significantly smaller yield compared to aa(3) oxidases in general and to ba(3) oxidase from the same organism. Two electrons, equilibrated between three input redox-centers: heme a, Cu(A) and heme c are transferred in a single transition to the binuclear center during reduction of the compound F, converting the binuclear center through the highly reactive O(H) state into the final product of the reaction-E(H) (one-electron reduced) state of the catalytic site. In contrast to previous works on the caa(3)-type enzymes, we concluded that the finally produced E(H) state of caa(3) oxidase is characterized by the localization of the fifth electron in the binuclear center, similar to the O(H)→E(H) transition of the aa(3)-type oxidases. So, the fully-reduced caa(3) oxidase is competent in rapid electron transfer from the input redox-centers into the catalytic heme-copper site.  相似文献   

8.
The cytochrome o complex is the predominant terminal oxidase in the aerobic respiratory chain of Escherichia coli when the bacteria are grown under conditions of high aeration. The oxidase is a ubiquinol oxidase and reduces molecular oxygen to water. Electron transport through the enzyme is coupled to the generation of a protonmotive force. The purified cytochrome o complex contains four or five subunits, two protoheme IX (heme b) prosthetic groups, plus at least one Cu. The subunits are all encoded by the cyo operon. Sequence comparisons show that the cytochrome o complex is closely related to the aa3-type cytochrome c oxidase family. Gene fusions have been used to define the topology of each of the gene products. Subunits I, II, III and IV are proposed to have 15, 2, 5 and 3 transmembrane spans, respectively. The fifth gene product (cyoE) encodes a protein with 7 membrane spanning segments, and this may also be a subunit of this enzyme. Fourier transform infrared spectroscopy has been used to monitor CO bound in the active site where oxygen is reduced. These data provide definitive proof that the cytochrome o complex has a heme-copper binuclear center, similar to that present in the aa3-type cytochrome c oxidases. Site-directed mutagenesis is being utilized to define which amino acids are ligands to the heme iron and copper prosthetic groups.  相似文献   

9.
Cooperative linkage of solute binding at separate binding sites in allosteric proteins is an important functional attribute of soluble and membrane bound hemoproteins. Analysis of proton/electron coupling at the four redox centers, i.e. Cu(A), heme a, heme a(3) and Cu(B), in the purified bovine cytochrome c oxidase in the unliganded, CO-liganded and CN-liganded states is presented. These studies are based on direct measurement of scalar proton translocation associated with oxido-reduction of the metal centers and pH dependence of the midpoint potential of the redox centers. Heme a (and Cu(A)) exhibits a cooperative proton/electron linkage (Bohr effect). Bohr effect seems also to be associated with the oxygen-reduction chemistry at the heme a(3)-Cu(B) binuclear center. Data on electron transfer in cytochrome c oxidase are also presented, which, together with structural data, provide evidence showing the occurrence of direct electron transfer from Cu(A) to the binuclear center in addition to electron transfer via heme a. A survey of structural and functional data showing the essential role of cooperative proton/electron linkage at heme a in the proton pump of cytochrome c oxidase is presented. On the basis of this and related functional and structural information, variants for cooperative mechanisms in the proton pump of the oxidase are examined.  相似文献   

10.
It has recently become evident that many bacterial respiratory oxidases are members of a superfamily that is related to the eukaryotic cytochrome c oxidase. These oxidases catalyze the reduction of oxygen to water at a heme-copper binuclear center. Fourier transform infrared (FTIR) spectroscopy has been used to examine the heme-copper-containing respiratory oxidases of Rhodobacter sphaeroides Ga. This technique monitors the stretching frequency of CO bound at the oxygen binding site and can be used to characterize the oxidases in situ with membrane preparations. Oxidases that have a heme-copper binuclear center are recognizable by FTIR spectroscopy because the bound CO moves from the heme iron to the nearby copper upon photolysis at low temperature, where it exhibits a diagnostic spectrum. The FTIR spectra indicate that the binuclear center of the R. sphaeroides aa3-type cytochrome c oxidase is remarkably similar to that of the bovine mitochondrial oxidase. Upon deletion of the ctaD gene, encoding subunit I of the aa3-type oxidase, substantial cytochrome c oxidase remains in the membranes of aerobically grown R. sphaeroides. This correlates with a second wild-type R. sphaeroides is grown photosynthetically, the chromatophore membranes lack the aa3-type oxidase but have this second heme-copper oxidase. Subunit I of the heme-copper oxidase superfamily contains the binuclear center. Amino acid sequence alignments show that this subunit is structurally very highly conserved among both eukaryotic and prokaryotic species. The polymerase chain reaction was used to show that the chromosome of R. sphaeroides contains at least one other gene that is a homolog of ctaD, the gene encoding subunit I of the aa3-type cytochrome c oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Surf1p is a protein of the inner membrane of mitochondria that functions in the assembly of cytochrome-c oxidase. The specifics of the role of Surf1p have remained unresolved. Numerous mutations in human Surf1p lead to severe mitochondrial disease. A homolog of human Surf1p is encoded by the genome of the alpha-proteobacterium Rhodobacter sphaeroides, which synthesizes a mitochondrial-like aa(3)-type cytochrome-c oxidase. The gene for Surf1p was deleted from the genome of R. sphaeroides. The resulting aa(3)-type oxidase was purified and analyzed by biochemical methods plus optical and EPR spectroscopy. The oxidase that assembled in the absence of Surf1p was composed of three subpopulations with structurally distinct heme a(3)-Cu active sites. 50% of the oxidase lacked heme a(3), 10-15% contained heme a(3) but lacked Cu(BB), and 35-40% had a normal heme a(3) -Cu(B) active site with normal activity. Cu(A) assembly was unaffected. All of the oxidase contained low-spin heme a, but the environment of the heme a center was slightly altered in the 50% of the enzyme that lacked heme a(3). Introduction of a normal copy of the gene for Surf1p on an exogenous plasmid resulted in a single population of normally assembled, highly active enzyme. The data indicate that Surf1p plays a role in facilitating the insertion of heme a(3) into the active site of cytochrome-c oxidase. The results suggest that maturation of the heme a(3)-Cu(B) center is a step that limits the association of subunits I and II in the assembly of mitochondrial cytochrome oxidase.  相似文献   

12.
The proton-pumping cbb(3)-type cytochrome c oxidases catalyze cell respiration in many pathogenic bacteria. For reasons not yet understood, the apparent dioxygen (O(2)) affinity in these enzymes is very high relative to other members of the heme-copper oxidase (HCO) superfamily. Based on density functional theory (DFT) calculations on intermediates of the oxygen scission reaction in active-site models of cbb(3)- and aa(3)-type oxidases, we find that a transient peroxy intermediate (I(P), Fe[III]-OOH(-)) is ~6kcal/mol more stable in the former case, resulting in more efficient kinetic trapping of dioxygen and hence in a higher apparent oxygen affinity. The major molecular basis for this stabilization is a glutamate residue, polarizing the proximal histidine ligand of heme b(3) in the active site.  相似文献   

13.
Multi-step assembly pathway of the cbb3-type cytochrome c oxidase complex   总被引:1,自引:0,他引:1  
The cbb3-type cytochrome c oxidases as members of the heme-copper oxidase superfamily are involved in microaerobic respiration in both pathogenic and non-pathogenic proteobacteria. The biogenesis of these multisubunit enzymes, encoded by the ccoNOQP operon, depends on the ccoGHIS gene products, which are proposed to be specifically required for co-factor insertion and maturation of cbb3-type cytochrome c oxidases. Here, the assembly of the cbb3-type cytochrome c oxidase from the facultative photosynthetic model organism Rhodobacter capsulatus was investigated using blue-native polyacrylamide gel electrophoresis. This process involves the formation of a stable but inactive 210 kDa sub-complex consisting of the subunits CcoNOQ and the assembly proteins CcoH and CcoS. By recruiting monomeric CcoP, this sub-complex is converted into an active 230 kDa CcoNOQP complex. Formation of these complexes and the stability of the monomeric CcoP are impaired drastically upon deletion of ccoGHIS. In a ccoI deletion strain, the 230 kDa complex was absent, although monomeric CcoP was still detectable. In contrast, neither of the complexes nor the monomeric CcoP was found in a ccoH deletion strain. In the absence of CcoS, the 230 kDa complex was assembled. However, it exhibited no enzymatic activity, suggesting that CcoS might be involved in a late step of biogenesis. Based on these data, we propose that CcoN, CcoO and CcoQ assemble first into an inactive 210 kDa sub-complex, which is stabilized via its interactions with CcoH and CcoS. Binding of CcoP, and probably subsequent dissociation of CcoH and CcoS, then generates the active 230 kDa complex. The insertion of the heme cofactors into the c-type cytochromes CcoP and CcoO precedes sub-complex formation, while the cofactor insertion into CcoN could occur either before or after the 210 kDa sub-complex formation during the assembly of the cbb3-type cytochrome c oxidase.  相似文献   

14.
Farver O  Chen Y  Fee JA  Pecht I 《FEBS letters》2006,580(14):3417-3421
The 1-methyl-nicotinamide radical (MNA(*)), produced by pulse radiolysis has previously been shown to reduce the Cu(A)-site of cytochromes aa(3), a process followed by intramolecular electron transfer (ET) to the heme a but not to the heme a(3) [Farver, O., Grell, E., Ludwig, B., Michel, H. and Pecht, I. (2006) Rates and equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase. Biophys. J. 90, 2131-2137]. Investigating this process in the cytochrome ba(3) of Thermus thermophilus (Tt), we now show that MNA(*) also reduces Cu(A) with a subsequent ET to the heme b and then to heme a(3), with first-order rate constants 11200 s(-1), and 770 s(-1), respectively. The results provide clear evidence for ET among the three spectroscopically distinguishable centers and indicate that the binuclear a(3)-Cu(B) center can be reduced in molecules containing a single reduction equivalent.  相似文献   

15.
Bradyrhizobium japonicum utilizes cytochrome cbb 3 oxidase encoded by the fixNOQP operon to support microaerobic respiration under free-living and symbiotic conditions. It has been previously shown that, under denitrifying conditions, inactivation of the cycA gene encoding cytochrome c 550, the electron donor to the Cu-containing nitrite reductase, reduces cbb 3 expression. In order to establish the role of c 550 in electron transport to the cbb 3 oxidase, in this work, we have analyzed cbb 3 expression and activity in the cycA mutant grown under microaerobic or denitrifying conditions. Under denitrifying conditions, mutation of cycA had a negative effect on cytochrome c oxidase activity, heme c (FixP and FixO) and heme b cytochromes as well as expression of a fixP '–' lacZ fusion. Similarly, cbb 3 oxidase was expressed very weakly in a napC mutant lacking the c -type cytochrome, which transfers electrons to the NapAB structural subunit of the periplasmic nitrate reductase. These results suggest that a change in the electron flow through the denitrification pathway may affect the cellular redox state, leading to alterations in cbb 3 expression. In fact, levels of fixP '–' lacZ expression were largely dependent on the oxidized or reduced nature of the carbon source in the medium. Maximal expression observed in cells grown under denitrifying conditions with an oxidized carbon source required the regulatory protein RegR.  相似文献   

16.
We have applied FTIR and time-resolved step-scan Fourier transform infrared (TRS(2)-FTIR) spectroscopy to investigate the dynamics of the heme-Cu(B) binuclear center and the protein dynamics of mammalian aa(3), Pseudomonas stutzeri cbb(3), and caa(3) and ba(3) from Thermus thermophilus cytochrome oxidases. The implications of these results with respect to (1) the molecular motions that are general to the photodynamics of the binuclear center in heme-copper oxidases, and (2) the proton pathways located in the ring A propionate of heme a(3)-Asp372-H(2)O site that is conserved among all structurally known oxidases are discussed.  相似文献   

17.
The assembly of cytochrome c oxidase (CcO) in yeast mitochondria is shown to be dependent on a new assembly factor designated Coa1 that associates with the mitochondrial inner membrane. Translation of the mitochondrial-encoded subunits of CcO occurs normally in coa1Delta cells, but these subunits fail to accumulate. The respiratory defect in coa1Delta cells is suppressed by high-copy MSS51, MDJ1 and COX10. Mss51 functions in Cox1 translation and elongation, whereas Cox10 participates in the biosynthesis of heme a, a key cofactor of CcO. Respiration in coa1Delta and shy1Delta cells is enhanced when Mss51 and Cox10 are coexpressed. Shy1 has been implicated in formation of the heme a3-Cu(B) site in Cox1. The interaction between Coa1 and Cox1, and the physical and genetic interactions between Coa1 and Mss51, Shy1 and Cox14 suggest that Coa1 coordinates the transition of newly synthesized Cox1 from the Mss51:Cox14 complex to the heme a cofactor insertion involving Shy1. coa1Delta cells also display a mitochondrial copper defect suggesting that Coa1 may have a direct link to copper metallation of CcO.  相似文献   

18.
In many bacteria the ccoGHIS cluster, located immediately downstream of the structural genes (ccoNOQP) of cytochrome cbb(3) oxidase, is required for the biogenesis of this enzyme. Genetic analysis of ccoGHIS in Rhodobacter capsulatus demonstrated that ccoG, ccoH, ccoI and ccoS are expressed independently of each other, and do not form a simple operon. Absence of CcoG, which has putative (4Fe-4S) cluster binding motifs, does not significantly affect cytochrome cbb(3) oxidase activity. However, CcoH and CcoI are required for normal steady-state amounts of the enzyme. CcoI is highly homologous to ATP-dependent metal ion transporters, and appears to be involved in the acquisition of copper for cytochrome cbb(3) oxidase, since a CcoI-minus phenotype could be mimicked by copper ion starvation of a wild-type strain. Remarkably, the small protein CcoS, with a putative single transmembrane span, is essential for the incorporation of the redox-active prosthetic groups (heme b, heme b(3 )and Cu) into the cytochrome cbb(3) oxidase. Thus, the ccoGHIS products are involved in several steps during the maturation of the cytochrome cbb(3) oxidase.  相似文献   

19.
Fully and partially reduced forms of isolated bovine cytochrome c oxidase undergo a two-electron oxidation-reduction process with added peroxynitrite, leading to catalytic oxidation of ferrocytochrome c to ferricytochrome c. The other major reaction product is nitrite ion, 86% of the added peroxynitrite being measurably converted to this species. The reaction is inhibited in the presence of cyanide, implicating the heme a(3)-Cu(B) binuclear pair as the active site. Moreover, provided peroxynitrite is not added to excess, the reductase activity of the enzyme toward this oxidant efficiently protects other protein and detergent molecules in vitro from nitration of tyrosine residues and oxidative damage. If the enzyme is exposed to approximately 10(2)-fold excesses of peroxynitrite, then significant irreversible loss of electron transfer activity results, and the heme a(3)-Cu(B) binuclear pair no longer undergo a characteristic carbon monoxide-driven reduction. The accompanying rather small changes in the observed electronic absorption spectrum are suggestive of a modification in the vicinity of one or both hemes but probably not to the cofactors themselves.  相似文献   

20.
Pitcher RS  Brittain T  Watmough NJ 《Biochemistry》2003,42(38):11263-11271
Cytochrome cbb(3) oxidase, from Pseudomonas stutzeri, contains a total of five hemes, two of which, a b-type heme in the active site and a hexacoordinate c-type heme, can bind CO in the reduced state. By comparing the cbb(3) oxidase complex and the isolated CcoP subunit, which contains the ligand binding bishistidine-coordinated c-type heme, we have deconvoluted the contribution made by each center to CO binding. A combination of rapid mixing and flash photolysis experiments, coupled with computer simulations, reveals the kinetics of the reaction of c-type heme with CO to be complex as a result of the need to displace an endogenous axial ligand, a property shared with nonsymbiotic plant hemoglobins and some heme-based gas sensing domains. The recombination of CO with heme b(3), unlike all other heme-copper oxidases, including mitochondrial cytochrome c oxidase, is independent of ligand concentration. This observation suggests a very differently organized dinuclear center in which CO exchange between Cu(B) and heme b(3) is significantly enhanced, perhaps reflecting an important determinant of substrate affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号