首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: MSP1 is the major surface protein on merozoites and a prime candidate for a blood stage malaria vaccine. Preclinical and seroepidemiological studies have implicated antibodies to MSP1 in protection against blood stage parasitaemia and/or reduced parasite densities, respectively. Malaria endemic areas have multiple strains of Plasmodium falciparum circulating at any given time, giving rise to complex immune responses, an issue which is generally not addressed in clinical trials conducted in non-endemic areas. A lack of understanding of the effect of pre-existing immunity to heterologous parasite strains may significantly contribute to vaccine failure in the field. The purpose of this study was to model the effect of pre-existing immunity to MSP142 on the immunogenicity of blood-stage malaria vaccines based on alternative MSP1 alleles. METHODS: Inbred and outbred mice were immunized with various recombinant P. falciparum MSP142 proteins that represent the two major alleles of MSP142, MAD20 (3D7) and Wellcome (K1, FVO). Humoral immune responses were analysed by ELISA and LuminexTM, and functional activity of induced MSP142-specific antibodies was assessed by growth inhibition assays. Tcell responses were characterized using ex vivo ELISpot assays. RESULTS: Analysis of the immune responses induced by various immunization regimens demonstrated a strong allele-specific response at the T cell level in both inbred and outbred mice. The success of heterologous regimens depended on the degree of homology of the N-terminal p33 portion of the MSP142, likely due to the fact that most T cell epitopes reside in this part of the molecule. Analysis of humoral immune responses revealed a marked cross-reactivity between the alleles. Functional analyses showed that some of the heterologous regimens induced antibodies with improved growth inhibitory activities. CONCLUSION: The development of a more broadly efficacious MSP1 based vaccine may be hindered by clonally imprinted p33 responses mainly restricted at the T cell level. In this study, the homology of the p33 sequence between the clonally imprinted response and the vaccine allele determines the magnitude of vaccine induced responses.  相似文献   

2.
Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25), was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP1(42)) was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP1(42) conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP1(42) self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP1(42) specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis.  相似文献   

3.
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.  相似文献   

4.
A number of blood-stage malaria Ags are under development as vaccine candidates, but knowledge of the cellular responses to these vaccines in humans is limited. We evaluated the nature and specificity of cellular responses in healthy American volunteers vaccinated with a portion of the major merozoite surface protein-1 (MSP1) of Plasmodium falciparum, MSP1(42), formulated on Alhydrogel. Volunteers were vaccinated three times with 80 microg of either MSP1(42)-FVO/Alhydrogel or MSP1(42)-3D7/Alhydrogel. Cells collected 2 wk after the third vaccination produced Th1 cytokines, including IFN-gamma and IL-2 following Ag stimulation, and greater levels of the Th2 cytokines IL-5 and IL-13; the anti-inflammatory cytokine IL-10 and the molecule CD25 (IL-2Ralpha) were also detected. The volunteers were evaluated for the MSP1(42)-FVO or MSP1(42)-3D7 specificity of their T cell responses. Comparison of their responses to homologous and heterologous Ags showed ex vivo IFN-gamma and IL-5 levels that were significantly higher to homologous rather than to heterologous Ags. The epitopes involved in this stimulation were shown to be present in the dimorphic MSP1(33) portion of the larger MSP1(42)-3D7 polypeptide, and indirect experiment suggests the same for the MSP1(42)-FVO polypeptide. This contrasts with B cell responses, which were primarily directed to the conserved MSP1(19) portion. Furthermore, we explored the maturation of memory T cells and found that 46% of vaccinees showed specific memory T cells defined as CD4(+)CD45RO(+)CD40L(+) after long-term in vitro culture. The identification of human-specific CD4(+) memory T cells provides the foundation for future studies of these cells both after vaccination and in field studies.  相似文献   

5.
The C-terminal 42 kDa fragments of the P. falciparum Merozoite Surface Protein 1, MSP1-42 is a leading malaria vaccine candidate. MSP1-33, the N-terminal processed fragment of MSP1-42, is rich in T cell epitopes and it is hypothesized that they enhance antibody response toward MSP1-19. Here, we gave in vivo evidence that T cell epitope regions of MSP1-33 provide functional help in inducing anti-MSP1-19 antibodies. Eleven truncated MSP1-33 segments were expressed in tandem with MSP1-19, and immunogenicity was evaluated in Swiss Webster mice and New Zealand White rabbits. Analyses of anti-MSP1-19 antibody responses revealed striking differences in these segments' helper function despite that they all possess T cell epitopes. Only a few fragments induced a generalized response (100%) in outbred mice. These were comparable to or surpassed the responses observed with the full length MSP1-42. In rabbits, only a subset of truncated antigens induced potent parasite growth inhibitory antibodies. Notably, two constructs were more efficacious than MSP1-42, with one containing only conserved T cell epitopes. Moreover, another T cell epitope region induced high titers of non-inhibitory antibodies and they interfered with the inhibitory activities of anti-MSP1-42 antibodies. In mice, this region also induced a skewed TH2 cellular response. This is the first demonstration that T cell epitope regions of MSP1-33 positively or negatively influenced antibody responses. Differential recognition of these regions by humans may play critical roles in vaccine induced and/or natural immunity to MSP1-42. This study provides the rational basis to re-engineer more efficacious MSP1-42 vaccines by selective inclusion and exclusion of MSP1-33 specific T cell epitopes.  相似文献   

6.
Protein-in-adjuvant formulations and viral-vectored vaccines encoding blood-stage malaria Ags have shown efficacy in rodent malaria models and in vitro assays against Plasmodium falciparum. Abs and CD4(+) T cell responses are associated with protective efficacy against blood-stage malaria, whereas CD8(+) T cells against some classical blood-stage Ags can also have a protective effect against liver-stage parasites. No subunit vaccine strategy alone has generated demonstrable high-level efficacy against blood-stage infection in clinical trials. The induction of high-level Ab responses, as well as potent T and B cell effector and memory populations, is likely to be essential to achieve immediate and sustained protective efficacy in humans. This study describes in detail the immunogenicity of vaccines against P. falciparum apical membrane Ag 1 in rhesus macaques (Macaca mulatta), including the chimpanzee adenovirus 63 (AdCh63), the poxvirus modified vaccinia virus Ankara (MVA), and protein vaccines formulated in Alhydrogel or CoVaccine HT adjuvants. AdCh63-MVA heterologous prime-boost immunization induces strong and long-lasting multifunctional CD8(+) and CD4(+) T cell responses that exhibit a central memory-like phenotype. Three-shot (AdCh63-MVA-protein) or two-shot (AdCh63-protein) regimens induce memory B cells and high-titer functional IgG responses that inhibit the growth of two divergent strains of P. falciparum in vitro. Prior immunization with adenoviral vectors of alternative human or simian serotype does not affect the immunogenicity of the AdCh63 apical membrane Ag 1 vaccine. These data encourage the further clinical development and coadministration of protein and viral vector vaccine platforms in an attempt to induce broad cellular and humoral immune responses against blood-stage malaria Ags in humans.  相似文献   

7.
The 42 kDa cleavage product from the carboxyl end of the Plasmodium falciparum merozoite surface protein 1 (MSP1(42)) is an important blood-stage malaria vaccine target. Several recombinant protein expression systems have been used for production of MSP1(42) including yeast (Saccharomyces cerevisiae and Pichia pastoris), Escherichia coli, baculovirus and transgenic animals. To date, all of the reported recombinant proteins include a 6 x His affinity tag to facilitate purification, including three MSP1(42) clinical grade proteins currently in human trials. Under some circumstances, the presence of the 6 x His tag may not be desirable. Therefore, we were interested to produce clinical grade MSP1(42) without a 6 x His affinity tag from E. coli inclusion bodies. We produced a recombinant MSP1(42) with a P. falciparum FUP (Uganda-Palo Alto) phenotype which accounts for a substantial proportion of the MSP1(42) protein observed in African isolates. EcMSP1(42)-FUP was produced in E. coli inclusion bodies by high cell mass induction with IPTG using 5 L and 60 L bioreactors. Isolated inclusion bodies were solubilized in 8M guanidine-HCl and the EcMSP1(42)-FUP protein refolded by rapid dilution. Refolded EcMSP1(42)-FUP was purified using hydrophobic interaction chromatography, anion exchange chromatography, and size exclusion chromatography, and subject to biochemical characterization for integrity, identity, and purity. Endotoxin and host cell protein levels were within acceptable limits for human use. The process was successfully transferred to pilot-scale production in a cGMP environment. A final recovery of 87.8 mg of clinical-grade material per liter of fermentation broth was achieved. The EcMSP1(42)-FUP clinical antigen is available for preclinical evaluation and human studies.  相似文献   

8.
The C-terminal region of the merozoite surface protein 1 (MSP1_(19)) is one of the mostpromising vaccine candidates against the erythrocytic forms of malaria.In the present study,a gene encodingPlasmodium falciparum MSP1_(19) was expressed in yeast Pichia pastoris.A non-glycosylated form of therecombinant protein MSP1_(19) was purified from culture medium.This recombinant protein maintains itsantigenicity.Significant immune responses were seen in C57BL/6 mice after the second immunization.Moreover,the specific antibodies recognized the native antigens of P.falciparum,The prevailing isotypesof immunoglobulin (Ig)G associated with immunization were IgG1,IgG2a and IgG2b.The antibodiesisolated from mouse sera immunized with MSP1_(19) can inhibit parasite growth in vitro.Based on theseimmunological studies,we concluded that MSP1_(19) deserves further evaluation in pre-clinical immunizationsagainst P.falciparum.  相似文献   

9.
Clinical immunity to Plasmodium falciparum malaria takes years to develop and is never complete. One explanation for these observations is that antigenic variation enables malaria parasites to evade humoral immunity; another is that P. falciparum induces immune dysregulation, which inhibits the development of protective cellular immunity. Research described by D'Ombrain et al. in this Cell Host & Microbe issue probes how the parasite's main virulence factor PfEMP-1 might significantly alter human innate immune responses.  相似文献   

10.
杜合娟  陆忠华  邢益平 《生物磁学》2011,(24):4996-4998
DNA疫苗作为疫苗研制工业中的新成果已经得到了越来越多得关注。为了提高其免疫原性,发挥它最大的保护作用,人们进行了各种尝试。近几年来的研究表明,通过密码子优化的方式可以提高DNA疫苗的免疫原性,增强其免疫保护作用。本文即针对该问题做了一些总结。  相似文献   

11.
We have previously reported the production of hepatitis C virus-like particles (HCV-LP) using a recombinant baculovirus containing the cDNA of the HCV structural proteins (core, E1, and E2). These particles resemble the putative HCV virions and are capable of inducing strong and broad humoral and cellular immune responses in mice. Here we present evidence on the immunogenicity of HCV-LP and the effects of novel adjuvant systems in a nonhuman primate model, the baboon. Three groups of four baboons were immunized with HCV-LP, HCV-LP and adjuvant AS01B (monophosphoryl lipid A and QS21), or HCV-LP and the combination of AS01B and CpG oligodeoxynucleotides 10105. After four immunizations over an 8-month period, all animals developed HCV-specific humoral and cellular immune responses including antibodies to HCV structural proteins and gamma interferon(+) (IFN-gamma(+))CD4(+) and IFN-gamma(+)CD8(+) T-cell responses. The immunogenicity of HCV-LP was only marginally enhanced by the use of adjuvants. The overall HCV-specific immune responses were broad and long lasting. Our results suggest that HCV-LP is a potent immunogen to induce HCV-specific humoral and cellular immune responses in primates and may be a promising approach to develop novel preventive and therapeutic modalities.  相似文献   

12.
The complete enzymatic removal of affinity tags from tagged recombinant proteins is often required but can be challenging when slow points for cleavage exist. This study documents a general approach to remove N‐terminal tags from recombinant proteins specifically designed to be efficiently captured by IMAC resins. In particular, site‐directed mutagenesis procedures have been used to modify the amino acid sequence of metal binding tags useful in IMAC purifications of recombinant proteins with the objective to increase cleavage efficiency with the exopeptidase, dipeptidyl aminopeptidase 1. These tags were specifically developed for application with borderline metal ions, such as Ni2+ or Cu2+ ions, chelated to the immobilized ligands, 1,4,7‐triazacyclononane (tacn) and its analogs. Due to the ability to control cleavage site structure and accessibility via site directed mutagenesis methods, these procedures offer considerable scope to obtain recombinant proteins with authentic native N‐termini, thus avoiding any impact on structural stability, humoral and cellular immune responses, or other biological functions. Collectively, these IMAC‐based methods provide a practical alternative to other procedures for the purification of recombinant proteins with tag removal. Overall, this approach is essentially operating as an integrated down‐stream purification capability.  相似文献   

13.
In Plasmodium falciparum malaria, erythrocyte invasion by circulating merozoites may occur via two distinct pathways involving either a sialic acid-dependent or -independent mechanism. Earlier, we identified two nonglycosylated exofacial regions of erythrocyte band 3 termed 5ABC and 6A as an important host receptor in the sialic acid-independent invasion pathway. 5ABC, a major segment of this receptor, interacts with the 42-kDa processing product of merozoite surface protein 1 (MSP1(42)) through its 19-kDa C-terminal domain. Here, we show that two regions of merozoite surface protein 9 (MSP9), also known as acidic basic repeat antigen, interact directly with 5ABC during erythrocyte invasion by P. falciparum. Native MSP9 as well as recombinant polypeptides derived from two regions of MSP9 (MSP9/Delta1 and MSP9/Delta2) interacted with both 5ABC and intact erythrocytes. Soluble 5ABC added to the assay mixture drastically diminished the binding of MSP9 to erythrocytes. Recombinant MSP9/Delta1 and MSP9/Delta2 present in the culture medium blocked P. falciparum reinvasion into erythrocytes in vitro. Native MSP9 and MSP1(42), the two ligands binding to the 5ABC receptor, existed as a stable complex. Our results establish a novel concept wherein the merozoite exploits a specific complex of co-ligands on its surface to target a single erythrocyte receptor during invasion. This new paradigm poses a new challenge in the development of a vaccine for blood stage malaria.  相似文献   

14.
In a previous study, we demonstrated that immunization of guinea pigs with the major secretory protein (MSP) of Legionella pneumophila, serogroup 1 induced humoral and cell-mediated immune responses to MSP and protective immunity against lethal aerosol challenge with this serogroup of L. pneumophila. Although serogroup 1 L. pneumophila cause most cases of Legionnaires' disease, other serogroups of L. pneumophila and species of Legionella cause many cases. In this study, we have examined if immunization with MSP induces humoral and cell-mediated immune responses and protective immunity across different serogroups of L. pneumophila and species of Legionella. By immunoblot analysis, MSP from L. pneumophila serogroup 1 (Lp1 MSP), L. pneumophila serogroup 6 (Lp6 MSP), and Legionella bozemanii (Lb MSP) shared common epitopes recognized by guinea pig anti-Lp1 MSP antiserum. These MSP molecules, however, were not identical as they had different apparent m.w. Immunization of guinea pigs with MSP induced strong cell-mediated immune responses across the different serogroups and species, as indicated by splenic lymphocyte proliferation and cutaneous delayed-type hypersensitivity in response to both homologous and heterologous MSP. Immunization with MSP induced strong protective immunity across two serogroups of L. pneumophila; overall, 9 survived aerosol challenge with L. pneumophila serogroup 1 compared to 0 of 12 (0%) sham-immunized control animals (p = 3 x 10(-4), Cochran-Mantel-Haenzel chi 2 statistic for pooled data). Immunization with MSP also induced protective immunity across species of Legionella but protection was species-specific. Whereas immunization with Lb MSP induced protective immunity against L. pneumophila, neither immunization with Lp1 MSP nor immunization with Lb MSP induced protective immunity against L. bozemanii, which produces MSP. Not surprisingly, immunization with MSP did not induce protective immunity against MSP-negative Legionella micdadei. In the case of both L. bozemanii and L. micdadei, immunization with a sublethal dose did confer protective immunity to aerosol challenge indicating that these species do contain immunoprotective components. This study demonstrates that immunization with MSP induces humoral and cell-mediated immune responses across different serogroups of L. pneumophila and species of Legionella, but that the capacity of MSP immunization to induce protective immunity is species-specific. Nevertheless, an MSP vaccine has the potential to induce protective immunity against the great majority of cases of Legionnaires' disease.  相似文献   

15.
Targeting antigens to antigen-presenting cells (APC) improve their immunogenicity and capacity to induce Th1 responses and cytotoxic T lymphocytes (CTL). We have generated a mucin-type immunoglobulin fusion protein (PSGL-1/mIgG2b), which upon expression in the yeast Pichia pastoris became multivalently substituted with O-linked oligomannose structures and bound the macrophage mannose receptor (MMR) and dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) with high affinity in vitro. Here, its effects on the humoral and cellular anti-ovalbumin (OVA) responses in C57BL/6 mice are presented.OVA antibody class and subclass responses were determined by ELISA, the generation of anti-OVA CTLs was assessed in 51Cr release assays using in vitro-stimulated immune spleen cells from the different groups of mice as effector cells and OVA peptide-fed RMA-S cells as targets, and evaluation of the type of Th cell response was done by IFN-γ, IL-2, IL-4 and IL-5 ELISpot assays.Immunizations with the OVA − mannosylated PSGL-1/mIgG2b conjugate, especially when combined with the AbISCO®-100 adjuvant, lead to faster, stronger and broader (with regard to IgG subclass) OVA IgG responses, a stronger OVA-specific CTL response and stronger Th1 and Th2 responses than if OVA was used alone or together with AbISCO®-100. Also non-covalent mixing of mannosylated PSGL-1/mIgG2b, OVA and AbISCO®-100 lead to relatively stronger humoral and cellular responses. The O-glycan oligomannoses were necessary because PSGL-1/mIgG2b with mono- and disialyl core 1 structures did not have this effect.Mannosylated mucin-type fusion proteins can be used as versatile APC-targeting molecules for vaccines and as such enhance both humoral and cellular immune responses.  相似文献   

16.
Antibodies to polymorphic antigens expressed during the parasites erythrocytic stages are important mediators of protective immunity against P. falciparum malaria. Therefore, polymorphic blood stage antigens like MSP3, EBA-175 and GLURP and variant surface antigens PfEMP1 and RIFIN are considered vaccine candidates. However, to what extent these antibodies to blood stage antigens are acquired during naive individuals' first infections has not been studied in depth. Using plasma samples collected from controlled experimental P. falciparum infections we show that antibodies against variant surface antigens, PfEMP1 and RIFIN as well as MSP3 and GLURP, are acquired during a single short low density P. falciparum infection in non-immune individuals including strain transcendent PfEMP1 immune responses. These data indicate that the immunogenicity of the variant surface antigens is similar to the less diverse merozoite antigens. The acquisition of a broad and strain transcendent repertoire of PfEMP1 antibodies may reflect a parasite strategy of expressing most or all PfEMP1 variants at liver release optimizing the likelihood of survival and establishment of chronic infections in the new host.  相似文献   

17.
Immune responses to asexual blood-stages of malaria parasites   总被引:6,自引:0,他引:6  
The blood stage of the malaria parasite's life cycle is responsible for all the clinical symptoms of malaria. The development of clinical disease is dependent on the interplay of the infecting parasite with the immune status and genetic background of the host. Following repeated exposure to malaria parasites, individuals residing in endemic areas develop immunity. Naturally acquired immunity provides protection against clinical disease, especially severe malaria and death from malaria, although sterilizing immunity is never achieved. Given the absence of antigen processing in erythrocytes, immunity to blood stage malaria parasites is primarily conferred by humoral immune responses. Cellular and innate immune responses play a role in controlling parasite growth but may also contribute to malaria pathology. Here, we analyze the natural humoral immune responses acquired by individuals residing in P. falciparum endemic areas and review their role in providing protection against malaria. In addition, we review the dual potential of cellular and innate immune responses to control parasite multiplication and promote pathology.  相似文献   

18.
禽IL-2与传染性法氏囊VP2融合蛋白免疫学特性   总被引:3,自引:0,他引:3  
为研究禽细胞因子IL-2与IBDV主要保护性抗原VP2基因融合蛋白的免疫学特性,将重组的rVP2-IL-2融合蛋白免疫鸡,通过IBDV-VP2 ELISA抗体效价、抗体亚型(IgG1和IgG2a)、淋巴细胞增殖、INF-γ和IL-4细胞因子的分泌水平、中和抗体以及动物攻毒试验检测评价其对鸡体免疫水平的影响。抗体滴度测定和淋巴细胞增殖试验结果显示,rVP2-IL-2融合蛋白免疫鸡体的体液和细胞免疫应答水平均明显高于单独的VP2蛋白免疫组。抗体亚型测定结果显示,rVP2-IL-2融合蛋白免疫组鸡体能产生一个平衡的IgG1和IgG2a抗体反应。细胞因子ELISA试验结果表明rVP2-IL-2融合蛋白能有效平衡Th1(γ-IFN)和Th2(IL-4)类型的细胞免疫反应。动物攻毒试验rVp2-IL-2融合蛋白免疫组鸡体获得了85%的保护率,表明构建的rVP2-IL-2融合蛋白对IBDV的攻击具有较好的免疫保护作用。本研究为进一步研制IBD高效的基因工程疫苗奠定了基础。  相似文献   

19.
Erythrocyte invasion by malaria parasites requires multiple protein interactions. Our earlier studies showed that erythrocyte band 3 is an invasion receptor binding Plasmodium falciparum merozoite surface protein 1 and 9 (MSP1, MSP9) existing as a co-ligand complex. In this study, we have used biochemical approaches to identify the binding sites within MSP1 and MSP9 involved in the co-ligand complex formation. A major MSP9-binding site is located within the 19kDa C-terminal domain of MSP1 (MSP1(19)). Two specific regions of MSP9 defined as Delta1a and Delta2 interacted with native MSP1(19). The 42 kDa domain of MSP1 (MSP1(42)) bearing MSP1(19) in the C-terminus bound directly to both MSP9/Delta1a and Delta2. Thus, the regions of MSP1 and MSP9 interacting with the erythrocyte band 3 receptor are also responsible for assembling the co-ligand complex. Our evidence suggests a ternary complex is formed between MSP1, MSP9, and band 3 during erythrocyte invasion by P. falciparum.  相似文献   

20.
DNA疫苗能够诱导机体产生特异的细胞免疫和体液免疫反应,在肿瘤和感染性疾病的疫苗开发中显示出巨大的潜能。以HIV-1核心蛋白P24为抗原基因,构建pVAX1-p24 DNA,经Western blotting和动物活体成像检测证明,pVAX1 DNA携带的外源基因可以在293T 细胞和小鼠肌肉组织有效表达。采用不同的免疫策略免疫BALB/c小鼠 (DNA/DNA,DNA/Protein),实验结果表明:pVAX1-p24单独免疫BALB/c小鼠,可诱导明显的体液免疫及细胞免疫反应;pVAX1-p24与P24蛋白联合免疫诱导的体液免疫反应高于pVAX1-p24单独免疫,所获得的抗体滴度是单独免疫的7.3~8.0倍,但细胞免疫反应则不及单独免疫组。研究结果表明采取不同的免疫策略可以诱导产生不同的免疫反应,根据具体情况调整免疫策略将获得更好的免疫效果。这些研究为艾滋病疫苗的研发提供了实验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号