首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As the understanding of variation is the key to a good process and product quality one should pay attention to dynamics on the single-cell level. The basic idea of this approach was to qualify and quantify variations on the single-cell level during bioreactor cultivations by monitoring the expression of an eGFP tagged target protein (human membrane protein) using fully automated real-time, flow injection flow cytometry (FI-FCM). The FI-FCM system consists of a sampling- and defoaming- as well as of a dilution-section. It allows a very short monitoring interval (5 min) and is able to dilute the reactor sample by a factor ranging up to more than 10,000.In bioreactor cultivations of recombinant Pichia pastoris expressing the eGFP tagged target protein, high correlations (R2 ≥ 0.97) between the FI-FCM fluorescent signal and other, however, population-averaged fluorescence signals (off-line fluorescence, in situ fluorescence probe) were obtained. FI-FCM is the only method able to distinguish between few cells with high fluorescence and many cells with low fluorescence intensity and proved that cells differ significantly from each other within the population during bioreactor cultivations. Single-cell fluorescence was distributed over a broad range within the cell population. These distributions strongly suggest that (a) the AOX-I promoter is leaky and (b) a fraction of the population is able to express more protein of interest within shorter time and (c) a fraction of the population does not express the fusion protein at all. These findings can help in the selection of high producing, stable strains. To show the platform-independency of the system, it has successfully been tested during bioreactor cultivations of three different strains (P. pastoris, Saccharomyces cerevisiae, Escherichia coli).Along with its applications in PAT, the FI-FCM could be used as a platform-independent (prokaryotes and eukaryotes) method in various other applications; for example in the closed-loop-control of bioprocesses using different kinds of fluorescent reporters, (waste- and drinking-) water analysis, clone selection in combination with FACS or even for surgery applications.  相似文献   

2.
Flow cytometry has been used to accurately monitor cell events that indicate the spatio-temporal state of a bioreactor culture. The introduction of process analytical technology (PAT) has led to process improvements using real-time or semi real-time monitoring systems. Integration of flow cytometry into an automated scheme for improved process monitoring can benefit PAT in bioreactor-based biopharmaceutical productions by establishing optimum process conditions and better quality protocols. Herein, we provide detailed protocols for establishing an automated flow cytometry system that can be used to investigate and monitor cell growth, viability, cell size, and cell cycle data. A method is described for the use of such a system primarily focused on CHO cell culture, although it is foreseen the information gathered from automated flow cytometry can be applied to a variety of cell lines to address both PAT requirements and gain further understanding of complex biological systems.  相似文献   

3.
For direct and on-line study of the physiological states of cell cultures, a robust flow injection system has been designed and interfaced with flow cytometry (FI-FCM). The core of the flow injection system includes a microchamber designed for sample processing. The design of this microchamber allows not only an accurate on-line dilution but also on-line cell fixation, staining, and washing. The flow injection part of the system was tested by monitoring the optical density of a growing E.coli culture on-line using a spectrophotometer. The entire growth curve, from lag phase to stationary phase, was obtained with frequent sampling. The performance of the entire FI-FCM system is demonstrated in three applications. The first is the monitoring of green fluorescent protein fluorophore formation kinetics in E.coli by visualizing the fluorescence evolution after protein synthesis is inhibited. The data revealed a subpopulation of cells that do not become fluorescent. In addition, the data show that single-cell fluorescence is distributed over a wide range and that the fluorescent population contains cells that are capable of reaching significantly higher expression levels than that indicated by the population average. The second application is the detailed flow cytometric evaluation of the batch growth dynamics of E.coli expressing Gfp. The collected single-cell data visualize the batch growth phases and it is shown that a state of balanced growth is never reached by the culture. The third application is the determination of distribution of DNA content of a S. cerevisiae population by automatically staining cells using a DNA-specific stain. Reproducibility of the on-line staining reaction shows that the system is not restricted to measuring the native properties of cells; rather, a wider range of cellular components could be monitored after appropriate sample processing. The system is thus particularly useful because it operates automatically without direct operator supervision for extended time periods.  相似文献   

4.
Flow cytometry (FCM) is widely used in cancer research for diagnosis, detection of minimal residual disease, as well as immune monitoring and profiling following immunotherapy. In all these applications, the challenge is to detect extremely rare cell subsets while avoiding spurious positive events. To achieve this objective, it helps to be able to analyze FCM data using multiple markers simultaneously, since the additional information provided often helps to minimize the number of false positive and false negative events, hence increasing both sensitivity and specificity. However, with manual gating, at most two markers can be examined in a single dot plot, and a sequential strategy is often used. As the sequential strategy discards events that fall outside preceding gates at each stage, the effectiveness of the strategy is difficult to evaluate without laborious and painstaking back-gating. Model-based analysis is a promising computational technique that works using information from all marker dimensions simultaneously, and offers an alternative approach to flow analysis that can usefully complement manual gating in the design of optimal gating strategies. Results from model-based analysis will be illustrated with examples from FCM assays commonly used in cancer immunotherapy laboratories.  相似文献   

5.
Suller MT  Lloyd D 《Cytometry》1999,35(3):235-241
BACKGROUND: Conventional techniques used to assess bactericidal activities of antibodies are time-consuming; flow cytometry has been used as a rapid alternative. In this study, the membrane potential-sensitive fluorescent probes bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC4(3)) and Sytox Green, the redox dye cyano-2,3-ditolyl tetrazolium chloride (CTC), and the Baclite viability test kit were used to assess the effects of ceftazidime, ampicillin, and vancomycin on clinical isolates of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, respectively. METHODS: Bacterial cultures were grown to early exponential phase, at which point the antibiotics were added at their breakpoint values, and incubation was allowed to continue. At timed intervals, samples were stained and flow cytometric analysis was performed on a Skatron Argus 100 arc-lamp based dual-parameter flow cytometer. RESULTS: All the dyes successfully identified antibiotic-induced damage in the three strains, although different fluorescence responses between the dyes were observed. DiBAC4(3) and Sytox Green overestimated numbers of nonviable bacteria relative to loss of viability as judged by plate counts. CTC, a measure of respiratory activity, revealed antibiotic-induced population heterogeneity illus trated by the development of several subpopulations. The "live" component of the viability kit identified two populations corresponding to viable and nonviable organisms, whereas the "dead" component only revealed single populations, the fluorescence intensity of which increased with antibiotic exposure. CONCLUSIONS: Flow cytometry provides a rapid and sensitive technique for the evaluation of the antibacterial activities of antibiotics. The use of a range of fluorophores specific for different cellular characteristics may be beneficial, bearing in mind the different fluorescence responses observed among the dyes used here.  相似文献   

6.
DNA analysis by flow cytometry   总被引:2,自引:0,他引:2  
Accurate quantification of DNA from cells of several species is possible with flow cytometry. When one species is used as a reference, cytometric readings from two or more different species can be compared to obtain relative percent DNA or DNA indices. Differences in DNA from the male and female of the same species also can be measured. The method allows rapid screening of chromosomal abnormalities among large clinical populations, and evaluation of errors of sex determination such as XY sex reversal.  相似文献   

7.
Routine monitoring of Cryptosporidium oocysts in water using flow cytometry   总被引:8,自引:2,他引:8  
A flow cytometric method for the routine analysis of environmental water samples for the presence of Cryptosporidium oocysts has been developed. It uses a Coulter Epics Elite flow cytometer to examine water samples and to separate oocysts from contaminating debris by cell sorting. The sorted particles are then rapidly screened by microscopy. The method has been evaluated and compared with direct epifluorescence microscopy on 325 river, reservoir and drinking water samples. The technique was found to be more sensitive, faster and easier to perform than conventional epifluorescent microscopy for the routine examination of water samples for Cryptosporidium.  相似文献   

8.
The O-glycosylated domains of mucins and mucin-type glycoproteins contain 50-80% of carbohydrate and possess expanded conformations. Herein, we describe a flow cytometry (FCM) method for determining the carbohydrate-binding specificities of lectins to mucin. Biotinylated mucin was immobilized on streptavidin-coated beads, and the binding specificities of the major mucin sugar chains, as determined by GC-MS and MALDI-ToF, were monitored using fluorescein-labeled lectins. The specificities of lectins toward specific biotinylated glycans were determined as controls. The advantage of flexibility, multiparametric data acquisition, speed, sensitivity, and high-throughput capability makes flow cytometry a valuable tool to study diverse interactions between glycans and proteins.  相似文献   

9.
BACKGROUND: Electroporation accomplishes transient permeabilization of cells and thus aids in the uptake of drugs. The method has been employed clinically in the treatment of dermatological tumors with bleomycin. The conditions of electroporation are still largely empirical and information is lacking as to the interrelationships among voltage pulse height, pulse number and toxicity, cell permeation, drug uptake, and effects on drug toxicity. We used propidium iodide (PI) and flow cytometry to define cell permeation into cytoplasmic and nuclear compartments to determine the improvements of drug toxicity that can be accomplished by electroporation. METHODS: Human squamous carcinoma cells of defined TP53 status and normal human epithelial cells were subjected to electroporation using a square wave pulse generator in the range of 0-5,000 V/cm. Flow cytometry served to establish entry of the drug reporter, PI, into the cytoplasm and nucleus. A dye staining method served to establish cell survival and to determine the toxicity of bleomycin alone, electroporation alone, and electroporation with bleomycin. RESULTS: The electric field intensity (EFI) required to produce 50% permeabilization (EP(50)) is cell type dependent. The EP(50) varied from 1,465 to 2,027 V/cm. An EFI below 900 V/cm is growth stimulatory whereas an EFI in excess of 1,000 V/cm is growth inhibitory. An EFI of 1,000 V/cm is sufficient to increase bleomycin toxicity by a factor of 2-3. A differential electroporation efficiency is observed between normal and tumor cells. CONCLUSIONS: Tumor cells can be targeted preferentially at electroporation voltages where normal cells are less permeable.  相似文献   

10.
A method is described which reliably quantifies the degree of intercellular communication via gap junctions by combining a dye-loading technique with fluorescence-activated flow cytometry. Our experiments expand former measurements of other groups by analyzing the time- and density-dependent onset of coupling with a fixed ratio of donor to recipient cells. The high sensitivity of this technique provides a better resolution than the microelectrode technique and allows the detection of small changes in gap-junctional coupling by examining a large number of cells in a single experiment. Suspended cells were loaded with the membrane-permeable dye calcein AM, which is intracellularly hydrolyzed by nonspecific esterases, and the resulting polyanionic calcein is thus trapped inside these donor cells. Gap junctions, however, are permeable for this fluorescent dye, as can be observed when suspended donor cells are added to recipient cells (i.e., monolayer cultures) in which case cell-cell contact is established within less than 60 min. In addition, one of these two cell populations can also be stained with a membrane-resident dye (e.g., DiI), which facilitates the identification of different cell populations (donors, recipients, and noncoupled cells) not only by epifluorescence microscopy but also by flow cytometry. Our analyses reveal that junctional coupling depends not only on the connexin type (homo- or heterotypic junction) but also on the origin (species) of the contacting cells (homo- or heterospecific contact). We confirm earlier reports in which homotypic-homospecific coupling was demonstrated with different techniques in connexin-transfected HeLa and RIN cells as well as in BICR/M1R(k) and 3T3/SV40 cells. In contrast to other publications, we show that a significant heterotypic-homospecific coupling between Cx40- and Cx43-HeLa transfectants can be resolved, whereas no coupling was detected for heterotypic-heterospecific contacts between Cx40-HeLa transfectants and the Cx43-expressing cell lines BICR/M1R(k), 3T3/SV40, and RIN.  相似文献   

11.
Membrane potential estimation by flow cytometry   总被引:10,自引:0,他引:10  
Membrane potential (delta psi) is generated and maintained by concentration gradients of ions such as sodium, potassium, chloride, and hydrogen. Changes in cytoplasmic delta psi in the course of surface-receptor-mediated processes related to the development, function, and pathology of many cell types often play a role in transmembrane signaling. Cytoplasmic delta psi is also reduced to zero when the membrane is ruptured by chemical or physical agents. Mitochondrial delta psi is reduced when energy metabolism is disrupted, notably in apoptosis. In bacteria, which lack mitochondria, delta psi reflects both the state of energy metabolism and the physical integrity of the cytoplasmic membrane. Flow cytometry can be used to estimate membrane potential in eukaryotic cells, mitochondria in situ, isolated mitochondria, and bacteria. Older methods, using lipophilic cationic dyes such as the cyanines and rhodamine 123 or lipophilic anionic dyes such as the oxonols can detect relatively large changes in delta psi and identify heterogeneity of response in subpopulations comprising substantial fractions of a cell population. Newer ratiometric techniques allow precise measurement of delta psi to within 10 mV or less. Among other factors, action of efflux pumps, changes in membrane structure, and changes in protein or lipid concentration in the medium in which cells are suspended can produce changes in cellular fluorescence which may be misinterpreted as changes in delta psi. Techniques for estimation and measurement of Delta Psi therefore typically require careful control of cell and reagent concentrations and incubation times and selection of appropriate controls if they are to provide accurate information.  相似文献   

12.
Analysis of phytoplankton by flow cytometry   总被引:3,自引:0,他引:3  
Optical properties of eight algae species were measured on a flow cytometer. Forward and perpendicular light scatter measurements provide information on the size and shape of algae cells. The intensity of chlorophyll fluorescence varies greatly among the studied algae species and can be used to distinguish them. Measurements of chlorophyll fluorescence after excitation with different wavelengths provide a fluorescence excitation spectrum for each species over the available wavelength range. These spectra reflect the different photosynthetic pigment contents of the species. Staining algae cells with the DNA stains, Hoechst 33342 and DAPI, provides two additional optical parameters to distinguish algae populations: blue nuclear fluorescence and yellow granular fluorescence. The combination of these optical measurements enables the distinction of each algae species into a small cluster in a hyperspace of parameters. The automation of phytoplankton analysis on the flow cytometer may lead to the rapid and objective assessment of water quality.  相似文献   

13.
Microbial determinations by flow cytometry.   总被引:39,自引:0,他引:39  
Recent improvements in the optics and electronics of flow cytometry systems, as well as in staining techniques, permit the assay of such minute cellular constituents as the DNA and protein contents of micro-organisms. To assess the usefulness of this technique, DNA and protein content distributions were determined in Escherichia coli, Lactobacillus brevis, Lactobacillus casei, Chlorella kessleri 8k, Saccharomyces cerevisiae, Candida utilis, Schizosaccharomyces pombe and Euglena gracilis. Investigations of the DNA content distributions of polyploid strains of Saccharomyces cerevisiae indicated that the method can be used to determine ploidy. The rapidity of flow cytometry measurements allows accurate determinations in large populations.  相似文献   

14.
15.
Two populations of phagocytic cells from trehalose dimycolate-elicited mouse peritoneal cells are demonstrated by flow cytofluorometry, using two fluorescent probes excited at the same wavelength (488 nm). Liposomes containing diethylenetriaminepentaacetate daunorubicin conjugate (maximum emission wavelength: 590 nm) allow the discrimination of phagocytes and non-phagocytic cells. Among the phagocytes, an activated population is revealed by a cell-associated fluorescence of the oxidation product of dichlorofluorescein diacetate (maximum emission wavelength: 520 nm).  相似文献   

16.
The intracellular distribution of important chemotherapeutic antibiotics belonging to the anthracycline group (e.g. adriamycin) can be detected by laser flow cytometry. The indirect method is based on the interference of these compounds with the binding of propidium iodide to the nuclear DNA. While in the direct method, the intracellular fluorescence of these antibiotics is excited and detected with a laser beam in a flow system. The present report demonstrates the use of these two methods for intracellular detection and quantitation of a number of important anthracyclines.  相似文献   

17.
J Mullikin  R Norgren  J Lucas  J Gray 《Cytometry》1988,9(2):111-120
We describe the development of a scanning flow cytometer capable of measuring the distribution of fluorescent dye along objects with a spatial resolution of 0.7 micron. The heart of this instrument, called a fringe-scan flow cytometer, is an interference field (i.e., a series of intense planes of illumination) produced by the intersection of two laser beams. Fluorescence profiles (i.e., records showing the intensity of fluorescence measured at 20 ns intervals) are recorded during the passage of objects through the fringe field. The shape of the fringe field is determined by recording light scatter profiles as 0.25 micron diameter microspheres traverse the field. The distribution of the fluorescent dye along each object passing through the fringe field is estimated from the recorded fluorescence profile using Fourier deconvolution. We show that the distribution of fluorescent dye along microsphere doublets and along propidium iodide stained human chromosomes can be determined accurately using fringe-scan flow cytometry. The accuracy of fringe-scan shape analysis was determined by comparing fluorescence profiles estimated from fringe-scan profiles for microspheres and chromosomes with fluorescence profiles for the same objects measured using slit-scan flow cytometry.  相似文献   

18.
Conventional flow cytometry using scattering and fluorescent detection methods has been a fundamental tool of biological discoveries for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents the long-term study of cells in their native environment. Here, we summarize recent advances of new generation flow cytometry for in vivo noninvasive label-free or targeted detection of cells in blood, lymph, bone, cerebral and plant vasculatures using photoacoustic (PA) detection techniques, multispectral high-pulse-repetition-rate lasers, tunable ultrasharp (up to 0.8nm) rainbow plasmonic nanoprobes, positive and negative PA contrasts, in vivo magnetic enrichment, time-of-flight cell velocity measurement, PA spectral analysis, and integration of PA, photothermal (PT), fluorescent, and Raman methods. Unique applications of this tool are reviewed with a focus on ultrasensitive detection of normal blood cells at different functional states (e.g., apoptotic and necrotic) and rare abnormal cells including circulating tumor cells (CTCs), cancer stem cells, pathogens, clots, sickle cells as well as pharmokinetics of nanoparticles, dyes, microbubbles and drug nanocarriers. Using this tool we discovered that palpation, biopsy, or surgery can enhance CTC release from primary tumors, increasing the risk of metastasis. The novel fluctuation flow cytometry provided the opportunity for the dynamic study of blood rheology including red blood cell aggregation and clot formation in different medical conditions (e.g., blood disorders, cancer, or surgery). Theranostics, as a combination of PA diagnosis and PT nanobubble-amplified multiplex therapy, was used for eradication of CTCs, purging of infected blood, and thrombolysis of clots using PA guidance to control therapy efficiency. In vivo flow cytometry using a portable fiber-based devices can provide a breakthrough platform for early diagnosis of cancer, infection and cardiovascular disorders with a potential to inhibit, if not prevent, metastasis, sepsis, and strokes or heart attack by well-timed personalized therapy.  相似文献   

19.
Evaluation of platelet function by flow cytometry   总被引:62,自引:0,他引:62  
Platelet function in whole blood can be comprehensively evaluated by flow cytometry. Flow cytometry can be used to measure platelet reactivity, circulating activated platelets, platelet-platelet aggregates, leukocyte-platelet aggregates, procoagulant platelet-derived microparticles, and calcium flux. Clinical applications of whole blood flow cytometric assays of platelet function in disease states (e.g., acute coronary syndromes, angioplasty, and stroke) may include identification of patients who would benefit from additional antiplatelet therapy and prediction of ischemic events. Circulating monocyte-platelet aggregates appear to be a more sensitive marker of in vivo platelet activation than circulating P-selectin-positive platelets. Flow cytometry can also be used in the following clinical settings: monitoring of GPIIb-IIIa antagonist therapy, diagnosis of inherited deficiencies of platelet surface glycoproteins, diagnosis of storage pool disease, diagnosis of heparin-induced thrombocytopenia, and measurement of the rate of thrombopoiesis.  相似文献   

20.
Epitope mapping by flow cytometry is a very modern approach that not only identifies T-cell epitopes but simultaneously allows for detailed analysis of the responding T-cell subsets including lineage, activation marker expression, and other markers of interest. The most frequently used approach is based on the identification of intracellular cytokines in secretion-inhibited activated T cells following stimulation with peptides or peptide pools. A more recently developed assay analyzes T-cell proliferation by measuring the decrease in carboxyfluorescein diacetate succinimidyl ester staining in proliferated cells. This article includes information on peptide configuration, a section on the design and efficient application of peptide pools, and working laboratory protocols for both assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号