首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple gibberellins (GAs) were quantified in the stems of intact, decapitated, and decapitated auxin-treated barley (Hordeum vulgare) plants. Removal of the developing inflorescence reduced the endogenous levels of indole-3-acetic acid (IAA), GA(1), and GA(3) and increased the level of GA(29) in internodal and nodal tissues below the site of excision. Application of IAA to the excised stump restored GA levels to normal in almost all cases. The conversion of [(14)C]GA(20) to bioactive [(14)C]GA(1) and of [(14)C]GA(5) to bioactive [(14)C]GA(3) was reduced by decapitation, and IAA application was able to restore conversion rates back to the levels found in intact plants. The amount of mRNA for the principal vegetative 3-oxidase (converting GA(20) to GA(1), and GA(5) to GA(3)) was decreased in decapitated plants and restored by IAA application. The results indicate that the inflorescence of barley is a source of IAA that is transported basipetally into the internodes and nodes where bioactive GA(1) and GA(3) are biosynthesized. Thus, IAA is required for normal GA biosynthesis in stems, acting at multiple steps in the latter part of the pathway.  相似文献   

2.
3.
In this study, we investigated seed and auxin regulation of gibberellin (GA) biosynthesis in pea (Pisum sativum L.) pericarp tissue in situ, specifically the conversion of [14C]GA19 to [14C]GA20. [14C]GA19 metabolism was monitored in pericarp with seeds, deseeded pericarp, and deseeded pericarp treated with 4-chloroindole-3-acetic acid (4-CI-IAA). Pericarp with seeds and deseeded pericarp treated with 4-CI-IAA continued to convert [14C]GA19 to [14C]GA20 throughout the incubation period (2-24 h). However, seed removal resulted in minimal or no accumulation of [14C]GA20 in pericarp tissue. [14C]GA29 was also identified as a product of [14C]GA19 metabolism in pea pericarp. The ratio of [14C]GA29 to [14C]GA20 was significantly higher in deseeded pericarp (with or without exogenous 4-CI-IAA) than in pericarp with seeds. Therefore, conversion of [14C]GA20 to [14C]GA29 may also be seed regulated in pea fruit. These data support the hypothesis that the conversion of GA19 to GA20 in pea pericarp is seed regulated and that the auxin 4-CI-IAA can substitute for the seeds in the stimulation of pericarp growth and the conversion of GA19 to GA20.  相似文献   

4.
Effects of Auxin Transport Inhibitors on Gibberellins in Pea   总被引:5,自引:0,他引:5  
The effects of the auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA), 9-hydroxyfluorene-9-carboxylic acid (HFCA), and 1-N-naphthylphthalamic acid (NPA) on gibberellins (GAs) in the garden pea (Pisum sativum L.) were studied. Application of these compounds to elongating internodes of intact wild type plants reduced markedly the endogenous level of the bioactive gibberellin A1 (GA1) below the application site. Indole-3-acetic acid (IAA) levels were also reduced, as was internode elongation. The auxin transport inhibitors did not affect the level of endogenous GA1 above the application site markedly, nor that of GA1 precursors above or below it. When plants were treated with [13C,3H]GA20, TIBA reduced dramatically the level of [13C,3H]GA1 recovered below the TIBA application site. The internodes treated with auxin transport inhibitors appeared to be still in the phase where endogenous GA1 affects elongation, as indicated by the strong response to applied GA1 by internodes of a GA1-deficient line at the same stage of expansion. On the basis of the present results it is suggested that caution be exercised when attributing the developmental effects of auxin transport inhibitors to changes in IAA level alone. Received April 13, 1998; accepted April 14, 1998  相似文献   

5.
Gibberellin Induced Changes in Diffusible Auxins from Savoy Cabbage   总被引:1,自引:0,他引:1  
Diffusates from apices of young plants of savoy cabbage treated with gibberellie acid (GA) and apices of control plants have been examined with respect to their content of Indole auxins. Three indole Compounds were detected and identified on the basis of their chromatographic characteristics in several systems. These compounds were: glucoubrassicin, indole-3-acetic acid (IAA) and indole-3-acetonitrile (IAN). An effect of GA on the total auxin activity of the diffusate was noted 90 hours after treatment, while an increase in stem height occurred 48 hours later. This increase in auxin effect of the entire diffusates was shown bv chromogenic development and bioassay of chromatograms of diffusates to be a result of an increase in level of the IAA content. A concomitant decrease in I the glucobrassicin content was indicated. Since GA was found to have no effect on the enzymatic conversion of tryptophan or tryptamine to IAA, it is proposed that the effect of GA is on the conversion of glucobrassicin to IAA.  相似文献   

6.
Yang T  Davies PJ  Reid JB 《Plant physiology》1996,110(3):1029-1034
Exogenous gibberellin (GA) and auxin (indoleacetic acid [IAA]) strongly stimulated stem elongation in dwarf GA1-deficient le mutants of light-grown pea (Pisum sativum L.): IAA elicited a sharp increase in growth rate after 20 min followed by a slow decline; the GA response had a longer lag (3 h) and growth increased gradually with time. These responses were additive. The effect of GA was mainly in internodes less than 25% expanded, whereas that of IAA was in the older, elongating internodes. IAA stimulated growth by cell extension; GA stimulated growth by an increase in cell length and cell number. Dwarf lkb GA-response-mutant plants elongated poorly in response to GA (accounted for by an increase in cell number) but were very responsive to IAA. GA produced a substantial elongation in lkb plants only in the presence of IAA. Because lkb plants contain low levels of IAA, growth suppression in dwarf lkb mutants seems to be due to a deficiency in endogenous auxin. GA may enhance the auxin induction of cell elongation but cannot promote elongation in the absence of auxin. The effect of GA may, in part, be mediated by auxin. Auxin and GA control separate processes that together contribute to stem elongation. A deficiency in either leads to a dwarfed phenotype.  相似文献   

7.
When [1-14C]indol-3yl-acetic acid ([1-14C]IAA) was applied to the upper surface of a mature foliage leaf of garden pea (Pisum sativum L. cv. Alderman), 14C effluxed basipetally but not acropetally from 30-mm-long internode segments excised 4 h after the application of [1-14C]IAA. This basipetal efflux was strongly inhibited by the inclusion of 3.10–6 mol· dm3 N-1-naphthylphthalamic acid (NPA) in the efflux buffer. In contrast, when [14C] sucrose was applied to the leaf, the efflux of label from stem segments excised subsequently was neither polar nor sensitive to NPA. The [1-14C]IAA was initially exported from mature leaves in the phloem — transport was rapid and apolar; label was recovered from aphids feeding on the stem; and label was recovered in exudates collected from severed petioles in 20 mM ethylenediaminetetraacetic acid. No 14C was detected in aphids feeding on the stems of plants to which [1-14C]IAA had been applied apically, even though the internode on which they were feeding transported considerable quantities of label. Localised applications of NPA to the stem strongly inhibited the basipetal transport of apically applied [1-14C]IAA, but did not affect transport of [1-14C]IAA in the phloem. These results demonstrate for the first time that IAA exported from leaves in the phloem can be transferred into the extravascular polar auxin transport pathway but that reciprocal transfer probably does not occur. In intact plants, transfer of foliar-applied [1-14C]IAA from the phloem to the polar auxin transport pathway was confined to immature tissues at the shoot apex. In plants in which all tissues above the fed leaf were removed before labelling, a limited transfer of IAA occurred in more mature regions of the stem.Abbreviations IAA indol-3yl-acetic acid - EDTA ethylenediaminetetraacetic acid - NPA N-1-naphthylphthalamic acid We are grateful to the Nuffield Foundation for supporting this research under the NUF-URB95 scheme and for the provision of a bursary to A.J.C. We thank Professor Dennis A. Baker for constructive comments on a draft of this paper and Mrs. Rosemary Bell for her able technical assistance.  相似文献   

8.
D. A. Morris  A. Guy Thomas 《Planta》1974,118(3):225-234
Summary When eight 14C-labelled auxin and non-auxin compounds were applied to the apical buds of intact dwarf pea seedlings (Pisum sativum L.), only [1-14C]indoleacetic acid ([14C]IAA) and -[1-14C] naphthaleneacetic acid ([14C]NAA) underwent appreciable basipetal transport during the first 24 h; over a longer period (72 h) considerable basipetal transport of the auxin [1-14C]2,4-dichlorophenoxyacetic acid ([14C]2,4-D) also occurred, but at a very much lower velocity (ca. 1.4–2.2 mm·h-1). The movement of 2,4-D possessed many of the characteristics of a typical auxin transport. During uptake and transport IAA and NAA were extensively metabolised to the corresponding aspartates, and to ethanol-insoluble/NaOH-soluble compounds; little metabolism of 2,4-D was observed. None of the non-auxin compounds applied (sorbose, sucrose, leucine, adenine and kinetin) underwent appreciable basipetal transport from the apical bud. All but sorbose were extensively metabolised by the apical tissues. Little metabolism of sorbose itself was detected.The results suggest that the long-distance basipetal auxin transport system from the apical bud of intact plants is specific for auxins; the specificity may result from the affinity of auxins for specific transport sites.  相似文献   

9.
Application of gibberellic acid to the apex of dwarf bean plants (cv. Alabaster) stimulated the elongation growth of epicotyl and hypocotyl but showed no significant effect on elongation growth in a normal cultivar (‘Blue Lake’). Gibberellin-treatment of dwarf plants was characterized by about twofold increase in the level of endogenous auxin. Maximum increase in IAA level was observed after 48 h of GA treatment. There was less increase in IAA content in normal bean plants. — Gibberellin treatment to excised epicotyl and hypocotyl sections of either dwarf or normal cultivar showed no effect on elongation growth. However, a considerable increase in the auxin level was observed in the sections of the dwarf cultivar. The maximum effect occurred with only 1 h incubation in basal medium containing gibberellin. — The indolo-α-pyrone spectro-fluoremetric method for IAA determination was used.  相似文献   

10.
Bound auxin metabolism in cultured crown-gall tissues of tobacco   总被引:1,自引:1,他引:0  
Bound auxin metabolism in cultured crown-gall tumor cells and pith callus of tobacco was examined by feeding radiolabeled auxins and auxin conjugates. In all tissues fed [14C]indoleacetic acid (IAA), at least one-third of the IAA was decarboxylated, and most of the remaining radiolabel occurred in a compound(s) which did not release IAA with alkaline hydrolysis. In cells transformed by the A6 strain of Agrobacterium tumefaciens, the only detectable IAA conjugate was indole-3-acetylaspartic acid (IAAsp), whereas cells transformed by the gene 2 mutant strain A66 produced an unidentified amide conjugate but no IAAsp. By contrast, cells fed [14C]naphthaleneacetic acid (NAA) accumulated several amide and ester conjugates. The major NAA metabolite in A6-transformed cells was naphthaleneacetylaspartic acid (NAAsp), whereas the major metabolites in A66-transformed cells were NAA esters. In addition, A66-transformed cells produced an amide conjugate of NAA which was not found in A6-transformed cells and which showed chromatographic properties similar to the unknown IAA conjugate. Pith callus fed [14C] NAA differed from both tumor lines in that it preferentially accumulated amide conjugates other than NAAsp. Differences in the accumulation of IAA and NAA conjugates were attributed in part to the high capacity of tobacco cells to oxidize IAA and in part to the specificity of bound auxin hydrolases. All tissues readily metabolized IAAsp and indole-3-acetyl-myo-inositol, but hydrolyzed NAAsp very slowly. Indirect evidence is provided which suggests that ester conjugates of NAA are poorly hydrolyzed as well. Analysis of tissues fed [14C]NAA together with high concentrations of unlabeled IAA or NAA indicates that tissue-specific differences in NAA metabolism were not the result of variation in endogenous auxin levels. Our results support the view that bound auxin hydrolysis is highly specific and an important factor controlling bound auxin accumulation.  相似文献   

11.
D. A. Morris 《Planta》1977,136(1):91-96
Dwarf pea plants bearing two cotyledonary shoots were obtained by removing the epicotyl shortly after germination, and the patterns of distribution of 14C in these plants was investigated following the application of [14C]IAA to the apex of one shoot. Basipetal transport to the root system occurred, but in none of the experiments was 14C ever detected in the unlabelled shoot even after transport periods of up to 48 h. This was true both of plants with two equal growing shoots and of plants in which one shoot had become correlatively inhibited by the other, and in the latter case applied whether the dominant or subordinate shoot was labelled. In contrast, when [14C]IAA was applied to a mature foliage leaf of one shoot transfer of 14C to the other shoot took place, although the amount transported was always low. Transport of 14C from the apex of a subordinate shoot on plants bearing one growing and one inhibited shoot was severely restricted compared with the transport from the dominant shoot apex, and in some individual plants no transport at all was detected. Removal of the dominant shoot apex rapidly restored the capacity of the subordinate shoot to transport apically-applied [14C]IAA, and at the same time led to rapid cambial development and secondary vascular differentiation in the previously inhibited shoot. Applications of 1% unlabelled IAA in lanolin to the decapitated dominant shoot maintained the inhibition of cambial development in the subordinate shoot and its reduced capacity for auxin transport. These results are discussed in relation to the polarity of auxin transport in intact plants and the mechanism of correlative inhibition.Abbreviations IAA Indol-3-yl-acetic acid - TIBA 2,3,5-triiodobenzoic acid - 2,4D 2,4-dichlorophenoxyacetic acid - IAAsp Indol-3-yl-acetyl aspartic acid  相似文献   

12.
Application of gibberellic acid (GA) to the apical region of the stem enhances 14CO2 release from tryptophan-l-14C in cell free preparations of the apical region. Although GA when applied to the apical region markedly accelerates abscission rates of debladed petioles at the 4th node, the enhancement effect on tryptophan metabolism appears to be restricted to the apical bud region. The increased levels of diffusible auxin in Coleus stems, observed earlier by Muir and Valdovinos (1965), appear to be due to the GA effect on auxin precursor conversion rather than to an altered rate of auxin destruction. GA pre-treatment does not significantly alter destruction rates of auxin in the stem tissue. This is demonstrated by the release of 14CO2 from IAA-1-14C by sections of internode tissue. While a multiple deblading pattern retards abscission of debladed petioles considerably, application of GA to debladed petioles at the basal region of the stem restores the normal rates of abscission at debladed distal nodes. No significant change in the abscission rates at treated nodes is observed. The GA effect on abscission at distal nodes is attributed to the effect of the growth substance on auxin precursor conversion in the apical region. In these experiments, as in the case of plants treated in the apical region with GA, auxin destruction rates in the stem are not altered significantly.  相似文献   

13.
Liu X  Barkawi L  Gardner G  Cohen JD 《Plant physiology》2012,158(4):1988-2000
The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling.  相似文献   

14.
Winter canola (Brassica napus cv Crystal) is an oilseed crop that requires vernalization (chilling treatment) for the induction of stem elongation and flowering. To investigate the role of gibberellins (GAs) in vernalization-induced events, endogenous GA content and the metabolism of [3H]GAs were examined in 10-week vernalized and nonvernalized plants. Shoot tips were harvested 0, 8, and 18 d postvernalization (DPV), and GAs were purified and quantified using 2H2-internal standards and gas chromatography-selected ion monitoring. Concentrations of GA1, GA3, GA8, GA19, and GA20 were 3.1-, 2.3-, 7.8-, 12.0-, and 24.5-fold higher, respectively, in the vernalized plants at the end of the vernalization treatment (0 DPV) relative to the nonvernalized plants. Thermoregulation apparently occurs prior to GA19 biosynthesis, since vernalization elevated the concentration of all of the monitored GAs. [3H]GA20 or [3H]GA1 was applied to the shoot tips of vernalized and nonvernalized plants, and after 24 h, plants were harvested at 6, 12, and 15 DPV. Following high-performance liquid chromatography analyses, vernalized plants showed increased conversion of [3H]GA20 to a [3H]GA1-like metabolite and reduced conversion of [3H]GA1 or [3H]GA20 to polar 3H-metabolites, putative glucosyl conjugates. These results demonstrate that vernalization influences GA content and GA metabolism, with GAs serving as probable regulatory intermediaries between chilling treatment and subsequent stem growth.  相似文献   

15.
Distal applications of indol-3yl-acetic acid (IAA) to debladed cotyledonary petioles of cotton (Gossypium hirsutum L.) seedlings greatly delayed petiole abscission, but similar applications of phenylacetic acid (PAA) slightly accelerated abscission compared with untreated controls. Both compounds prevented abscission for at least 91 h when applied directly to the abscission zone at the base of the petiole. The contrasting effects of distal IAA and PAA on abscission were correlated with their polar transport behaviour-[1-14C]IAA underwent typical polar (basipetal) transport through isolated 30 mm petiole segments, but only a weak diffusive movement of [1-14C]PAA occurred.Removal of the shoot tip substantially delayed abscission of subtending debladed cotyledonary petioles. The promotive effect of the shoot tip on petiole abscission could be replaced in decapitated shoots by applications of either IAA or PAA to the cut surface of the stem. Following the application of [1-14C]IAA or [1-14C]PAA to the cut surface of decapitated shoots, only IAA was transported basipetally through the stem. Proximal applications of either compound stimulated the acropetal transport of [14C]sucrose applied to a subtending intact cotyledonary leaf and caused label to accumulate at the shoot tip. However, PAA was considerably less active than IAA in this response.It is concluded that whilst the inhibition of petiole abscission by distal auxin is mediated by effects of auxin in cells of the abscission zone itself, the promotion of abscission by the shoot tip (or by proximal exogenous auxin) is a remote effect which does not require basipetal auxin transport to the abscission zone. Possible mechanisms to explain this indirect effect of proximal auxin on abscission are discussed.  相似文献   

16.
The rolB gene of the plant pathogen Agrobacterium rhizogenes has an important role in the establishment of hairy root disease in infected plant tissues. When expressed as a single gene in transgenic plants the RolB protein gives rise to effects indicative of increased auxin activity. It has been reported that the RolB product is a β-glucosidase and proposed that the physiological and developmental alterations in transgenic plants expressing the rolB gene are the result of this enzyme hydrolysing bound auxins, in particular (indole-3-acetyl)-β-D-glucoside (IAGluc), and thereby bringing about an increase in the intracellular concentration of indole-3-acetic acid (IAA). Using tobacco plants as a test system, this proposal has been investigated in detail. Comparisons have been made between the RolB phenotype and that of IaaM/iaaH transformed plants overproducing IAA. In addition, the levels of IAA and IAA amide and IAA ester conjugates were determined in wild-type and transgenic 35S-rolB tobacco plants and metabolic studies were carried out with [13C6]IAA [2′-14C]IAA, [14C]IAGluc, [5-3H]-2-o-(indole-3-acetyl)-myo-inositol and [14C]indole-3-acetylaspartic acid. The data obtained demonstrate that expression of the rolB encoded protein in transgenic tobacco does not produce a phenotype that resembles that of IAA over producing plants, does not alter the size of the free IAA pool, has no significant effect on the rate of IAA metabolism, and, by implication, appears not to influence the overall rate of IAA biosynthesis. Furthermore, the in vivo hydrolysis of IAGluc, and that of the other IAA conjugates that were tested, is not affected. On the basis of these findings, it is concluded that the RolB phenotype is not the consequence of an increase in the size of the free IAA pool mediated by an enhanced rate of hydrolysis of IAA conjugates.  相似文献   

17.
Skok J 《Plant physiology》1968,43(2):215-223
Stem applications of indole-3-acetic acid (IAA) or gibberellic acid (GA) did not prevent or alter tumor or teratoma formation in debudded tobacco plants (Nicotiana tabacum L., var. One Sucker). The materials produced intense (in case of GA) and moderate (in case of IAA) stem proliferations when applied to debudded plants but were without effect on intact plants.

The results suggest that debudding-tumors are probably not related to or a result of an auxin or gibberellin deficit and that total debudding has a marked physiological effect on the plant. The altered physiological condition of the debudded plant, indicated by its responses to IAA and GA, may likely be related to tumor and teratoma formation.

  相似文献   

18.
Gibberellic acid (GA) has no effect on abscission when applied proximally or distally to the abscission zones of debladed petioles of Coleus. Application of GA to the stem apex increases the rate of abscission of debladed petioles. The effect on abscission is accompanied by an increase in the level of endogenous auxin in the stem. Correspondingly proximal applications of indoleacetic acid (IAA) accelerate abscission, whereas the longevity of the debladed petiole approaches that of the intact leaf only in the presence of a continuous distal supply of IAA. No correlation is found between petiole elongation and its longevity. The experimental data support the view that auxin acts at the abscission zone in regulating separation processes and that the effect of GA is through its effect on the level of endogenous auxin.  相似文献   

19.
Monensin and brefeldin A (BFA), inhibitors of Golgi-mediated protein secretion, rapidly perturb the transport catalytic activity of specific plasma membrane-associated efflux carriers for indole-3-acetic acid (IAA) and inhibit polar transport of IAA. To determine if these responses result solely from perturbation of the efflux carrier or whether specific auxin uptake carrier function is also affected, the influence of BFA on the cellular transport of a range of auxins with contrasting affinities for specific auxin uptake and efflux carriers was investigated in zucchini (Cucurbita pepo L.) hypocotyl tissue. In-flight addition of BFA (3 · 10−5 mol · dm−3) caused a rapid (lag < 10 min) and substantial (fourfold) increase in the rate of [1-14C]IAA net uptake by zucchini hypocotyl tissue. In the presence of the specific auxin efflux carrier inhibitor N-1-naphthylphthalamic acid (NPA; 3 · 10−6 mol · dm−3), BFA slightly reduced the rate of [1-14C]IAA net uptake. Stimulation of [1-14C]IAA net uptake by BFA was concentration-dependent. In the absence of BFA, net uptake of [1-14C]IAA exhibited the characteristic biphasic response to increasing concentrations of competing cold IAA but in the presence of BFA, [1-14C]IAA uptake decreased smoothly with increase in concentration of competing unlabelled IAA, indicating a loss of auxin efflux carrier activity but retention of functional uptake carriers. The half-time for mediated efflux of [1-14C]IAA from preloaded zucchini tissue was substantially increased by BFA (t1/2 = 51 min, controls; 107 min, BFA-treated). Treatment with BFA and/or NPA did not significantly affect the net uptake by, or efflux from, zucchini tissue of [1-14C]2,4-dichlorophenoxyacetic acid ([1-14C]2,4-D), a substrate for the auxin uptake carrier but not the auxin efflux carrier. Uptake of [1-14C]2,4-D declined smoothly with increasing concentrations of competing unlabelled IAA whether or not BFA was included in the uptake medium, confirming the failure of BFA to perturb auxin uptake carrier function. Transport of 1-[4-3H]naphthaleneacetic acid (1-NAA) exhibited little response to BFA or NPA, confirming that it is only a weakly transported substrate for the efflux carrier in zucchini cells. Received: 12 November 1997 / Accepted: 27 January 1998  相似文献   

20.
Supraoptimal concentrations of indoleacetic acid (IAA) stimulated ethylene production, which in turn appeared to oppose the senescence-retarding effect of IAA in tobacco leaf discs. Kinetin acted synergistically with IAA in stimulating ethylene production, but it inhibited senescence. Silver ion and CO(2), which are believed to block ethylene binding to its receptor sites, delayed senescence in terms of chlorophyll loss and stimulated ethylene production. Both effects of Ag(+) were considerably greater than those of CO(2). IAA, kinetin, CO(2), and Ag(+), combined, acted to increase ethylene production further. Although this combination increased ethylene production about 160-fold over that of the control, it inhibited senescence. Treatment with 25 mul/l of ethylene in the presence of IAA enhanced chlorophyll loss in leaf discs and inhibited by about 90% the conversion of l-[3,4-(14)C] methionine to (14)C(2)H(4) suggesting autoinhibition of ethylene production.The results suggest that ethylene biosynthesis in leaves is controlled by hormones, especially auxin, and possibly the rate of ethylene production depends, via a feedback control system, on the rates of ethylene binding at its receptor sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号