首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cottonwoods are dominant riparian trees of the western United States and are known for their propensity to hybridize. We compared the decomposition of leaf litter from two species (Populus angustifolia and P. fremontii) and their hybrids. Three patterns were found. First, in one terrestrial and two aquatic experiments, decomposition varied twofold among tree types. Second, backcross hybrid leaves decomposed more slowly than those of either parent. Third, the variation in decomposition between F1 and backcross hybrids was as great as the variation between species. These results show significant differences in decomposition in a low-diversity system, where >80% of the leaf litter comes from just two species and their hybrids. Mechanistically, high concentrations of condensed tannins in leaves appear to inhibit decomposition (r 2=0.63). The initial condensed tannin concentration was high in narrowleaf leaves, low or undetectable in Fremont leaves, and intermediate in F1 hybrid leaves (additive inheritance). Backcross hybrids were high in condensed tannins and were not different from narrowleaf (dominant inheritance). Neither nitrogen (N) concentration nor the ratio of ash-free dry weight to N (a surrogate for carbon:nitrogen ratio) were significantly correlated with decomposition. The N content of leaf material at the end of each year’s experiment was inversely correlated with rates of litter mass loss and varied 1.6- to 2.1-fold among tree classes. This result suggests that hybrids and their parental species are used differently by the microbial community. Received: 7 April 1999 / Accepted: 2 November 1999  相似文献   

2.
Summary Ecological trade-offs between growth, reproduction and both condensed tannins and cyanogenic glycosides were examined in Lotus corniculatus by correlating shoot (leaves and stem) size and reproductive output with chemical concentrations. We found that cyanide concentration was not related to shoot size, but that condensed tannin concentrations were positively correlated with shoot size; larger plants contained higher tannin concentrations. Both tannin and cyanide concentrations were depressed when plants produced fruits. Defense costs change as plants mature and begin to reproduce. These trade-offs indicate that cost of defense chemical production cannot be predicted merely on the basis of molecular size, composition or concentration.  相似文献   

3.
Summary We investigated the effects of nitrogen fertilization upon the concentrations of nitrogen, condensed tannin and phenolic glycosides of young quaking aspen (Populus tremuloides) leaves and the quality of these leaves as food for larvae of the large aspen tortrix (Choristoneura conflictana), a Lepidopteran that periodically defoliates quaking aspen growing in North America. Nitrogen fertilization resulted in decreased concentrations of condensed tannin and phenolic glycosides in aspen leaves and an increase in their nitrogen concentration and value as food for the large aspen tortrix. These results indicate that plant carbon/nutrient balance influences the quality of aspen leaves as food for the large aspen tortrix in two ways, by increasing the concentrations of positive factors (e.g. nitrogen) and decreasing the concentrations of negative factors (eg. carbon-based secondary metabolites) in leaves. Addition of purified aspen leaf condensed tannin and a methanol extract of young aspen leaves that contained condensed tannin and phenolic glycosides to artificial diets at high and low levels of dietary nitrogen supported this hypothesis. Increasing dietary nitrogen increased larval growth whereas increasing the concentrations of condensed tannin and phenolic glycosides decreased growth. Additionally, the methanol extract prevented pupation. These results indicate that future studies of woody plant/insect defoliator interactions must consider plant carbon/nutrient balance as a potentially important control over the nutritional value of foliage for insect herbivores.  相似文献   

4.
We investigated body-size inheritance in interspecific sterile hybrids by crossing a Drosophila simulans strain with 13 strains of Drosophila melanogaster, which were of various origins and chosen for their broad range of genetic variation. A highly significant parent-offspring correlation was observed, showing that the D. melanogaster genes for size are still expressed in a hybrid background. Superimposed on to this additive inheritance, the size of hybrids was always less than the mid-parent value. This phenomenon, which at first sight might be described as dominance or overdominance, is more precisely interpreted as a consequence of a hybrid breakdown, that is, a dysfunction of the parental genes for size when put to work together. This interpretation is enforced by the fact that phenotypic variability was much more prevalent in hybrids than in parents. We also analysed body pigmentation inheritance in the same crosses and got a very different picture. There was no increase in the phenotypic variance of F(1) hybrids and only a low parent-offspring correlation. Apparent overdominance could be observed but in opposite directions, with no evidence of hybrid breakdown. Our data point to the possibility of analysing a diversity of quantitative traits in interspecific hybrids, and indicate that breakdown might be restricted to some traits only.  相似文献   

5.
Natural hybridization is a frequent phenomenon in plants. It can lead to the formation of new species, facilitate introgression of plant traits, and affect the interactions between plants and their biotic and abiotic environments. An important consequence of hybridization is the generation of qualitative and quantitative variation in secondary chemistry. Using the literature and my own results, I review the effects of hybridization on plant secondary chemistry, the mechanisms that generate patterns of chemical variation, and the possible consequences of this variation for plants and herbivores. Hybrids are immensely variable. Qualitatively, hybrids may express all of the secondary chemicals of the parental taxa, may fail to express certain parental chemicals, or may express novel chemicals that are absent in each parent. Quantitatively, concentrations of parental chemicals may vary markedly among hybrids. There are five primary factors that contribute to variation: parental taxa, hybrid class (F(1), F(2), etc.), ploidy level, chemical class, and the genetics of expression (dominance, recessive vs. additive inheritance). This variation is likely to affect the process of chemical diversification, the potential for introgression, the likelihood that hybrids will facilitate host shifts by herbivores, and the conditions that might lead to enhanced hybrid susceptibility and lower fitness.  相似文献   

6.
We evaluated feeding preference and damage by the slug, Arion subfuscus, on seedlings of two willow species, Salix sericea and S. eriocephala, and their F1 interspecific hybrids. Trays of seedlings were placed in the field and excised leaves were presented to slugs in choice tests. Slugs preferred feeding on and caused the most damage to S. eriocephala seedlings. S. sericea seedlings were least preferred and least damaged. F1 hybrid seedlings were intermediate in preference and damage. Slug preference of and damage to these seedlings decreased over time, suggesting developmental changes in resistance. Seedlings were sampled for phenolic glycoside and tannin chemistry weekly to coincide with the field and laboratory experiments. Concentrations of phenolic glycosides and tannins increased linearly with seedling age, coincident with changes in slug preference and damage, indicating a developmental change in defense. Slug deterrence was not detected at low concentrations of salicortin when painted on leaves or discs, but both salicortin and condensed tannins deterred slug feeding at concentrations between 50 and 100 mg/g, levels found in adult willows. Seedling performance was related to damage inflicted by slugs. Due to lower levels of damage when exposed to slugs in the field, S. sericea plants had significantly greater biomass than S. eriocephala plants. Biomass of F1 hybrids was equal to S. sericea when damaged. However, undamaged S. eriocephala and F1 hybrid plants had the greatest biomass. Because F1 hybrid seedlings performed as well as the most fit parent in all cases, slugs could be an important selective factor favoring introgression of defensive traits between these willow species.  相似文献   

7.
1. This study investigated how phytochemical variation among clones of quaking aspen Populus tremuloides, growing in a common habitat, affects the growth and fecundity of a model herbivore. 2. Gypsy moth Lymantria dispar larvae were reared from egg hatch to pupation on 10 aspen clones in the field or on excised foliage in the laboratory. Foliage was collected from each clone, and concentrations of phenolic glycosides, condensed tannins, nitrogen, and water were determined. 3. Herbivore fitness parameters and aspen phytochemical concentrations varied significantly among clones. In both the field and laboratory, larvae reared on clones containing high concentrations of phenolic glycosides exhibited prolonged developmental times and reduced pupal weights and fecundity. Herbivore performance parameters were also related positively to foliar nitrogen concentrations in the laboratory. Food consumption, but neither growth nor reproductive parameters, were related positively to condensed tannin concentrations. 4. In this study, foliar concentrations of phenolic glycosides were implicated as a significant determinant of food quality for gypsy moths, consistent with results of previous laboratory experiments. Additionally, this study documents a case in which host plant variation at a local level influences the performance and possibly the distribution and abundance of an important herbivore.  相似文献   

8.
We performed a common garden experiment using parental, F1, F2, and backcross willow hybrids to test the hypothesis that hybrid willows experience breakdown of resistance to herbivores. After exposing plants to herbivores in the field, we measured the densities/damage caused by 13 insect herbivores and one herbivorous mite. Using joint-scaling tests, we determined the contribution of additive, dominance, and epistasis to variation in susceptibility to herbivores (measured either as density or damage level) among the six genetic classes. We found the genetic architecture of susceptibility/resistance in the parental species to be complex, involving additive, dominance, and epistasis for each herbivore species. Although genic interactions altered plant susceptibility for each of the 14 herbivores, three distinct patterns of response of herbivores to hybrids were expressed. One pattern, observed in four herbivore species, supported the hypothesis of breakdown of resistance genes in recombinant hybrids. A second pattern, shown by six other herbivore species, supported the hypothesis of hybrid breakdown of host recognition genes. In other words, epistatic interactions for host recognition traits (probably oviposition/feeding stimulants or attractants) appeared to be important in determining herbivore abundance for those six species. The final patterns supported a structure of dominance, either for host recognition traits (in the case of three herbivore species) or for host resistance traits (for one herbivore species). The combination of differing responses of herbivore species, including members of the same genus and tribe, and the ubiquitous importance of epistasis suggests that many genes affect herbivore resistance in this hybrid willow system.  相似文献   

9.
Joakim Hjältén 《Oecologia》1998,117(1-2):127-132
The aim of this study was to assess the responses of herbivores and pathogens to hybrid plants under controlled conditions. F1 hybrids and parental species, produced by hand-pollinating willows in the field, were potted and kept in an experimental field under controlled conditions. In 1997, plant growth and survival were measured along with densities of insects and the degree of pathogen infection on the willows. The survival rate was higher for S. repens than for the hybrids and lowest for S. caprea. Densities of the sawflies Pontania pedunculi and P. brigmanii and the leaf-galling midge Iteomyia capreae were higher on hybrids and on S. caprea than on S. repens. The densities of Crepidodera fulvicornis (Chrysomelidae), chrysomelid larvae and the bud-galling midge Dasineura rosaria did not differ between any of the plant categories. Hybrids were more severely infected by rust (Melampsora sp.) than S. caprea and the totally resistant S. repens. Densities of herbivores on hybrid willows were consistent with the dominance hypothesis (i.e. herbivore densities were similar to densities on one of the parental species) or supported the no-difference hypothesis. Furthermore, herbivore densities on hybrid plants were most similar to densities on the more susceptible parent. The breakdown in rust resistance in hybrid plants suggests that resistance traits are severely disrupted by the genetic re-arrangement in hybrids and that this increased susceptibility could select against hybridisation. Received: 17 February 1998 / Accepted: 15 June 1998  相似文献   

10.
Abstract 1. Many Salicaceae species naturally form hybrid swarms with parental and hybrid taxa that differ in secondary chemical profile and in resistance to herbivores. Theoretically, the differential mortality in the seedling stage can lead to changes in trait expression and alter subsequent interactions between plants and herbivores. This study examines whether herbivory by the generalist slug Arion subfuscus, which causes extensive mortality in young willow seedlings, causes shifts in (a) the foliar chemistry of F2 willow hybrids (Salix sericea and Salix eriocephala), and (b) the subsequent susceptibility to Japanese Beetles, Popillia japonica. 2. In 2001, two populations of F2 seedlings were generated: those that survived slug herbivory (80–90% of seedlings placed in the field were killed by the slugs) were designated as S-plants, whereas C-plants (controls) experienced no mortality. 3. Common garden experiments with cuttings from these populations, in 2001 and 2002, revealed extensive variation in the phenolic chemistry of F2 hybrids, but revealed no significant difference between S- and C-plants, although the levels of foliar nutrients, proteins and nitrogen tended to be higher in S-plants. 4. Concentrations of salicortin and 2′-cinnamoylsalicortin explained 55 and 38% of the the variation in leaf damage caused by Japanese beetles, and secondary chemistry was highly correlated within replicate clones (salicortin R2= 0.85, 2-cinnamoylsalicortin R2= 0.77, condensed tannins R2= 0.68). 5. Interestingly, Japanese beetle damage and condensed tannins were positively correlated within the S-plants, but not in the C-plants, suggesting that slugs had selected for plants with a positive relationship between tannins and P. japonica damage. This is unlikely to be a consequence of a preference for tannins, but is suggested to be related to the elevated nutrient levels in the S-plants, perhaps in combination with the complex-binding properties of tannins. 6. The damage was highly correlated within replicate clones and a model choice analysis suggested that Japanese beetle damage may be explained by four factors: concentrations of salicortin, condensed tannins, and nitrogen, as well as the specific leaf area (thick leaves were damaged less).  相似文献   

11.
Turtlegrass, Thalassia testudinum, produces high concentrations of proanthocyanidins (condensed tannins) which we hypothesized are induced by grazing, as a component of a general wound response. To test this we quantified condensed tannins in a variety of turtlegrass tissues following simulated fish grazing, grazing by the urchin Lytechinus variegatus, and treatment with the natural plant wound hormone jasmonic acid. We observed that simulated fish grazing triggered rapid induction of condensed tannins by an average of 10 mg tannin g−1 dry mass (DM) after 5 days. Condensed tannin accumulations were correlated with a reduction of blade extension rates. Further, we observed that constitutive tannin levels in developing first-rank leaves were strongly correlated with the width of second-rank leaves on each shoot, with an increase of 7.7 mg tannin g−1 tissue dry mass per millimeter blade width on average. We propose that wider source leaves provide additional resources for phenolic biosynthesis. There was no induction of tannins in leaves, meristematic or sheath tissues in response to grazing by the urchin L. variegatus, the presence of potential waterborne cues from nearby grazed plants, or to treatment with 5 mM jasmonic acid. However, urchin grazing did induce tannin production in root/rhizome tissues, where they accumulated to levels 3–4 times higher than in blades (up to 350 mg tannin g−1 tissue dry mass). These results confirm the potential for rapid wound-induced condensed tannin accumulations in T. testudinum. The link between blade widths and the tannin content of new leaves indicates that leaf morphology may be a useful bioindicator for predicting herbivore and disease-resistance in the field.  相似文献   

12.
1 The present study assessed the relationship between clonally variable rates of defoliation in trembling aspen (Populus tremuloides Michx.) and two potential resistance traits: defensive chemistry and leaf phenology. 2 In 2001, coincident with a major outbreak of the forest tent caterpillar (Malacosoma disstria Hubner) in the northcentral U.S.A., we monitored defoliation rates, phytochemical composition, and foliar development in 30 clones of trembling aspen. Leaf chemistry was also assessed in re‐flushed leaves and 2 years post‐outbreak. 3 Early in the season, differences in defoliation among clones were substantial but, by mid‐June, all clones were completely defoliated. Leaf nitrogen, condensed tannins, and phenolic glycosides varied among clones but did not relate to defoliation levels. Budbreak phenology differed by 3 weeks among clones and clones that broke bud early or late relative to forest tent caterpillar eclosion experienced reduced rates of defoliation. 4 Defoliation led to increased tannins and slight decreases in phenolic glycoside concentrations in damaged leaf remnants, but to moderately decreased tannins and a six‐fold increase in phenolic glycosides in reflushed leaves. This shift in chemical composition may significantly affect late season herbivores. 5 These results suggest that aspen chemical resistance mechanisms are ineffective during intense episodic eruptions of outbreak folivores such as the forest tent caterpillar. Variable budbreak phenology may lead to differential susceptibility during less intense outbreak years and, at peak forest tent caterpillar population densities, mechanisms affording tolerance are probably more important than chemical defences.  相似文献   

13.
14.
Ptacek MB 《Genetica》2002,116(2-3):329-342
Differences in male morphology and mating behaviors are thought to confer species sexual isolation between sailfin and shortfin species of mollies. This study used interspecific crosses between the sailfin molly, P. latipinna, and the shortfin molly, P. mexicana, to investigate patterns of inheritance of morphological traits and behavioral rates of three mating behaviors in F1 hybrid males. The two parental species showed clear species differences with respect to the length of the dorsal fin and dorsal fin ray number. First generation hybrid males were intermediate between the two parental species for dorsal fin length and fin ray number, suggesting autosomal control of this trait with little effect of dominance by genes from either parental species. Parental species showed clear species differences in their rates of courtship displays. Unlike the pattern for dorsal fin morphology, F1 hybrid males showed a clear distinction in display rates with respect to the direction of the interspecific cross. Male hybrids whose sires were P. latipinna had courtship display rates that were up to three times higher than the rates of displays performed by hybrid males whose fathers were P. mexicana. The distribution of phenotypes between the parental species and that of hybrid males sired by that parental species was nearly identical. Such a pattern suggests the influence of Y-linked genes on the inheritance of courtship display rates in mollies.  相似文献   

15.
The relationships between various leaf functional traits that are important in plant growth (e.g., specific leaf area) have been investigated in recent studies; however, research in this context on plants that are highly protected by chemical defences, particularly resource-demanding nitrogen-based defence, is lacking. We collected leaves from cyanogenic (N-defended) Beilschmiedia collina B. Hyland and acyanogenic (C-defended) Beilschmiedia tooram (F. M. Bailey) B. Hyland at high- and low-soil nutrient sites in two consecutive years that varied significantly in rainfall. We then measured the relationships between chemical defence and morphological and functional leaf traits under the different environmental conditions. We found that the two species differed significantly in their resource allocation to defence as well as leaf morphology and function. The N defended species had a higher leaf nitrogen concentration, whereas the C-defended species had higher amounts of C-based chemical defences (i.e., total phenolics and condensed tannins). The C-defended species also tended to have higher force to fracture and increased leaf toughness. In B. collina, cyanogenic glycoside concentration was higher with higher rainfall, but not with higher soil nutrients. Total phenolic concentration was higher at the high soil nutrient site in B. tooram, but lower in B. collina; however, with higher rainfall an increase was found in B. tooram, while phenolics decreased in B. collina. Condensed tannin concentration decreased in both species with rainfall and nutrient availability. We conclude that chemical defence is correlated with leaf functional traits and that variation in environmental resources affects this correlation.  相似文献   

16.
Few studies have addressed how plant chemical defenses that directly affect herbivores in turn affect consumption patterns of vertebrates at higher trophic levels. We studied how variable foliar chemistry of trembling aspen ( Populus tremuloides Michx.) affects the diet preferences of an avian insectivore feeding on an introduced herbivore, the gypsy moth ( Lymantria dispar L.).
Black-capped chickadees ( Poecile atricapilla ) were offered paired choices of gypsy moth caterpillars feeding on one of three genotypes of aspen that differed in chemical composition. Chickadees chose to eat caterpillars fed aspen foliage with low levels of both condensed tannins and phenolic glycosides, or caterpillars fed foliage with high levels of tannins and low levels of phenolic glycosides, over caterpillars fed foliage with low levels of condensed tannins and high levels of phenolic glycosides. In addition, diet choices of the birds were affected by their previous experience. These findings are consistent with the "extended phenotype" concept, in that genetically-based chemical traits in an ecologically dominant plant influence the feeding behavior of third trophic level organisms, whose efficacy as regulators of herbivore populations may in turn be modified.  相似文献   

17.
Interspecific hybridization in plants is known to have ecological effects on associated organisms. We examined the differences in insect herbivore community structure and grazing pressure on tree canopy leaves among natural hybrids and their parental oak species. We measured leaf traits, herbivore community structure, and grazing pressure on leaves of two oak species, Quercus crispula and Q. dentata, and their hybrids. The concentration of nitrogen in canopy leaves was greater in hybrids and in Q. dentata than in Q. crispula. The concentration of total phenolics was lower in hybrids than in Q. crispula. The concentration of condensed tannin was greater in hybrids than in Q. crispula. Relative herbivore abundance and species richness were greater on oak hybrids than on either parental species; herbivore species diversity and composition on hybrids were close to those on Q. crispula. Herbivore grazing pressure was lower on hybrids and Q. dentata than on Q. crispula. There was a negative correlation between herbivore grazing pressure and leaf nitrogen, suggesting that interspecific variation among oak taxa in herbivore pressure may be explained by leaf nitrogen; variation in herbivore community structure among oak taxa is likely to be controlled by polygenic leaf traits. Differing responses of (1) herbivore community structure and (2) herbivore grazing pressure to host plant hybridization may play important roles in regulating herbivore biodiversity in cool‐temperate forest canopies.  相似文献   

18.
Divergent natural selection contributes to reproductive isolation among populations adapting to different habitats or resources if hybrids between populations are intermediate in phenotype and suffer an associated, environmentally dependent reduction in fitness. This prediction was tested using two host races of Mitoura butterflies. Thirty-five F1 hybrid and parental lines were created, larvae were raised on the two host plants, and oviposition preferences were assayed in choice arenas. Larvae from both reciprocal hybrid crosses suffered a host-specific reduction in performance: when reared on incense cedar, hybrid survival was approximately 30% less than the survival of pure lines of the cedar-associated host race. The performance of hybrid larvae reared on the other host, MacNab cypress, was not reduced relative to parental genotypes. Females from both reciprocal hybrid crosses preferred to oviposit on incense cedar, the same host that resulted in the reduced survival of hybrid larvae. Thus, dominance is implicated in the inheritance of traits involved in both preference and performance, which do not appear to be genetically linked in Mitoura butterflies. Gene flow between host races may be reduced because the correlation between preference and performance that was previously described in parental populations is essentially broken by hybridization.  相似文献   

19.
We documented temporal patterns in phytochemical composition of Populus tremuloides Michx. during leaf senescence, and the influence of genotype and soil nutrient availability on such patterns. Levels of foliar nitrogen, carbohydrates, phenolic glycosides and condensed tannins were quantified for four aspen genotypes grown in a common garden, with low and high levels of soil nutrients. Levels of all compounds tended to decline over time, although the magnitude of change was influenced by plant genotype and nutrient availability. Genetic variation in concentrations of phytochemicals was much greater for phenolic glycosides and tannins than for nitrogen and carbohydrates, and these phenolic signatures generally persisted through leaf abscission. Our results suggest that genotypic and nutrient effects on patterns of chemical change during senescence will likely influence the performance of late-season herbivores on aspen. Moreover, nutrient and especially genotypic variation in phytochemistry of abscised leaves is likely to affect litter decomposition rates.  相似文献   

20.
Studying the genetic architecture of sexual traits provides insight into the rate and direction at which traits can respond to selection. Traits associated with few loci and limited genetic and phenotypic constraints tend to evolve at high rates typically observed for secondary sexual characters. Here, we examined the genetic architecture of song traits and female song preferences in the field crickets Gryllus rubens and Gryllus texensis. Song and preference data were collected from both species and interspecific F1 and F2 hybrids. We first analysed phenotypic variation to examine interspecific differentiation and trait distributions in parental and hybrid generations. Then, the relative contribution of additive and additive‐dominance variation was estimated. Finally, phenotypic variance–covariance ( P ) matrices were estimated to evaluate the multivariate phenotype available for selection. Song traits and preferences had unimodal trait distributions, and hybrid offspring were intermediate with respect to the parents. We uncovered additive and dominance variation in song traits and preferences. For two song traits, we found evidence for X‐linked inheritance. On the one hand, the observed genetic architecture does not suggest rapid divergence, although sex linkage may have allowed for somewhat higher evolutionary rates. On the other hand, P matrices revealed that multivariate variation in song traits aligned with major dimensions in song preferences, suggesting a strong selection response. We also found strong covariance between the main traits that are sexually selected and traits that are not directly selected by females, providing an explanation for the striking multivariate divergence in male calling songs despite limited divergence in female preferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号