首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of acetone consumption on some microsomal and peroxisomal activities was studied in rat kidney and these results were compared with data from former investigations in liver. Acetone increased the microsomal lauric acid hydroxylation, the aminopyrine N-demethylation catalyzed by cytochrome P450 and the microsomal UDP-glucuronyltransferase activity. Also, acetone increased the peroxisomal β-oxidation of palmitoyl CoA and catalase activities in kidney. These studies suggest that acetone is a common inducer of the microsomal and peroxisomal fatty acid oxidation, as previously shown in both starved and ethanol treated rats. Our results support the hypothesis that microsomal fatty acid ω-hydroxylation results in the generation of substrates being supplied for peroxisomal β-oxidation. We propose that the final purpose of these linked fatty acid oxidations could be the catabolism of fatty acids or the generation of a substrate for the synthesis of glucose from fatty acids. This pathway would be triggered by acetone treatment in a similar way in liver and kidney.  相似文献   

2.
In this work the microsomal lauric acid omega-hydroxylation, fatty acid peroxisomal beta-oxidation, and the levels of cytochrome P-450 IVA1 were studied in liver tissue from starved rats. Starvation increased the peroxisomal beta-oxidation and the microsomal hydroxylation of fatty acids. The correlation between these activities would support the proposal that both processes are linked, contributing in part to catabolism of fatty acids in liver of starved rats.  相似文献   

3.
Cytochrome P450-dependent oxidation of lauric acid, p-nitrophenol and ethanol by liver microsomal fractions were studied in control rats and in animals given either ethanol, red wine, or alcohol-free red wine for 10 weeks. Ethanol increased the total cytochrome P450 and the isoenzyme 2E1 content, as well as the p-nitrophenol hydroxylation and ethanol oxidation. These effects of ethanol treatment were attenuated by red wine administration. Red wine increased the total antioxidant capacity of plasma, whereas the alcohol-free red wine decreased the cytochrome P450 content and decreased the oxidation of lauric acid, p-nitrophenol and ethanol to values lower than control. It is concluded that red wine administration attenuates the ethanol-induced enhancement in liver microsomal parameters dependent on cytochrome P450 2E1 activity, an affect that seems to be accomplished by the non-alcoholic constituents of red wine known to have antioxidant properties.  相似文献   

4.
The effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on hepatic lipids and key enzymes involved in esterification, hydrolysis and oxidation of long-chain fatty acids at increasing doses were investigated in rats. TPA administration tended to decrease the mitochondrial activities of palmitoyl-CoA synthetase and carnitine palmitoyltransferase. The microsomal palmitoyl-CoA synthetase activity was increased. TPA administration was also associated with a dose-dependent increase of glycerophosphate acyltransferase activity both in the mitochondrial and microsomal fractions in particular. The data are consistent with a decreased catabolism of long-chain fatty acids at the mitochondrial level, and an increased capacity for esterification of fatty acids in the microsomal fraction. Peroxisomal beta-oxidation was increased about 2-fold in the peroxisome-enriched fraction of TPA-treated rats while the catalase and urate oxidase activities were only marginally affected. TPA administration revealed elevated capacity for hydrolysis of palmitoyl-CoA and palmitoyl-L-carnitine in the microsomal fraction. Neither increased cytosolic palmitoyl-CoA hydrolase activity nor increased hydroxylation of lauric acid nor changes of the hepatic content of cytochrome P-450 isoenzymic forms were observed in the TPA-treated animals. There was no induction of the protein content of the bifunctional enoyl-CoA hydratase. Thus, TPA behaves more like choline-deficient diet and ethionine treatment than well-known peroxisome proliferators. It seems possible that TPA selectively stimulated the peroxisomal activities, i.e., peroxisomal beta-oxidation rather than evoking a peroxisome proliferation capacity.  相似文献   

5.
The interaction of sesamin, one of the most abundant lignans in sesame seed, and types of dietary fats affecting hepatic fatty acid oxidation was examined in rats. Rats were fed purified experimental diets supplemented with 0% or 0.2% sesamin (1:1 mixture of sesamin and episesamin), and containing 8% of either palm, safflower or fish oil for 15 days. Among the groups fed sesamin-free diets, the activity of various fatty acid oxidation enzymes was higher in rats fed fish oil than in those fed palm and safflower oils. Dietary sesamin increased enzyme activities in all groups of rats given different fats. The extent of the increase depended on dietary fat type, and a diet containing sesamin and fish oil in combination appeared to increase many of these parameters synergistically. In particular, the peroxisomal palmitoyl-CoA oxidation rate and acyl-CoA oxidase activity levels were much higher in rats fed sesamin and fish oil in combination than in animals fed sesamin and palm or safflower oil in combination. Analyses of mRNA levels revealed that a diet containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes and PEX11alpha, a peroxisomal membrane protein, in a synergistic manner while it increased the gene expression of mitochondrial fatty acid oxidation enzymes and microsomal cytochrome P-450 IV A1 in an additive manner. It was concluded that a diet containing sesamin and fish oil in combination synergistically increased hepatic fatty acid oxidation primarily through up-regulation of the gene expression of peroxisomal fatty acid oxidation enzymes.  相似文献   

6.
In contrast to other P450 enzymes purified from rat liver microsomes, purified P450 IIIA1 (P450p) is catalytically inactive when reconstituted with NADPH-cytochrome P450 reductase and the synthetic lipid, dilauroylphosphatidylcholine. However, purified P450 IIIA1 catalyzes the oxidation of testosterone when reconstituted with NADPH-cytochrome P450 reductase, cytochrome b5, an extract of microsomal lipid, and detergent (Emulgen 911). The present study demonstrates that the microsomal lipid extract can be replaced with one of several naturally occurring phospholipids, but not with cholesterol, sphingosine, sphingomyelin, ceramide, cerebroside, or cardiolipin. The ratio of the testosterone metabolites formed by purified P450 IIIA1 (i.e., 2 beta-, 6 beta-, and 15 beta-hydroxytestosterone) was influenced by the type of phospholipid added to the reconstitution system. The ability to replace microsomal lipid extract with several different phospholipids suggests that the nature of the polar group (i.e., choline, serine, ethanolamine, or inositol) is not critical for P450 IIIA1 activity, which implies that P450 IIIA1 activity is highly dependent on the fatty acid component of these lipids. To test this possibility, P450 IIIA1 was reconstituted with a series of synthetic phosphatidylcholines. Those phosphatidylcholines containing saturated fatty acids were unable to support testosterone oxidation by purified P450 IIIA1, regardless of the acyl chain length (C6 to C18). In contrast, several unsaturated phosphatidylcholines supported testosterone oxidation by purified P450 IIIA1, and in this regard dioleoylphosphatidylcholine (PC(18:1)2) was as effective as microsomal lipid extract and naturally occurring phosphatidylcholine or phosphatidylserine. These results confirmed that P450 IIIA1 activity is highly dependent on the fatty acid component of phospholipids. A second series of experiments was undertaken to determine whether microsomal P450 IIIA1, like the purified enzyme, is dependent on cytochrome b5. A polyclonal antibody against purified cytochrome b5 was raised in rabbits and was purified by affinity chromatography. Anti-cytochrome b5 caused a approximately 60% inhibition of testosterone 2 beta-, 6 beta-, and 15 beta-hydroxylation by purified P450 IIIA1 and inhibited these same reactions by approximately 70% when added to liver microsomes from dexamethasone-induced female rats. Overall, these results suggest that testosterone oxidation by microsomal cytochrome P450 IIIA1 requires cytochrome b5 and phospholipid containing unsaturated fatty acids.  相似文献   

7.
Increased catalase activity was observed in the liver microsomal fraction of ethanol-treated rats (10% v/v aqueous ethanol solution per os for 5 weeks). In contrast, cytochrome P-450 concentration and specific activity of NADPH-cytochrome c reductase remained at the same level as in the liver of control rats (drinking water). The ratio of microsomal H2O2-generation to catalase activity was lower in the "ethanol" group than in the control one. This phenomenon seems to be related to the increased contribution of the "peroxidatic" reaction (increased rate of ethanol oxidation). Administration of mesitylene (1,3,5-trimethylbenzene) by gastric tube for 3 days (5 mmoles per kg daily) increased cytochrome P-450 concentration, specific activity of NADPH-cytochrome c reductase and ethanol metabolism.  相似文献   

8.
9.
The content of cytochrome P450 and monooxygenase activity has been studied in the liver of Baikal fishes (Coregonus automnalis, Thymallus articus, Brachymystax lenok and Cottocomphorus greminsky). The administration of 3-methylcholanthrene increases considerably the level of metabolic activity of microsomal fraction and cytochrome P450 content in liver. The data of microsomal fractions of rats and fishes liver electrophoresis have shown that xenobiotic causes the synthesis of similar according to the molecular weight forms of cytochrome P450 in these animals. The induction of microsomal monooxygenase inhibits the lipid peroxidation of microsomal fraction.  相似文献   

10.
The ethanol-inducible form of cytochrome P-450 (P-450IIE1) has previously been shown to exhibit an unusually high rate of oxidase activity with the subsequent formation of reactive oxygen species, e.g., hydrogen peroxide, and to be the main contributor of microsomal oxidase activity in liver microsomes from acetone-treated rats [Ekstr?m & Ingelman-Sundberg (1989) Biochem. Pharmacol. (in press)]. The results here presented indicate that oxygen exposure of rats causes an about 4-fold induction of P-450IIE1 in rat liver and lung microsomes. The induction in liver was not accompanied by any measurable increase in the P-450IIE1 mRNA levels, but the enhanced amount of P-450IIE1 accounted for 60% of the net 50% increase in the level of hepatic P-450 as determined spectrophotometrically. The induction of P-450IIE1 was maximal after 60 h of O2 exposure, and concomitant increases in the rates of liver microsomal CCl4-dependent lipid peroxidation, O2 consumption, NADPH oxidation, O2- formation, H2O2 production, and NADPH-dependent microsomal lipid peroxidation were seen. Liver microsomes from oxygen-treated rats had very similar properties to those of microsomes isolated from acetone-treated rats with respect to the P-450IIE1 content and catalytic properties, but different from those of thyroxine-treated animals. Treatment of rats with the P-450IIE1 inducer acetone in combination with oxygen exposure caused a potentiation of the NADPH-dependent liver and lung microsomal lipid peroxidation and decreased the survival time of the rats. The results reached indicate a role for cytochrome P-450 and, in particular, for cytochrome P-450IIE1 in oxygen-mediated tissue toxicity.  相似文献   

11.
Cytochrome P450p (IIIA1) has been purified from rat liver microsomes by several investigators, but in all cases the purified protein, in contrast to other P450 enzymes, has not been catalytically active when reconstituted with NADPH-cytochrome P450 reductase and dilauroylphosphatidylcholine. We now report the successful reconstitution of testosterone oxidation by cytochrome P450p, which was purified from liver microsomes from troleandomycin-treated rats. The rate of testosterone oxidation was greatest when purified cytochrome P450p (50 pmol/ml) was reconstituted with a fivefold molar excess of NADPH-cytochrome P450 reductase, an equimolar amount of cytochrome b5, 200 micrograms/ml of a chloroform/methanol extract of microsomal lipid (which could not be substituted with dilauroylphosphatidylcholine), and the nonionic detergent, Emulgen 911 (50 micrograms/ml). Testosterone oxidation by cytochrome P450p was optimal at 200 mM potassium phosphate, pH 7.25. In addition to their final concentration, the order of addition of these components was found to influence the catalytic activity of cytochrome P450p. Under these experimental conditions, purified cytochrome P450p converted testosterone to four major and four minor metabolites at an overall rate of 18 nmol/nmol P450p/min (which is comparable to the rate of testosterone oxidation catalyzed by other purified forms of rat liver cytochrome P450). The four major metabolites were 6 beta-hydroxytestosterone (51%), 2 beta-hydroxytestosterone (18%), 15 beta-hydroxytestosterone (11%) and 6-dehydrotestosterone (10%). The four minor metabolites were 18-hydroxytestosterone (3%), 1 beta-hydroxytestosterone (3%), 16 beta-hydroxytestosterone (2%), and androstenedione (2%). With the exception of 16 beta-hydroxytestosterone and androstenedione, the conversion of testosterone to each of these metabolites was inhibited greater than 85% when liver microsomes from various sources were incubated with rabbit polyclonal antibody against cytochrome P450p. This antibody, which recognized two electrophoretically distinct proteins in liver microsomes from troleandomycin-treated rats, did not inhibit testosterone oxidation by cytochromes P450a, P450b, P450h, or P450m. The catalytic turnover of microsomal cytochrome P450p was estimated from the increase in testosterone oxidation and the apparent increase in cytochrome P450 concentration following treatment of liver microsomes from troleandomycin- or erythromycin-induced rats with potassium ferricyanide (which dissociates the cytochrome P450p-inducer complex). Based on this estimate, the catalytic turnover values for purified, reconstituted cytochrome P450p were 4.2 to 4.6 times greater than the rate catalyzed by microsomal cytochrome P450p.  相似文献   

12.
The free radical-reducing activity and the membrane fluidity of liver microsomes from selenium-deficient (SeD) rats were examined by means of electron paramagnetic resonance (EPR) spin label method using nitroxyl-labeled stearic acids. Our findings show that the membrane fluidity and lipid peroxidation levels in SeD rat liver microsome were relatively unchanged compared with normal rat. In contrast, SeD caused the induction of liver microsomal cytochrome P-450 activity. The nitroxyl spin probes are substrates for reduction-relating cytochrome P-450. Previous in vivo studies suggested that the total liver free radical reduction activity in SeD rat was decreased. In contrast, SeD caused the induction of liver microsomal cytochrome P-450 activity, and the reduction rate of nitroxyl radical existing at shallow depth in membrane was increased. Selenium-deficient rats experienced an increase in hydrogen peroxide (H2O2) due to a pronounced loss of glutathione peroxidase (GSH-Px) activity. This masked the overall reduction rate of the nitroxyl spin probe by reoxidation of the hydroxylamine form. Although the SeD condition caused induction of liver cytochrome P-450 and chronic increased H2O2, this did not result in oxidative liver damage. An increased level of glutathione in SeD liver was also evident, likely due to the absence of GSH-Px activity. Using the EPR spin label method, we have shown that SeD causes complicated redox changes in the liver, notably, alterations in the levels of cytochrome P-450 and GSH-Px systems.  相似文献   

13.
The effects of tetrahydrofuran (THF) on rat liver microsomes in vitro and in vivo were opposite. In vitro THF inhibited the p-nitrophenol (PNP) hydroxylase activity of microsomes from control rats and from rats treated with PB, acetone, and isoniazide--by 50, 20, 60, and 80%, respectively. THF inhibited dimethylnitrosamine (NDMA) demethylation in control and induced microsomes in a lesser degree. THF increased the total cytochrome P-450 content as well as the contents of cytochromes P-450IIE1 and P-450IIB1/B2. The activities of PNP-hydroxylation and NDMA-demethylation increased also, whereas the PR-dealkylation activity was unchanged. An increase in the THF dose caused inhibition of the rat liver microsomal monooxygenase system.  相似文献   

14.
Hepatic microsomal enzyme activity, liver blood flow and pentobarbitone sleeping time were determined in spontaneously hypertensive rats (SHR) and normotensive Wistar rats (NR) after pretreatment with saline or phenobarbitone. In NR and SHR the increases in total liver blood flow produced by phenobarbitone were sufficient to maintain liver perfusion despite the increase in liver weight and in both strains of rat the increase was entirely due to increased portal venous return. Saline pretreated SHR had shorter pentobarbitone sleeping times than control NR and their livers had greater total cytochrome c reductase activities and total microsomal protein than those of NR but cytochrome P-450 contents were not significantly different. Phenobarbitone significantly shortened sleeping times in both strains but NR still slept longer than SHR. Total microsomal protein, cytochrome P-450 content and cytochrome c reductase activity were increased by phenobarbitone in both SHR and NR but the increases in cytochrome P-450 and cytochrome c reductase were greater in the hypertensive rats.  相似文献   

15.
Phenylhydrazine was found to be a potent inducer of microsomal haem oxygenase activity in rat liver and kidney, but not in spleen. The phenylhydrazine-mediated increase in haem oxygenase activity was time-dependent. Maximum activity was attained 12h after treatment in the liver, and 24h after treatment in the kidney. The increases in the activity of haem oxygenase in the liver and the kidney could be inhibited by cycloheximide. Furthermore, the increases could not be elicited by the treatment of microsomal preparations in vitro with phenylhydrazine. In consonance with the increased haem oxygenase activity, a marked increase (16-fold) was observed in the serum total bilirubin concentration in phenylhydrazine-treated rats. The mechanism of haem degradation promoted by phenylhydrazine in vivo appears to differ from that in vitro; only in the former case is bilirubin formed as the end-product of haem degradation. When rats were given zinc-protoporphyrin (40 mumol/kg) 12h before and after phenylhydrazine treatment, the phenylhydrazine-mediated increases in haem oxygenase activity in the liver and the kidney were effectively blocked. Treatment of rats in vivo with the metalloporphyrin also inhibited the activity of splenic haem oxygenase, and promoted a major decrease in the serum bilirubin levels. In phenylhydrazine-treated animals, the microsomal content of cytochrome P-450 was significantly decreased in the absence of a decrease in the microsomal haem concentration. The decrease in cytochrome P-450 content was accompanied by an increased absorption in the 420nm region of the reduced CO-difference spectrum, suggesting the conversion of the cytochrome to an inactive form. The marked depletion of cellular glutathione levels suggests that this conversion may be related to the action of active intermediates and free radicals formed in the course of the interaction of phenylhydrazine with the haem moiety of cytochrome P-450.  相似文献   

16.
Peroxisomal (acyl-CoA oxidase and peroxisomal dihydroxyacetone-phosphate acyltransferase) and extraperoxisomal (mitochondrial fatty acid oxidation, extraperoxisomal dihydroxyacetone-phosphate acyltransferase, mitochondrial and microsomal glycerophosphate acyltransferases) lipid-metabolizing enzymes were measured in homogenates from rat liver and from seven extrahepatic tissues. Except for jejunal mucosa and kidney, extrahepatic tissues contained very little acyl-CoA oxidase activity. Peroxisomal dihydroxyacetone-phosphate acyltransferase, taken as the activity that was not inhibited by 5 mM-glycerol 3-phosphate, was present in all tissues examined, and its specific activity in liver and extrahepatic tissues was roughly of the same order of magnitude. Clofibrate treatment increased the activity of acyl-CoA oxidase in liver, and to a smaller extent also in kidney, but did not influence the activity of peroxisomal dihydroxyacetone-phosphate acyltransferase. Comparison of the activities of peroxisomal and extraperoxisomal lipid-metabolizing enzymes in extrahepatic tissues and in liver, an organ in which the contribution of peroxisomes to fatty acid oxidation and to glycerolipid synthesis has been estimated previously, suggests that, as in liver, peroxisomal long-chain fatty acid oxidation is of minor quantitative importance in extrahepatic tissues, but that in these tissues (micro)-peroxisomes are responsible for most of the dihydroxyacetone phosphate acylation and, consequently, for initiating ether glycerolipid synthesis.  相似文献   

17.
Treatment of rats with daily dosis of 20 mg of lindane/kg for 3 consecutive days led to the accumulation of the insecticide in several tissues, including erythrocytes and liver. Lindane did not alter the hematocrit and hemoglobin concentration but reduced methemogiobin levels by 17%. Red blood cells from controls and lindane-treated rats, exposed to t-butyl hydroperoxide, exhibited comparable rates of oxygen uptake and visible chemiluminescence, whereas the induction period that precedes oxygen uptake was significantly enhanced in the latter group. Lindane treatment did not modify the activity of erythrocyte glutathione peroxidase, glucose-6-phosphate dehydrogenase, catalase, and methemoglobin reductase, being the total content of glutathione and superoxide dismutase activity significantly increased. The liver from lindane-treated rats showed an enhanced microsomal pro-oxidant activity, evidenced by higher cytochrome P450 content and NADPH-cytochrome c reductase and NADPH oxidase activities. The higher enzyme activities led to an increased superoxide anion generation (adrenochrome formation) and lipid peroxidation (measured either by the production of thiobarbituric acid reactants and spontaneous visible chemiluminescence). Concomitantly, liver glutathione content and the activity of glutathione peroxidase-glutathione reductase couple were augmented by lindane treatment, without any change in superoxide dismutase activity, together with a reduction in that of catalase. Results suggest that lindane does not alter the prooxidant/antioxidant status of the erythrocyte in conditions of a significant cellular accumulation of the insecticide, which might exert direct action on enzymatic systems leading to enhanced superoxide dismutase activity and glutathione content. In the liver, lindane-induced pro-oxidant condition was not accompanied by cell injury, probably due to the adaptative increase in some antioxidant mechanisms of the hepatocyte.  相似文献   

18.
The objective of this study was to investigate the effects of iodine (I(2)) and/or selenium (Se) deficiency on thyroid hormones and hepatic xenobiotic metabolizing enzyme systems using a triple animal model. Three-week-old male Wistar rats were fed for seven weeks. Se deficiency was introduced by a diet containing <0.005 mg/kg Se, and I(2) deficiency was produced by sodium perchlorate containing drinking water. The levels of plasma thyroid hormones [total T(4) (TT(4)), total T(3) (TT(3))], thyroid stimulating hormone (TSH); total microsomal cytochrome P450 (CYP450) and cytochrome b5 (CYP b5) levels; activities of microsomal NADPH-cytochrome P450 reductase (P450R), microsomal aniline hydroxylase (CYP2E1), microsomal 7-ethoxyresorufin O-deethylase (EROD), microsomal 7-pentoxyresorufin O-depentylase (PROD) and cytosolic glutathione S-transferase (GST) were determined. In I(2) deficiency total CYP450 levels, activities of CYP2E1, EROD and GST decreased, and CYP b5 content increased significantly. In Se-deficient rats, total CYP450 level and CYP2E1 activity increased, and EROD and GST activities and CYP b5 level decreased significantly. In combined I(2) and Se deficiency, except for CYP450 content and CYP2E1 activity, all enzyme activities and CYP b5 content decreased significantly compared to control group. Overall results of this study have suggested that metabolism of xenobiotics as well as endogenous compounds is affected by Se and I(2) status.  相似文献   

19.
Male rats were fed a diet with or without 2% di(2-ethylhexyl)phthalate (DEHP) for 12 days. Total and peroxisomal oxidation rates of palmitic and arachidonic acid were increased in homogenates of liver and kidney after DEHP administration. The relative peroxisomal contribution to the total oxidation was only higher in liver. The activities of acyl-CoA oxidase and carnitine palmitoyltransferase were also higher in both tissues. Immunoblots showed that the increase of fatty acid oxidation was associated with a higher concentration of enzymes of peroxisomal and mitochondrial beta-oxidation. DEHP did not change total and peroxisomal fatty acid oxidation and activity of carnitine palmitoyltransferase of homogenates of heart and skeletal muscle. The cause for the tissue-specific response is discussed.  相似文献   

20.
Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis   总被引:19,自引:0,他引:19  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号