首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The renal proximal tubule of vertebrates performs an essential role in controlling plasma SO(4)(2-) concentration ([SO(4)(2-)]). Although net tubular SO(4)(2-) reabsorption is the predominate control process in terrestrial vertebrates, a facilitated secretory flux is also present. In contrast, marine teleosts obtain excess SO(4)(2-) from drinking, and increased plasma [SO(4)(2-)] is prevented predominately through net tubular secretion. Tubular SO(4)(2-) secretion is accomplished by at least two electroneutral anion exchange processes in series. Movement of SO(4)(2-) into the cell across the basolateral membrane is pH dependent, suggesting SO(4)(2-)/OH(-) exchange. Luminal HCO(3)(-) and Cl(-) can facilitate SO(4)(2-) movement out of the cell across the brush-border membrane. The molecular identities of the anion exchangers are unknown but are probably homologues of SO(4)(2-) transporters in the mammalian SLC26 gene family. In all species tested, glucocorticoids increase renal SO(4)(2-) excretion. Whereas glucocorticoids downregulate SO(4)(2-) reabsorptive mechanisms in terrestrial vertebrates, they may also stimulate a mediated secretory flux. In the marine teleost, cortisol increases the level of SO(4)(2-)/HCO(3)(-) exchange at the brush-border membrane, tubular carbonic anhydrase (CA) activity, CAII protein, and a proportion of tubular SO(4)(2-) secretion that is CA dependent. CA activity is required for about one-half of this net SO(4)(2-) secretion but is also required for about one-half of the net reabsorption in bird proximal epithelium. A CA-SO(4)(2-)/anion exchanger metabolon arrangement is proposed that may speed both the secretory and reabsorptive processes.  相似文献   

2.
The effect of Cl- on SO4(-2) efflux was studied in both Cl--containing and Cl--free ascites tumor cells loaded with 35SO4(-2) to test the hypothesis that Cl--SO4(-2) exchange is mediated by the same mechanism responsible for SO4(-2)-self exchange. The addition of Cl--free, 35SO4(-2) loaded cells to a SO4(-2)-free, Cl- medium results in: (1) SO4(-2) efflux that is dependent on the extracellular Cl- concentration (Km = 4.85 mM; ke = 0.048 min-1 at 50 mM Cl-) and (2) net Cl--uptake that exceeds SO4(-2) loss. Both SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate) and ANS (1-anilino-8-napthalene sulfonate) inhibit S04(-2) efflux but are without effect on Cl- uptake. The addition of Cl--containing, 35SO4(-2) loaded cells to a SO4(-2)-free, Cl- medium results in: (1) a slight gain in cellular Cl- and (2) ke for SO4(-2) efflux identical to that for Cl--free cells.  相似文献   

3.
Transport of SO4(2-) was studied in the glioma cell line LRM55 to determine whether it is mediated by the Cl-/HCO3- exchanger or the K+/Cl- cotransporter previously described in these cells (Wolpaw, E.W. and Martin, D.L. (1984) Brain Res. 297, 317-327). 35SO4(2-) influx was saturable with SO4(2-). External SO4(2-) stimulated 35SO4(2-) efflux, indicating an exchange mechanism. External Cl- was a competitive inhibitor of 35SO4(2-) influx. Internal Cl- stimulated 35SO4(2-) influx and external Cl- stimulated 35SO4(2-) efflux, indicating that Cl- is an exchange substrate for the SO4(2-) carrier. Also, SO4(2-) flux was sensitive to SITS, DIDS and furosemide. However, saturating external SO4(2-) did not inhibit 36Cl- influx and did not inhibit 36Cl- efflux via the Cl-/HCO3- exchanger. Moreover, K+ did not stimulate 36Cl- efflux via the Cl-/HCO3- exchanger. Moreover, K+ did not stimulate 35SO4(2-) influx as it does Cl- influx. These findings indicate that SO4(2-) transport into these cells is mediated by an exchange carrier distinct from both the Cl-/HCO3- exchanger and the K+/Cl- cotransporter. While Cl- is an alternative substrate for the SO4(2-) porter, this carrier is responsible for only a minor fraction of total Cl- flux in these cells.  相似文献   

4.
Wang XJ  Wiehler H  Ching CB 《Chirality》2004,16(4):220-227
A systematic study of the characterization for racemic species of 4-hydroxy-2-pyrrolidone was undertaken. The melting point phase diagram of (R)- and (S)-4-hydroxy-2-pyrrolidone was determined by differential scanning calorimetry. The ternary phase diagram of (R)- and (S)-4-hydroxy-2-pyrrolidone with isopropanol was constructed at 15, 20, 25, and 35 degrees C. The crystalline nature of 4-hydroxy-2-pyrrolidone racemate was also characterized by means of comparison of solid-state FTIR spectra and powder X-ray diffraction patterns of the racemic mixture with those of one of the enantiomers. It is shown that (+/-)-4-hydroxy-2-pyrrolidone is a racemic conglomerate. The enthalpies of fusion of (R)-4-hydroxy-2-pyrrolidone and (+/-)-4-hydroxy-2-pyrrolidone and entropy of mixing of (R)- and (S)-4-hydroxy-2-pyrrolidone were calculated using the thermodynamic data. The solubility and supersolubility diagrams of (R)- and (S)-4-hydroxy-2-pyrrolidone in isopropanol were determined over a temperature range of 4-35 degrees C. The optical resolution of (+/-)-4-hydroxy-2-pyrrolidone was successfully achieved by preferential crystallization.  相似文献   

5.
Slc26a2 is a ubiquitously expressed SO(4)(2-) transporter with high expression levels in cartilage and several epithelia. Mutations in SLC26A2 are associated with diastrophic dysplasia. The mechanism by which Slc26a2 transports SO(4)(2-) and the ion gradients that mediate SO(4)(2-) uptake are poorly understood. We report here that Slc26a2 functions as an SO(4)(2-)/2OH(-), SO(4)(2-)/2Cl(-), and SO(4)(2-)/OH(-)/Cl(-) exchanger, depending on the Cl(-) and OH(-) gradients. At inward Cl(-) and outward pH gradients (high Cl(-)(o) and low pH(o)) Slc26a2 functions primarily as an SO(4)(2-)(o)/2OH(-)(i) exchanger. At low Cl(-)(o) and high pH(o) Slc26a2 functions increasingly as an SO(4)(2-)(o)/2Cl(-)(i) exchanger. The reverse is observed for SO(4)(2-)(i)/2OH(-)(o) and SO(4)(2-)(i)/2Cl(-)(o) exchange. Slc26a2 also exchanges Cl(-) for I(-), Br(-), and NO(3)(-) and Cl(-)(o) competes with SO(4)(2-) on the transport site. Interestingly, Slc26a2 is regulated by an extracellular anion site, required to activate SO(4)(2-)(i)/2OH(-)(o) exchange. Slc26a2 can transport oxalate in exchange for OH(-) and/or Cl(-) with properties similar to SO(4)(2-) transport. Modeling of the Slc26a2 transmembrane domain (TMD) structure identified a conserved extracellular sequence (367)GFXXP(371) between TMD7 and TMD8 close to the conserved Glu(417) in the permeation pathway. Mutation of Glu(417) eliminated transport by Slc26a2, whereas mutation of Phe(368) increased the affinity for SO(4)(2-)(o) 8-fold while reducing the affinity for Cl(-)(o) 2 fold, but without affecting regulation by Cl(-)(o). These findings clarify the mechanism of net SO(4)(2-) transport and describe a novel regulation of Slc26a2 by an extracellular anion binding site and should help in further understanding aberrant SLC26A2 function in diastrophic dysplasia.  相似文献   

6.
The parkinsonian inducing drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is bioactivated in a reaction catalyzed by the flavoenzyme monoamine oxidase B (MAO-B) to form the corresponding dihydropyridinium and subsequently pyridinium metabolites. As part of our ongoing studies to characterize the structural features responsible for this unexpected biotransformation, we have examined the MAO-B substrate properties of a variety of MPTP analogues bearing various heteroaryl groups at the 4-position of the tetrahydropyridinyl ring. The newly synthesized analogues are 4-(1-methylimidazol-2-yl)-, 4-(3-methylfuran-2-yl)-, 4-(3-methylthien-2-yl)-, 4-(3,4-dimethylpyrrol-1-yl)-, 4-(3-methylpyrrol-2-yl)-, and 4-(1,3-dimethylpyrrol-2-yl)-1-methyl-1,2,3,6-tetrahydropyridine. Except for the 4-(1-methylimidazol-2-yl) analogue, all compounds displayed good to excellent substrate properties. The 1-methyl-4-(3-methylfuran-2-yl) analogue is the most active member of this series with a kcat/Km value greater than 8,500 min(-1)mM(-1). The results of these studies are discussed in terms of catalytic pathways proposed for MAO-B.  相似文献   

7.
Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. L-dehydroascorbic acid (DHA, 5), the oxidation product of L-ascorbic acid (vitamin C), is known as a potent glycation agent. Identification is reported for the lysine-arginine cross-links N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(2-hydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (9), N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(1,2-dihydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (11), and N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2S)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (13). The formation pathways could be established starting from dehydroascorbic acid (5), the degradation products 1,3,4-trihydroxybutan-2-one (7, L-erythrulose), 3,4-dihydroxy-2-oxobutanal (10, L-threosone), and L-threo-pentos-2-ulose (12, L-xylosone) were proven as precursors of the lysine-arginine cross-links 9, 11, and 13. Products 9 and 11 were synthesized starting from DHA 5, compound N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2R)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (16) via the precursor D-erythro-pentos-2-ulose (15). The present study revealed that the modification of lysine and arginine side chains by DHA 5 is a complex process and could involve a number of reactive carbonyl species.  相似文献   

8.
The mechanism by which SO4(2-) is transported across the plasma membrane of isolated human neutrophils was investigated. Unlike the situation in erythrocytes, SO4(2-) and other divalent anions are not substrates for the principal Cl-/HCO3- exchange system in these cells. At an extracellular concentration of 2 mM, total one-way 35SO4(2-) influx and efflux in steady-state cells amounted to approximately 17 mumol/liter of cell water per min. The intracellular SO4(2-) content was approximately 1 mM, approximately 25-fold higher than the passive distribution level. Internal Cl- trans stimulated 35SO4(2-) influx. Conversely, 35SO4(2-) efflux was trans stimulated by external Cl- (Km approximately 25 mM) and by external SO4(2-) (Km approximately 14 mM), implying the presence of a SO4(2-)/Cl- countertransport mechanism. The exchange is noncompetitively inhibited by 4-acetamido-4'-isothiocyanostilbene-2,2' -disulfonate (SITS) (Ki approximately 50 microM) and competitively blocked by alpha-cyano-4-hydroxycinnamate (Ki approximately 230 microM) and by ethacrynate (Ki approximately 7 microM); furosemide and probenecid also suppressed activity. The carrier exhibits broad specificity for a variety of monovalent (NO3- approximately Cl- greater than Br- greater than formate- greater than I- approximately p-aminohippurate-) and divalent WO4(2-) greater than oxalate2- greater than SO4(2-) greater than MoO4(2-) greater than SeO4(2-) greater than AsO4(2-) anions. There was little, if any, affinity for HCO3-, phosphate, or glucuronate. The influx of SO4(2-) is accompanied by an equivalent cotransport of H+, the ion pair H+ + SO4(2-) being transported together in exchange for Cl-, thereby preserving electroneutrality. These findings indicate the existence of a separate SO4(2-)/Cl- exchange carrier that is distinct from the neutrophil's Cl-/HCO3- exchanger. The SO4(2-) carrier shares several properties in common with the classical inorganic anion exchange mechanism of erythrocytes and with other SO4(2-) transport systems in renal and intestinal epithelia, Ehrlich ascites tumor cells, and astroglia.  相似文献   

9.
The synthesis of 4-denitro-4-azido-chloramphenicol is described. Phthalylation of d-threo-(1R:2R)-1-(4-nitrophenyl)-2-amino-1,3-propanediol with N-ethoxy-carbonyl-phthalimide yields d-threo-(1R:2R)-1-(4-nitrophenyl)-2-phthaloylamino-1.3-propanediol. On catalytic hydrogenation, the latter compound is converted to d-threo-(1R:2R)-1-(4-aminophenyl)-2-phthaloylamino-1.3-propanediol, diazotization of which, followed by displacement of the diazonium group by azide ion, gives d-threo-(1R:2R)-1-(4-azidophenyl)-2-phthaloylamino-1.3-propanediol. Hydrazine dephthalylates that compound to give d-threo-(1R:2R)-1-(4-azidophenyl)-2-amino-1.3-propanediol. By esterification of this azide with methyl dichloroacetate d-threo-(1R:2R)-1-(4-azidophenyl)-2-dichloroacetylamino-1.3-propanediol, “4-denitro-4-azido-chloramphenicol” is formed. This substance photolyses on irradiation with uv light to a reactive nitrene, which is expected to form covalent linkages at its ribosomal binding site, and thus, help to elucidate the mode of action of the antibiotic chloramphenicol in protein biosynthesis.  相似文献   

10.
Murine 2B4 (CD244) is a cell surface receptor expressed on all NK cells, gammadelta-T cells, a subset of CD8(+) T cells, and all CD14(+) monocytes. 2B4 binds to CD48 with high affinity, and cross-linking 2B4 with anti-2B4 Ab in vitro causes activation of NK cells. To study its physiological role, we have generated, by gene targeting, mice deficient in the expression of this cell surface molecule. The expression of lymphoid cell surface markers on PBMC and splenocytes of mice homozygous for the mutation in 2B4 (2B4(-/-)) is identical to that in wild-type mice. However, thymocytes from female 2B4(-/-) mice, but not male 2B4(-/-) mice, have an increase in the immature CD4(-)/CD8(-) population. To investigate the in vivo role of 2B4, wild-type and 2B4(-/-) mice were injected with CD48(+) and CD48(-) metastatic B16 melanoma cells. Wild-type mice rejected CD48(+) melanoma poorly compared with CD48(-) tumor cells, suggesting that ligation of 2B4 by CD48 on melanoma cells is inhibitory. In keeping with this, male 2B4(-/-) mice showed enhanced ability to reject CD48(+) melanoma cells. However, female 2B4(-/-) mice poorly rejected both CD48(+) and CD48(-) melanoma cells, revealing a gender-specific and CD48-independent defect in mice lacking 2B4. In vitro and in vivo experiments reveal a complex role of NK cells in gender specificity.  相似文献   

11.
We have developed techniques for the separation of unsulfated (2-acetamido-2-deoxy-3-O-(4-deoxy-alpha-L-threo- hex-4-enopyranosyluronicacid)-D-galactose and -D-glucose), monosulfated (2-acetamido-2-deoxy-3- O-(4-deoxy-2-O-sulfo-alpha-L-threo-hex-4-enopyranosyluronic acid)-D-galactose and 2-acetamido-2-deoxy-3-O-(4-deoxy-alpha-L-threo-hex- 4-enopyranosyluronic acid)-4-sulfo-D-galactose and -6-sulfo-D-galactose),disulfated (2-acetamido-2-deoxy-3-O-(4-deoxy-2-O-sulfo-alpha-L-threo-hex-4- enopyranosyluronic acid)-4-sulfo-D-galactose and -6-sulfo-D-galactose and 2-acet-amido-2-deoxy-3-O-(4-deoxy-alpha-L-threo-hex-4-enopy- ranosyluronic acid)-4,6-di-O-sulfo-D-galactose), and trisulfated (2-acetamido-2-deoxy-3-O-(4-deoxy-2-O- sulfo-alpha-L-threo-hex-4-enopyranosyluronic acid)-4,6-di-O-sulfo-D-galactose) isomers of chondroitin using capillary zone electrophoresis. In addition, it is possible to separate oligomers of hyaluronan by similar protocols. These techniques represent a rapid, sensitive, and reproducible technique for the assay of these molecules from digests of connective tissues.  相似文献   

12.
Transport kinetics have been examined in erythrocyte anion transporter AE1 that has been chemically modified to convert glutamate 681 to an alcohol (E681OH AE1). Outward conductive Cl(-) flux in E681OH AE1 is inhibited by removal of extracellular Cl(-); this effect is the opposite of that in native AE1 and is consistent with coupled electrogenic 2:1 Cl(-)/Cl(-) exchange. A second Cl(-) binding/transport site is also suggested by the characteristics of (35)SO(4)(2-) flux in E681OH AE1: bilateral and cis Cl(-), which are normally inhibitory, accelerate (35)SO(4)(2-) flux. These effects would be expected if Cl(-) binds to a second transport site on SO(4)(2-)-loaded E681OH AE1, thereby allowing Cl(-)/SO(4)(2-) cotransport. Alternatively, the data can be explained without proposing Cl(-)/SO(4)(2-) cotransport if the rate-limiting event for (35)SO(4)(2-)/SO(4)(2-) exchange is external SO(4)(2-) release, and the binding of external Cl(-) accelerates SO(4)(2-) release. With either interpretation, these data indicate that E681OH AE1 has a binding/transport site for Cl(-) that is distinct from the main transport site. The effects of graded modification of E681 or inhibition by H(2)DIDS are consistent with the idea that the new Cl(-) binding site is on the same E681OH-modified subunit of the AE1 dimer as the normal transport site.  相似文献   

13.
The enzymic conversion of the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid (i.e. o-succinylbenzoic acid) to 1,4-dihydroxy-2-naphthoic acid is a cyclization reaction which is part of menaquinone (vitamin K2) biosynthesis. This conversion, which is probably a two-step process, was investigated using chirally labelled samples of the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid. To synthesize these, the following enzymes were employed: isocitrate: NADP+ oxidoreductase (EC 1.1.1.42), isocitrate glyoxylate-lyase (EC 4.1.3.1), 2-oxoglutarate dehydrogenase complex (which includes EC 1.2.4.2), 4-(2'-carboxyphenyl)-4-oxobutyrate synthase system and 4-(2'-carboxyphenyl)-4-oxobutyrate: CoA ligase. Isocitrate: NADP+ oxidoreductase was employed to generate the two enantiomeric samples of 2-oxoglutarate enantiotopically labelled at C-3. These samples were converted enzymically to succinate with retention of configuration at C-2 and C-3, and to 4-(2'-carboxyphenyl)-4-oxobutyric acid with retention of configuration at C-3. Isocitrate glyoxylate-lyase and isocitrate NADP+ oxidoreductase were employed to generate samples of 2-oxoglutarate enantiotopically tritiated at C-4 or at C-3 and C-4. The four variously labelled samples of 2-oxoglutarate were enzymically converted to the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid. The resulting variously labelled coenzyme A esters were incubated with naphthoate synthase to investigate the ring closure reaction. In the first step the 2HRe atom of the oxobutyric moiety of the coenzyme A ester is equilibrated with solvent protons in a fast and reversible reaction. Subsequently the 2HSi and 3HSi atoms are removed whereas the 3HRe atom becomes the proton at C-3 of 1,4-dihydroxy-2-naphthoic acid. The second step in this ring closure reaction is the rate-limiting step.  相似文献   

14.
Ru Z  Xiao W  Pajot A  Kou Z  Sun S  Maillere B  Zhao G  Ojcius DM  Lone YC  Zhou Y 《PloS one》2012,7(3):e32247
A new homozygous humanized transgenic mouse strain, HLA-A2.1(+/+)HLA-DP4(+/+) hCD4(+/+)mCD4(-/-)IAβ(-/-)β2m(-/-) (HLA-A2/DP4), was obtained by crossing the previously characterized HLA-A2(+/+)β2m(-/-) (A2) mouse and our previously created HLA-DP4(+/+) hCD4(+/+)mCD4(-/-)IAβ(-/-) (DP4) mouse. We confirmed that the transgenes (HLA-A2, HLA-DP4, hCD4) inherited from the parental A2 and DP4 mice are functional in the HLA-A2/DP4 mice. After immunizing HLA-A2/DP4 mice with a hepatitis B DNA vaccine, hepatitis B virus-specific antibodies, HLA-A2-restricted and HLA-DP4-restricted responses were observed to be similar to those in naturally infected humans. Therefore, the present study demonstrated that HLA-A2/DP4 transgenic mice can faithfully mimic human cellular responses. Furthermore, we reported four new HLA-DP4-restricted epitopes derived from HBsAg that were identified in both vaccinated HLA-A2/DP4 mice and HLA-DP4-positive human individuals. The HLA-A2/DP4 mouse model is a promising preclinical animal model carrying alleles present to more than a quarter of the human population. This model should facilitate the identification of novel HLA-A2- and HLA-DP4-restricted epitopes and vaccine development as well as the characterization of HLA-DP4-restricted responses against infection in humans.  相似文献   

15.
Nine metabolites of terodiline (N-tert-butyl-4,4-diphenyl-2-butylamine) have been identified in dog urine by various chromatographic techniques and mass spectrometry. The main metabolic pathway is aromatic hydroxylation, leading to the quantitatively most important metabolite, N-tert-butyl-4-(4-hydroxyphenyl)-4-phenyl-2-butylamine, and to two dihydroxylated metabolites, one mono substituted in both rings (N-tert-butyl-4,4'-bis(4-hydroxyphenyl)-2-butylamine), and one disubstituted in one ring (N-tert-butyl-4-(3,4-dihydroxyphenyl)-4-phenyl-2-butylamine). The latter is further metabolized by methylation, forming N-tert-butyl-4-(4-hydroxy-3-methoxyphenyl)-4-phenyl-2-butylamine, the second most abundant metabolite. Still another metabolite is formed by hydroxylation in the tert-butyl group to N-(2-hydroxymethyl-2-propyl)-4,4-diphenyl-2-butylamine. A very minor dihydroxylated metabolite results from oxidation both in an aromatic ring and in the tert-butyl group, giving N-(2-hydroxymethyl-2-propyl)-4-(4-hydroxyphenyl)-4-phenyl-2-butylamine. Oxidation of the carbon adjacent to the nitrogen and subsequent deamination gives the two ketones 4-(4-hydroxyphenyl)-4-phenyl-2-butanone and 4-(4-hydroxy-3-methoxyphenyl)-4-phenyl-2-butanone. Reduction of the carbonyl function in the former yields the corresponding alcohol, 4-(4-hydroxyphenyl)-4-phenyl-2-butanol. Some unchanged terodiline is also present. All metabolites formed by functionalization appear to be extensively conjugated, presumably with glucuronic acid.  相似文献   

16.
MCD4 and GPI7 are important for the addition of glycosylphosphatidylinositol (GPI) anchors to proteins in the yeast Saccharomyces cerevisiae. Mutations in these genes lead to a reduction of GPI anchoring and cell wall fragility. Gpi7 mutants accumulate a GPI lipid intermediate of the structure Manalpha1-2[NH(2)-(CH(2))(2)-PO(4)-->]Manalpha1-2Manalpha 1-6[NH(2)-(C H(2))(2)-PO(4)-->]Manalpha1-4GlcNalpha1-6[acyl-->]inositol-P O(4)-lipi d, which, in comparison with the complete GPI precursor lipid CP2, lacks an HF-sensitive side chain on the alpha1-6-linked mannose. In contrast, mcd4-174 accumulates only minor amounts of abnormal GPI intermediates. Here we investigate whether YLL031c, an open reading frame predicting a further homologue of GPI7 and MCD4, plays any role in GPI anchoring. YLL031c is an essential gene. Its depletion results in a reduction of GPI anchor addition to GPI proteins as well as to cell wall fragility. YLL031c-depleted cells accumulate GPI intermediates with the structures Manalpha1-2Manalpha1-2Manalpha1-6[NH(2)-(CH(2))(2)-PO( 4)-->]Manalpha1 -4GlcNalpha1-6[acyl-->]inositol-PO(4)-lipid and Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4G lcNalpha1-6[acyl-->]inos itol-PO(4)-lipid. Subcellular localization studies of a tagged version of YLL031c suggest that this protein is mainly in the ER, in contrast to Gpi7p, which is found at the cell surface. The data are compatible with the idea that YLL031c transfers the ethanolaminephosphate to the inner alpha1-2-linked mannose, i.e. the group that links the GPI lipid anchor to proteins, whereas Mcd4p and Gpi7p transfer ethanolaminephosphate onto the alpha1-4- and alpha1-6-linked mannoses of the GPI anchor, respectively.  相似文献   

17.
4-Arsono-2-nitrofluorobenzene reacts selectively at the anion binding site of bovine pancreatic ribonuclease A. The major derivative is the inactive 41-(4-arsono-2-nitrophenyl) ribonuclease A (45% yield). Additional products are 1-alpha-(4-arsono-2-nitrophenyl) ribonuclease A (11% yield) which is enzymatically active and the disubstituted, inactive 1,41-bis-(4-arsono-2-nitrophenyl) ribonuclease A (25% yield). 2' (3')-O-Bromoacetyluridine reacts with 41-(4-arsono-2-nitrophenyl) ribonuclease A exclusively at the histidine-12 residue at a rate which is approximately one-fourth the rate observed with the unmodified enzyme. Saturation kinetics are observed and the dissociation constant for the protein-inhibitor complex is 0.096 +/- 0.023 M. The first-order unimolecular decomposition constant for complex breakdown is 8.9 +/- 2.9 X 10(-4) s-1. 2'-Bromoacetamido-2'-deoxyuridine reacts with 41-(4-arsono-2-nitrophenyl) ribonuclease A 25 times more slowly than 2'(3')-O-bromoacetyluridine. Bromoacetate reacts with 41-(4-arsono-2-nitrophenyl) ribonuclease A predominantly at the histidine-119 residue at a rate 45 times less than that found for the unmodified enzyme. The results of the alkylation studies imply that the dianionic arsonate does not occupy the phosphate binding site in the enzyme but is sufficiently proximate to account for a decrease in bromoacetate binding as well as a reduction in the nucleophilic reactivity of histidine-12 and -119. All these effects may be accounted for in terms of a local electrostatic perturbation of the active site region by the arsononitrophenyl group.  相似文献   

18.
It was previously reported that monoclonal IgM from two patients with gammopathy and neuropathy showed similar specificity by reacting with the same group of unidentified minor components in the ganglioside fractions of human nervous tissues (Ilyas, A. A., Quarles, R. H., Dalakas, M. C., and Brady, R. O. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6697-6700). Enzymatic degradation, ion-exchange chromatography, and immunostaining of purified ganglioside standards on thin-layer chromatograms have now revealed that the antigenic glycolipids recognized by the IgM from these patients are gangliosides GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1Cer(GM2), GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer (IV4GalNAcGM1b), and GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4 beta Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1-Cer (IV4GalNAcGD1a). The monoclonal IgM appears to be reacting with the terminal [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-] moiety shared by these three gangliosides and is a useful probe for detecting small amounts of GM2, IV4GalNAcGM1b, IV4GalNAcGD1a, and other gangliosides with the same terminal sugar configuration in tissues. Species distribution studies using the antibody revealed that GM2 is present in the brains and nerves of all species examined, while IV4GalNAcGM1b and IV4GalNAcGD1a exhibit some striking species specificity. GM2, but not IV4GalNAcGD1a, is enriched in purified myelin from human brain.  相似文献   

19.
A number of 2-(furan-2-yl)-4-phenoxyquinoline derivatives have been synthesized and evaluated for anti-inflammatory evaluation. 4-[(2-Furan-2-yl)quinolin-4-yloxy]benzaldehyde (8), with an IC(50) value of 5.0 microM against beta-glucuronidase release, was more potent than its tricyclic furo[2,3-b]quinoline isomer 3a (>30 microM), its 4'-COMe counterpart 7 (7.5 microM), and its oxime derivative 13a (11.4 microM) and methyloxime derivative 13b (>30 microM). For the inhibition of lysozyme release, however, oxime derivative 12a (8.9 microM) and methyloxime derivative 12b (10.4 microM) are more potent than their ketone precursor 7 and their respective tricyclic furo[2,3-b]quinoline counterparts 4a and 4b. Among them, 4-[4-[(2-furan-2-yl)-quinolin-4-yloxy]phenyl]but-3-en-2-one (10) is the most active against lysozyme release with an IC(50) value of 4.6 microM, while 8 is the most active against beta-glucuronidase release with an IC(50) value of 5.0 microM. (E)-1-[3-[(2-Furan-2-yl)quinolin-4-yloxy]phenyl] ethanone oxime (11a) is capable of inhibiting both lysozyme and beta-glucuronidase release with IC(50) values of 7.1 and 9.5 microM, respectively. For the inhibition of TNF-alpha formation, 1-[3-[(2-furan-2-yl)quinolin-4-yloxy]phenyl]ethanone (6) is the most potent with an IC(50) value of 2.3 microM which is more potent than genistein (9.1 microM). For the inhibitory activity of fMLP-induced superoxide anion generation, 11a (2.7 microM), 11b (2.8 microM), and 13b (2.2 microM) are three of the most active. None of above compounds exhibited significant cytotoxicity.  相似文献   

20.
Eels are unique in that they maintain lower plasma SO(4)(2-) concentration in SO(4)(2-)-rich (~30 mM) seawater (SW) than in SO(4)(2-)-poor (<0.3 mM) freshwater (FW), showing drastic changes in SO(4)(2-) regulation between FW and SW. We previously showed that the expression of renal SO(4)(2-) transporter genes, FW-specific Slc13a1 and SW-specific Slc26a6a, changes profoundly after transfer of FW eels to SW, which results in the decrease in plasma SO(4)(2-) concentration after 3 days in SW. In this study, we attempted to identify the environmental factor(s) that trigger the switching of SO(4)(2-) regulation using changes in plasma and urine SO(4)(2-) concentrations and expression of the transporter genes as markers. Transfer of FW eels to 30 mM SO(4)(2-) or transfer of SW eels to SO(4)(2-)-free SW did not change the SO(4)(2-) regulation. Major divalent cations in SW, Mg(2+) (50 mM) and Ca(2+) (10 mM), were also ineffective, but 50 mM NaCl was effective for switching the SO(4)(2-) regulation. Further analyses using choline-Cl and Na-gluconate showed that Cl(-) is a primary factor and Na(+) is permissive for the Cl(-) effect. Since plasma SO(4)(2-) and Cl(-) concentrations were inversely correlated, we injected various solutions into the blood and found that Cl(-) alone triggered the switching from FW to SW-type regulation. Furthermore, the inhibitor of Na-Cl cotransporter (NCC) added to media significantly impaired the expression of SW-specific Slc26a6a in 150 mM NaCl. In summary, it appears that Cl(-) ions in SW are taken up into the circulation via the NCC together with Na(+), and the resultant increase in plasma Cl(-) concentration enhances SO(4)(2-) excretion by the kidney through downregulation of absorptive Slc13a1 and upregulation of excretory Slc26a6a, resulting in low plasma SO(4)(2-) concentration in SW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号