首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using multiple peptide synthesis in parallel, a series of 24 compounds analogues of tripeptide sequence Z-Leu-Phe-Gln-H, modified by imidazole moiety were synthesized. An effective and simple scheme for including imidazole heterocycle to C- and/or N-terminus of Gln residue was created by means of allyl group as α-COOH protecting group for Fmoc-Glu. The approach using Fmoc-Glu-1-OAll as a first amino acid linked to the resin could be useful for the synthesis of a large number of amino acids and/or heterocyclic moieties including compounds. Based on the preliminary biological trials we could conclude that the presence of imidazole heterocycle affect positively the antiviral activity against Coxsackieviruses B1 and Poliovirus type 1.  相似文献   

2.
A series of partial structures of ketoconazole has been synthesized and tested for activity on the large conductance calcium-activated potassium channel (BK) in bovine smooth muscle cells. This has provided openers and blockers of the channel. The results suggest that the phenyl and phenoxy moieties are important for interaction with BK, whereas the imidazole group is unimportant. The properties of the phenoxy moiety seem to determine whether the compounds act to open or block the channel.  相似文献   

3.
Enzymes involved in the mammalian microsomal metabolism of drugs are, in numerous cases, inhibited by compounds bearing an imidazolyl scaffold. However, the inhibition potency is highly dependent upon the accessibility of the imidazolyl nitrogen lone pair. In order to highlight some structural parameters of inhibitors that control this phenomenon, a series of compounds containing a nitrogen unsubstituted imidazolyl moiety with varying degrees of nitrogen lone pair accessibility was tested on human and rat hepatic cytochromes P450 and microperoxidase 8, an enzymatically active peptide derived from cytochrome c. In each case, we have shown that the accessibility of the imidazole lone pair determined the extent of inhibition. Nitrogen accessibility was tuned not only by varying the steric hindrance in the vicinity of the imidazolyl ring but also by modifying its surrounding hydrogen bonding network. Compounds in which there exists intramolecular hydrogen bonding between the imidazole moiety and an H-bond acceptor, such as an appropriately positioned amide carbonyl group, demonstrated enhanced inhibitory effects. Conversely, imidazole moieties which are in proximity to H-bond donors, such as an amide NH group, displayed reduced potency. This trend was observed in cyclo-peptide derivatives in which the intramolecular H-bond network was adjusted through the modification of the stereochemistry of a dehydrohistidine residue. It was observed that (Z)-isomers weakly bind heme, whereas (E)-isomers demonstrated higher degrees of metal binding. Therefore, enzymatic inhibition of heme-containing proteins by compounds bearing a dehydrohistidine motif seems to be closely related to its stereochemistry and hydrogen binding propensity. At neutral pH, these differences in binding affinities can be confidently attributed to the ambident H-bond properties of imidazole nitrogen atoms. This structure-activity relationship may be of use for the design of novel imidazolyl compounds as new P450 inhibitors or drug candidates.  相似文献   

4.
Human-human hybridoma cells secreting a human monoclonal antibody were cultured in a serum-free medium containing various organic pH buffers in order to clarify their effects on cell growth and antibody production. Organic pH buffers having either one sulfonic acid and several acyclic amine moieties, or several cyclic amine moieties containing two amino nitrogen did not inhibit cell growth; while other organic buffers sulfonic acid moiety plus several cyclic amine moieties containing one amino nitrogen slightly decreased cell growth, but enhanced antibody production. Using Fujita's organic conceptual diagram, a relationship between the organicity and inorganicity of a pH buffer to cell growth and antibody production was found. pH buffers with large inorganicity and small organicity values were favorable for cell growth, and buffers with small inorganicity and large organicity values were preferred to enhance antibody production. Although the pH buffering range affects cell growth, its effect on antibody production is not clear. In conclusion, 2-morpholinoethanesulfonic acid (MES), 3-morpholino-propanesulfonic acid (MOPS) and 1, 2-N, N-bis[N, N-di(2-sulfonoethyl)piperazinyl]ethane (Bis-PIPES) are shown to be the most optimal of the buffers tested, because they enhanced antibody production without decreasing the cell growth among the pH buffers tested here.  相似文献   

5.
Previous work has shown that protonated taurine and aminosulfonate pH buffers, including HEPES, can directly and reversibly inhibit connexin channels that contain connexin26 (Cx26) (Bevans, C. G., and Harris, A. L. (1999) J. Biol. Chem. 274, 3711-3719). The structural requirements for this inhibition were explored by studies of the effects of structural analogs of taurine on the activity of Cx26-containing reconstituted hemichannels from native tissue. Several analogs inhibited the channels, with a range of relative affinities and efficacies. Each active compound contains a protonated amine separated from an ionized sulfonate or sulfinate moiety by several methylene groups. The inhibition is eliminated if the sulfonate/sulfinate moiety or the amine is not present. Compounds that contain a protonated amine but lack a sulfonate/sulfinate moiety do not inhibit but do competitively block the effect of the active compounds. Compounds that lack the protonated amine do not significantly inhibit or antagonize inhibition. The results suggest involvement of the protonated amine in binding and of the ionized sulfur-containing moiety in effecting the inhibition. The maximal effect of the inhibitory compounds is enhanced when a carboxyl group is linked to the alpha-carbon. Inhibition but not binding is stereospecific, with l-isomers being inhibitory and the corresponding d-isomers being inactive but able to antagonize inhibition by the l-isomers. Whereas not all connexins are sensitive to aminosulfonates, the well defined structural requirements described here argue strongly for a highly specific regulatory interaction with some connexins. The finding that cytoplasmic aminosulfonates inhibit connexin channels whereas other cytoplasmic compounds antagonize the inhibition suggests that gap junction channels are regulated by a complex interplay of cytoplasmic ligands.  相似文献   

6.
1. The hydrolysis of a variety of galactosides and other glycosides by alpha-galactosidases I and II of Vicia faba was studied. 2. The effect of temperature on kinetic parameters was also examined. 3. Both enzymes are inhibited by excess of substrate (p-nitrophenyl alpha-d-galactoside); with enzyme I this is competitive and is caused by the galactosyl moiety. 4. Enzyme I is inhibited by oligosaccharides possessing terminal non-reducing galactose residues and to a smaller extent by l-arabinose and d-fucose. 5. The effect of pH on K(m) and V(max.) values suggests that carboxyl and imidazole groups are involved in the catalytic activity of enzyme I. 6. Photo-oxidation experiments with enzyme I also suggest that an imidazole group is present at the active site.  相似文献   

7.
Enzyme-like polymer catalysts with the imprints of phosphonate transition state analogue (TSA) lined along with imidazole and pyridine moieties were synthesized using methacryloyl-l-histidine and 4-vinylpyridine as the functional monomers and phenyl-1-(N-benzyloxycarbonylamino)-2-(phenyl)ethyl phosphonate – the TSA of hydrolytic reaction as the template for the amidolysis of N-benzyloxycarbonyl-l-phenylalanine p-nitroanilide (Z-l-Phe-PNA). Polymers containing different functional groups can act together to provide catalytic activity and selectivity superior to what can be obtained from monofunctional analogues. The higher rate acceleration exhibited by the bifunctional polymer over the monofunctional polymers indicates cooperative catalysis of imidazole and pyridine moieties. The optimum catalytic competence is shown by the bifunctional polymer containing imidazole and pyridine moieties in 2:1 M ratio which may be due to alignment of the functional groups in proper H-bond distance. In addition to the non-covalent interactions like hydrogen bonding or π-stacking interactions between the functional groups of the polymer and the template, 3D-microcavities complementary to the geometry of the template are necessary for effective shape selective binding. Michaelis-Menten kinetics implies that only the catalysts with imidazole moieties act as enzyme-like catalysts and imidazole is the key catalytic function of the enzyme mimics.  相似文献   

8.
A range of nitrogen-containing compounds (alkyl amines, piperazines, cyclohexylamines and nitrogen heterocyclics) were investigated for generation of hydrogen peroxide from dopamine and detection by peroxyoxalate chemiluminescence. Imidazole, ethyleneurea and allantoin among the nitrogen heterocyclic compounds tested generated hydrogen peroxide from dopamine following incubation at 60°C, pH 9.5–10.5, for 0–30 min. Imidazole was the most effective for generation of hydrogen peroxide, but imidazole derivatives with a primary amine side chain (histamine) or thiol (ethylenethiourea) were not effective. The presence of a ketone group (ethyleneurea, allantoin) did not hinder the reaction. Under optimal conditions (30 min incubation, 50 mmol/L imidazole) 10.5 nmol of dopamine could be detected. The cyclohexylamines tested produced low amounts of hydrogen peroxide (0.09–2.74% of light intensity with imidazole), and the piperazines and the alkyl amines tested produced no detectable hydrogen peroxide. Imidazole reacts with the phenolic groups of dopamine in a different manner from monoamine oxidase, and a reagent containing imidazole, ethyleneurea or allantoin was useful for non-enzymatic detection of dopamine by peroxyoxalate chemiluminescence.© John Wiley & Sons, Ltd.  相似文献   

9.
Imidazole and compounds containing imidazole residues have been shown to cleave RNA in an RNase A-mimicking manner. Di-imidazole lexitropsin is a compound which is derived from the polyamide drugs distamycin and netropsin essentially by the replacement of two pyrrole heterocycles with N-methyl-imidazole residues. This enables it to bind to the minor groove of B-DNA in a sequence-specific manner. We demonstrate here that this lexitropsin derivative has RNA cleavage activity, as tested on model RNAs. Optimal cleavage conditions and cleavage specificity resemble those known from other imidazole conjugates and are thus consistent with an RNase A type cleavage mechanism. The optimum concentration of the compound for cleavage is similar to previously investigated imidazole-based RNase mimics. As a whole new class of chemical compounds capable of interacting with nucleic acids through extensive hydrogen bonding, these imidazole containing compounds constitute promising scaffolds and ligands, for the construction of novel RNase mimics with high affinity.  相似文献   

10.
Telomerase is an attractive target for the rational design of new anticancer drugs due to its central role in the control of cellular proliferation. A number of 1,4-disubstituted amidoanthraquinones and 1,5-disubstituted aminoanthraquinones that are related to mitoxantrone and ametantrone have previously been prepared. The present study details the effects on human telomerase of these new classes of 1,4- and 1,5-difunctionalized tricyclic anthraquinone compounds. We have used cytotoxicity assay, reporter SEAP assay to monitor the hTERT expression, and TRAP-G4 assay to measure the relative activity of these compounds, and have examined how the attached substituents affect their ability to influence telomerase. Cytotoxicity levels in human tumor cell lines were at comparable levels for several compounds. Structural and activity relationships indicated that the position of disubstituent side chains is important for its inhibitory effect. Moreover, a primary amine or tertiary amine on the substitution group appears to be required for the telomerase inhibitory effect. There is no significant correlation between telomerase activity and cytotoxicity. These symmetrical disubstituted anthraquinones may represent useful leads for the development of human telomerase inhibitors as potential anticancer agents, and the exact mode of intercalative binding is dictated by the positional placement of substituent side chains for effective telomerase inhibition.  相似文献   

11.
In this study, a new series of heterodimers was synthesized. These derivatives are N,N-bis(alkanol)amine aryl esters or N,N-bis(ethoxyethanol)amine aryl esters carrying a methoxylated aryl residue combined with a flavone or chromone moiety. The new compounds were studied to evaluate their P-gp modulating activity on a multidrug-resistant leukemia cell line. Some of the new compounds show a good MDR reversing activity; interestingly this new series of compounds does not comply with the structure-activity relationships (SAR) outlined by previously synthesized analogs carrying different aromatic moieties. In the case of the compounds described in this paper, activity is linked to different features, in particular the characteristics of the spacer, which seem to be critical for the interaction with the pump. This fact indicates that the presence of a flavone or chromone residue influences the SAR of these series of products, and that flexible molecules can find different productive binding modes with the P-gp recognition site. These results support the synthesis of new compounds that might be useful leads for the development of drugs to control P-gp-dependent MDR.  相似文献   

12.
Polyamine derivatives as selective RNaseA mimics   总被引:1,自引:1,他引:0  
Site-selective scission of ribonucleic acids (RNAs) has attracted considerable interest, since RNA is an intermediate in gene expression and the genetic material of many pathogenic viruses. Polyamine-imidazole conjugates for site-selective RNA scission, without free imidazole, were synthesized and tested on yeast phenylalanine transfer RNA. These molecules catalyze RNA hydrolysis non-randomly. Within the polyamine chain, the location of the imidazole residue, the numbers of nitrogen atoms and their relative distances have notable influence on cleavage selectivity. A norspermine derivative reduces the cleavage sites to a unique location, in the anticodon loop of the tRNA, in the absence of complementary sequence. Experimental results are consistent with a cooperative participation of an ammonium group of the polyamine moiety, in addition to it’s binding to the negatively charged ribose-phosphate backbone, as proton source, and the imidazole moiety as a base. There is correlation between the location of the magnesium binding sites and the RNA cleavage sites, suggesting that the protonated nitrogens of the polycationic chain compete with some of the magnesium ions for RNA binding. Therefore, the cleavage pattern is specific of the RNA structure. These compounds cleave at physiological pH, representing novel reactive groups for antisense oligonucleotide derivatives or to enhance ribozyme activity.  相似文献   

13.
The design, synthesis and in vitro activities of novel alpha-bromoacryloyl pyrazole, imidazole and benzoheterocyclic derivatives of distamycin A, in which the amidino moiety has been replaced by moieties of different physico-chemical features are described, and the structure-activity relationships are discussed. In spite of the relevance of these modifications on the distamycin frame, these derivatives showed significant growth inhibitory activity against mouse leukemia L1210 cells. Therefore, the presence of the amidino moiety, and in general of a basic moiety, is not an absolute requirement for biological activity of alpha-bromoacrylic derivatives of distamycin.  相似文献   

14.
Substrate specificity and pH dependence of the transport system for diphenhydramine were investigated in Caco-2 cell monolayers. Diphenhydramine uptake was not affected by any typical substrate for the renal organic cation transport system except procainamide. Along with procainamide, tertiary amine compounds with N-dimethyl or N-diethyl moieties in their structures inhibited the diphenhydramine uptake. Moreover, accumulation of diphenhydramine was stimulated by preloading the Caco-2 cells with these tertiary amines (trans-stimulation effect), indicating the existence of the specific transport system for tertiary amines with N-dimethyl or N-diethyl moieties. Efflux of diphenhydramine from monolayers was enhanced by medium acidification. In addition, intracellular acidification resulted in marked stimulation of diphenhydramine accumulation. ATP depletion of the cells caused an enhancement of diphenhydramine accumulation, suggesting the involvement of an active secretory pathway. However, P-glycoprotein did not mediate the diphenhydramine transport. These findings indicate that a novel pH-dependent tertiary amine transport system that recognizes N-dimethyl or N-diethyl moieties is involved in diphenhydramine transport in Caco-2 cells.  相似文献   

15.
It is well established that vascular plants, diatoms, and some species of marine algal flagellates have acquired an absolute requirement for boron (B), although the primary role remains unknown. Discovery of naturally occurring organoboron compounds, all iono phoric macrodiolide antibiotics with a single B atom critical for activity, established at least one biochemical role of B. The unusual nature of B chemistry suggests the possibility of a variety of biological roles for B. At physiological concentrations and pH, B may react with one N group or one to four hydroxyl groups on specific biological ligands with suitable configuration and charge to form dissociable organoboron compounds or complexes. Suitable ligands include pyridine (e.g., NAD+ or NADP) or flavin (e.g., FAD) nucleotides and serine proteases (SP). B reacts with thecis adjacent hydroxyls on the ribosyl moiety of the nucleotides or, in the serine proteases, the N on the imidazole group of histidine or the hydroxyl group on the serine moiety. Reversible inhibition by B of activity of SP or oxidoreductases that require pyridine or flavin nucleotides is well known. Therefore, a proposed essential role for B is as a regulator of relevant pathways, including respiratory burst, that utilize these enzymes. U.S. Department of Agriculture, Agricultural Research Services, Northern Plains Area is an equal opportunity/affirmative action employer, and all agency services are available without discrimination.  相似文献   

16.
To establish the role of the ferrocenyl moiety in the antiplasmodial activity of ferroquine, compounds in which this moiety is replaced by the corresponding ruthenium-based moieties were synthesized and evaluated. In both the sensitive (D10) and resistant (K1) strains of Plasmodium falciparum, ruthenoquine analogues showed comparable potency to ferroquine. This suggests that a probable role of the ferrocenyl fragment is to serve simply as a hydrophobic spacer group. In addition, ferroquine analogues with different aromatic substituents were synthesized and evaluated. Unexpectedly high activity for quinoline compounds lacking the 7-chloro substituent suggests the ferrocenyl moiety may have an additive and/or synergistic effect.  相似文献   

17.
A highly sensitive, rapid and economical method for the determination of amlodipine (AM) in biological fluids was developed using a peroxyoxalate chemiluminescence (CL) system in a lab‐on‐a‐chip device. Peroxyoxalate‐CL is an indirect type of CL that allows the detection of native fluorophores or compounds derivatized with fluorescent labels. Here, fluorescamine was reacted with AM, and the derivatization product was used in a bis‐(2,4,6‐trichlorophenyl)oxalate‐CL system. Fluorescamine reacts selectively with aliphatic primary amine at neutral or basic pH. As most of the calcium channel blocker and many cardiovascular drugs do not contain primary amine, the developed method is highly selective. The parameters that influenced the CL signal intensity were studied carefully. These included the chip geometry, pH, concentration of reagents used and flow rates. Moreover, we confirmed our previous observation about the effects of imidazole, which is commonly used in the bis‐(2,4,6‐trichlorophenyl)oxalate‐CL system as a catalyst, and found that the signal was significantly improved when imidazole was absent. Under optimized conditions, a calibration curve was obtained with a linear range (10–100 µg/L). The limit of detection was 3 µg/L, while the limit of quantification was 10 µg/L. Finally the method was applied for the determination of AM in biological fluids successfully. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A novel series of 6-methylpurine nucleoside derivatives with substitutions at 5-position have been synthesised These compounds bear a 5'-heterocycle such as triazole or a imidazole with a two carbon chain, and an ether, thio ether or amine. To extend the SAR study of 2-fluoroadenine and 6-methyl purine nucleosides, their corresponding alpha-linker nucleosides with L-xylose and L-lyxose were also synthesized. All of these compounds have been evaluated for their substrate activity with E. coli PNP.  相似文献   

19.
Zhang WJ  Luo X  Song G  Wang XY  Shao XX  Guo ZY 《The FEBS journal》2012,279(8):1505-1512
Relaxin-3 (also known as INSL7) is a recently identified neuropeptide belonging to the insulin/relaxin superfamily. It plays a putative role in the regulation of food intake, in the stress response and in reproduction by activating the G-protein-coupled receptor, RXFP3. In a previous study, we prepared 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)/Eu(3+)-labelled human relaxin-3 as a tracer for the study of ligand-receptor interactions, which necessitated a complicated site-specific labelling strategy because human relaxin-3 contains four primary amine moieties, all of which react with the primary amine-specific modification reagent. To simplify the labelling procedure, in the present study we created an easily labelled, recombinant analogue of human relaxin-3 with only one primary amine moiety at the A-chain N-terminus. The analogue retained full activity and could be easily labelled by various functional probes at the A-chain N-terminus. The DOTA/Eu(3+)-labelled analogue retained high binding affinity for its cognate receptor, RXFP3, and thus represents a useful, nonradioactive and stable tracer for studying the interaction of RXFP3 with various natural or synthetic ligands. This new analogue is also a suitable template for the design of other relaxin-3 analogues that can be easily labelled with the DOTA/Eu(3+) moiety and used to study binding activity and interactions with various RXFP3 analogues in the future.  相似文献   

20.
Twenty-one novel alkyl/acyl/sulfonyl substituted fluoroquinolone derivatives were designed, synthesized and evaluated for their anti-tuberculosis and antibacterial activity. The targeted compounds were synthesized by the introduction of alkyl, acyl or sulfonyl moieties to the basic secondary amine moiety of moxifloxacin. Structures of the compounds were enlightened by FT-IR, 1H NMR, 13C NMR and HRMS data besides elemental analysis. Compounds were initially tested in vitro for their anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv using microplate alamar blue assay. Minimal inhibitory concentration (MIC) values of all compounds were found between > 25.00–0.39 µg/mL while compounds 1, 2 and 13 revealed an outstanding activity against M. tuberculosis H37Rv with MIC values of 0.39 µg/mL. Activities of compounds 121 against to a number of Gram-positive and Gram-negative bacteria and fast growing mycobacterium strain were also investigated by agar well diffusion and microdilution methods. According to antimicrobial activity results, compound 13 was found the most potent derivative with a IC50 value of <1.23 μg/mL against Staphylococcus aureus and clinical strain of methicillin-resistant clinical strain of S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号