首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microorganisms respond to environmental changes by reprogramming their metabolism primarily through altered patterns of gene expression. DNA microarrays provide a tool for exploiting microorganisms as living sensors of their environment. The potential of DNA microarrays to reflect availability of nutrient components during fermentations on complex media was examined by monitoring global gene expression throughout batch cultivation of Escherichia coli MG1655 on Luria-Bertani (LB) medium. Gene expression profiles group into pathways that clearly demonstrate the metabolic changes occurring in the course of fermentation. Functional analysis of the gene expression related to metabolism of sugars, alcohols, and organic acids revealed that E. coli growing on LB medium switches from a sequential mode of substrate utilization to the simultaneous one in the course of the growth. Maltose and maltodextrins are the first of these substrates to support growth. Utilization of these nutrients associated with the highest growth rate of the culture was followed by simultaneous induction of enzymes involved in assimilation of a large group of other carbon sources including D-mannose, melibiose, D-galactose, L-fucose, L-rhamnose, D-mannitol, amino sugars, trehalose, L-arabinose, glycerol, and lactate. Availability of these nutrients to the cells was monitored by induction of corresponding transport and/or catabolic systems specific for each of the compounds.  相似文献   

2.
3.
4.
5.
Laboratory adaptive evolution studies can provide key information to address a wide range of issues in evolutionary biology. Such studies have been limited thus far by the inability of workers to readily detect mutations in evolved microbial strains on a genome scale. This limitation has now been overcome by recently developed genome sequencing technology that allows workers to identify all accumulated mutations that appear during laboratory adaptive evolution. In this study, we evolved Escherichia coli K-12 MG1655 with a nonnative carbon source, l-1,2-propanediol (l-1,2-PDO), for ∼700 generations. We found that (i) experimental evolution of E. coli for ∼700 generations in 1,2-PDO-supplemented minimal medium resulted in acquisition of the ability to use l-1,2-PDO as a sole carbon and energy source so that the organism changed from an organism that did not grow at all initially to an organism that had a growth rate of 0.35 h−1; (ii) six mutations detected by whole-genome resequencing accumulated in the evolved E. coli mutant over the course of adaptive evolution on l-1,2-PDO; (iii) five of the six mutations were within coding regions, and IS5 was inserted between two fuc regulons; (iv) two major mutations (mutations in fucO and its promoter) involved in l-1,2-PDO catabolism appeared early during adaptive evolution; and (v) multiple defined knock-in mutant strains with all of the mutations had growth rates essentially matching that of the evolved strain. These results provide insight into the genetic basis underlying microbial evolution for growth on a nonnative substrate.Evolution of microorganisms in the laboratory offers the possibility of relating acquired mutations to increased fitness of the organism under the conditions used. Complete identification of mutations over defined evolutionary periods is necessary to fully understand the evolutionary change because spontaneous mutation is the foundational biological source of phenotypic variation (52). Since microbes grow rapidly and have large population sizes and since ancestors can be preserved by freezing them for later direct comparison of evolved types, laboratory evolution using microorganisms provides a powerful context for studying the genetics of evolutionary adaptation (5, 12, 14, 19, 43) due to the advent of new technologies for genome-wide detection of mutations (30, 33). A large number of studies of experimental evolution with various microbes have been carried out using natural carbon sources, especially glucose (12, 19, 47, 55), since glucose is the preferred carbon and energy source for most bacteria and eukaryotic cells (4, 50). Recently, a few studies have investigated the adaptive evolution of Escherichia coli at the genetic and metabolic levels with gluconeogenic carbon sources, including lactate (34) and glycerol (20). Compared to experimental evolution with native carbon sources, microorganisms might be more capable of adapting to various nonnative carbon compounds because microorganisms are able to adapt to environmental changes by using a number of strategies to meet their growth requirements and to achieve optimal overall performance in the new conditions (20, 21, 34). However, a comprehensive analysis of the genetic basis of adaptation to nonnative carbon sources has not been performed.The K-12 MG1655 strain of E. coli is not able to utilize l-1,2-propanediol (l-1,2-PDO) as a sole carbon and energy source. However, E. coli has an enzyme, l-1,2-PDO oxidoreductase (POR), which is involved in fermentative l-fucose metabolism and catalyzes the oxidation of l-1,2-PDO to l-lactaldehyde (Fig. (Fig.11 A). The E. coli POR is encoded by the fucO gene of the fucose regulon (11, 23), which consists of two divergent operons (fucAO and fucPIKUR) under positive control of FucR (Fig. (Fig.1B)1B) (9). FucR is activated by fuculose-1-phosphate, which is the inducer of the fuc regulon (3). In E. coli, fucose metabolism is initiated by the sequential actions of a permease (encoded by fucP), an isomerase (encoded by fucI), a kinase (encoded by fucK), and an aldolase (encoded by fucA). The aldolase catalyzes the cleavage of fuculose-1-phosphate to dihydroxyacetone phosphate and l-lactaldehyde. Under aerobic respiratory conditions, l-lactaldehyde is oxidized to l-lactate by an NAD-linked aldehyde dehydrogenase with broad functions (encoded by aldA). l-Lactate is then oxidized to pyruvate by a flavin adenine dinucleotide (FAD)-dependent l-lactate dehydrogenase (encoded by the lldD gene of the lldPRD operon [formerly the lctPRD operon]). Under anaerobic fermentative conditions, however, redox balance requires sacrifice of the l-lactaldehyde as a hydrogen acceptor at the expense of NADH (Fig. (Fig.1A).1A). This reaction is catalyzed by the POR. The terminal fermentation product, l-1,2-PDO, is then released by a permease (57). Although the POR catalyzes the oxidation of l-1,2-PDO to l-lactaldehyde, l-1,2-PDO cannot be utilized by wild-type (WT) E. coli as a sole carbon source under aerobic conditions because this compound cannot induce expression of the fuc regulon (11). Indeed, the fuc regulon was not expressed under any conditions when a database of 213 expression profiles produced in our laboratory was examined (38). Furthermore, even if the POR is expressed, it is oxidatively inactivated by a metal-catalyzed oxidation (MCO) mechanism (7).Open in a separate windowFIG. 1.Metabolic pathway and fuc regulon for l-fucose and l-1,2-PDO. (A) Metabolic pathway for l-fucose and l-1,2-PDO. In E. coli, fucose metabolism is initiated by the sequential actions of a permease (encoded by fucP), an isomerase (encoded by fucI), a kinase (encoded by fucK), and an aldolase (encoded by fucA). The aldolase catalyzes cleavage of fuculose-1-phosphate to dihydroxyacetone phosphate and l-lactaldehyde. Under aerobic respiratory conditions, the l-lactaldehyde is further oxidized by a series of enzymes to pyruvate, which subsequently enters central metabolism. Under anaerobic fermentative conditions, the l-lactaldehyde is reduced to l-1,2-PDO by oxidoreductase (encoded by fucO). (B) Genetic organization of the fuc regulon. The fuc regulon for l-fucose uptake and metabolism consists of two divergent operons, fucAO and fucPIKUR.Sridhara et al. (48) previously described E. coli mutants that were isolated from an E. coli K-12 derivative treated with the mutagen ethyl methanesulfonate and were able to grow aerobically on l-1,2-PDO as a sole carbon source. Previous studies showed that an IS5 insertion between the fucAO and fucPIKUR operons caused constitutive expression of the fucAO operon (9, 41) at a level that enabled the E. coli mutant to grow on l-1,2-PDO. In addition, mutations resulting in increased resistance to MCO under aerobic conditions were found in the N-terminal domain of POR (39). However, at present, little is known about the accumulated genome-wide mutations and their effects on the fitness in E. coli that has acquired the ability to use l-1,2-PDO because previous studies have focused on mutations in POR and its regulatory region.In an attempt to investigate the genetic basis of adaptive evolution of E. coli during growth on l-1,2-PDO, we first isolated an E. coli mutant able to use l-1,2-PDO using experimental evolution without a mutagen, and we then characterized this evolved E. coli mutant. Using whole-genome sequencing, we identified all accumulated mutations of the evolved E. coli mutant related to the known ancestor and also determined the fitness benefits and phenotypic behaviors of the mutations discovered. Our results offer a systematic view of the genetic basis underlying microbial adaptation to a nonnative substrate.  相似文献   

6.
Mukherjee J  Ow SY  Noirel J  Biggs CA 《Proteomics》2011,11(3):339-351
Cell surface physicochemical characterization techniques were combined with quantitative changes in protein expression, to investigate the biological and biophysical changes of Escherichia coli MG1655 cells when grown as a biofilm (BIO). The overall surface charge of BIO cells was found to be less negative, highlighting the need for a lower electrophoretic mobility for attachment to occur. Comparison of the chemical functional groups on the cell surface showed similar profiles, with the absorbance intensity higher for proteins and carbohydrates in the BIO cells. Quantitative proteomic analysis demonstrated that 3 proteins were significantly increased, and 9 proteins significantly decreased in abundance, in cells grown as a BIO compared to their planktonic counterparts, with 7 of these total 12 proteins unique to this study. Proteins showing significant increased or decreased abundance include proteins involved in acid resistance, DNA protection and binding and ABC transporters. Further predictive analysis of the metabolic pathways showed an increased abundance of the amino acid metabolism and tricarboxylic acid (TCA) cycle, with a decrease in expression within the pentose phosphate and glycolysis pathways. It is therefore hypothesized that cells grown as a BIO are still energetically viable potentially using amino acids as an indirect carbon backbone source into the TCA cycle.  相似文献   

7.
Defining the gene products that play an essential role in an organism's functional repertoire is vital to understanding the system level organization of living cells. We used a genetic footprinting technique for a genome-wide assessment of genes required for robust aerobic growth of Escherichia coli in rich media. We identified 620 genes as essential and 3,126 genes as dispensable for growth under these conditions. Functional context analysis of these data allows individual functional assignments to be refined. Evolutionary context analysis demonstrates a significant tendency of essential E. coli genes to be preserved throughout the bacterial kingdom. Projection of these data over metabolic subsystems reveals topologic modules with essential and evolutionarily preserved enzymes with reduced capacity for error tolerance.  相似文献   

8.
Carbon fluxes through main pathways of glucose utilization in Escherichia coli cells--glycolysis, pentose phosphate pathway (PPP), and Enther-Doudoroff pathway (EDP)--were studied. Their ratios were analyzed in E. coli strains MG1655, MG1655(edd-eda), MG1655(zwf, edd-eda), and MG1655(pgi, edd-eda). It was shown that the carbon flux through glycolysis was the main route of glucose utilization, averaging ca. 80%. Inactivation of EDP did not affect growth parameters. Nevertheless, it altered carbon fluxes through the tricarboxylic acid cycles and energy metabolism in the cell. Inactivation of PPP decreased growth rate to a lesser degree than glycolysis inactivation.  相似文献   

9.
Escherichia coli strain MG1655 was chosen for sequencing because the few mutations it carries (ilvG rfb-50 rph-1) were considered innocuous. However, it has a number of growth defects. Internal pyrimidine starvation due to polarity of the rph-1 allele on pyrE was problematic in continuous culture. Moreover, the isolate of MG1655 obtained from the E. coli Genetic Stock Center also carries a large deletion around the fnr (fumarate-nitrate respiration) regulatory gene. Although studies on DNA microarrays revealed apparent cross-regulation of gene expression between galactose and lactose metabolism in the Stock Center isolate of MG1655, this was due to the occurrence of mutations that increased lacY expression and suppressed slow growth on galactose. The explanation for apparent cross-regulation between galactose and N-acetylglucosamine metabolism was similar. By contrast, cross-regulation between lactose and maltose metabolism appeared to be due to generation of internal maltosaccharides in lactose-grown cells and may be physiologically significant. Lactose is of restricted distribution: it is normally found together with maltosaccharides, which are starch degradation products, in the mammalian intestine. Strains designated MG1655 and obtained from other sources differed from the Stock Center isolate and each other in several respects. We confirmed that use of other E. coli strains with MG1655-based DNA microarrays works well, and hence these arrays can be used to study any strain of interest. The responses to nitrogen limitation of two urinary tract isolates and an intestinal commensal strain isolated recently from humans were remarkably similar to those of MG1655.  相似文献   

10.
This study demonstrates the effects of simulated microgravity on E. coli K 12 MG1655 grown on LB medium supplemented with glycerol. Global gene expression analysis indicated that the expressions of hundred genes were significantly altered in simulated microgravity conditions compared to that of normal gravity conditions. Under these conditions genes coding for adaptation to stress are up regulated (sufE and ssrA) and simultaneously genes coding for membrane transporters (ompC, exbB, actP, mgtA, cysW and nikB) and carbohydrate catabolic processes (ldcC, ptsA, rhaD and rhaS) are down regulated. The enhanced growth in simulated gravity conditions may be because of the adequate supply of energy/reducing equivalents and up regulation of genes involved in DNA replication (srmB) and repression of the genes encoding for nucleoside metabolism (dfp, pyrD and spoT). In addition, E. coli cultured in LB medium supplemented with glycerol (so as to protect the cells from freezing temperatures) do not exhibit multiple stress responses that are normally observed when cells are exposed to microgravity in LB medium without glycerol.  相似文献   

11.
Flexibility of gene expression in bacteria permits its survival in varied environments. The genetic adaptation of bacteria through systematized gene expression is not only important, but also clinically relevant in their ability to grow biofilms in stress environments. Stress responses enable their survival under more severe conditions, enhanced resistance and/or virulence. In Escherichia coli (E. coli), two of the possible important genes for biofilm growth are rpoS and bolA gene. RpoS is also called as a master regulator of general stress response. Even though many studies have revealed the importance of rpoS in planktonic cells, little is known about the functions of rpoS in biofilms. In contrast, bolA which is a morphogene in E. coli is overexpressed under stressed environments resulting in round morphology. The hypothesis is that bolA could be implicated in biofilm development. This study reviewed the literature with the aim of understanding the stress tolerance response of E. coli in relation with rpoS and bolA genes in different environmental conditions including heat shock, cold shock, and stress in response to oxidation, acidic condition and in presence of cadmium. Knowledge of the genetic regulation of biofilm formation may lead to the understanding of the factors that drive the bacteria to switch to the biofilm mode of growth.  相似文献   

12.
The goal of this research was to develop recombinant Escherichia coli to improve fatty acid synthesis (FAS). Genes encoding acetyl-CoA carboxylase (accA, accB, accC), malonyl-CoA-[acyl-carrier-protein] transacylase (fabD), and acyl-acyl carrier protein thioesterase (EC 3.1.2.14 gene), which are all enzymes that catalyze key steps in the synthesis of fatty acids, were cloned and over-expressed in E. coli MG1655. The acetyl-CoA carboxylase (ACC) enzyme catalyzes the addition of CO2 to acetyl-CoA to generate malonyl-CoA. The enzyme encoded by the fabD gene converts malonyl-CoA to malonyl-[acp], and the EC 3.1.2.14 gene converts fatty acyl-ACP chains to long chain fatty acids. All the genes except for the EC 3.1.2.14 gene were homologous to E. coli genes and were used to improve the enzymatic activities to over-express components of the FAS pathway through metabolic engineering. All recombinant E. coli MG1655 strains containing various gene combinations were developed using the pTrc99A expression vector. To observe changes in metabolism, the in vitro metabolites and fatty acids produced by the recombinants were analyzed. The fatty acids (C16) from recombinant strains were produced 1.23-2.41 times higher than that from the wild type.  相似文献   

13.
14.

Aim

The effect of spent medium, obtained after different time-temperature pre-histories, on the heat inactivation of Escherichia coli K12 MG1655 is studied.

Methods and results

Stationary E. coli cells were heated in BHI broth (initial pH 7.5) at different time-temperature scenarios, i.e., (1) 30 °C to 55 °C at 0.14 °C/min, (2) 30 °C to 42 °C at 0.14 °C/min and (3) 30 °C to 42 °C at 0.8 °C/min. After the heat treatment, spent medium was filter-sterilized, non-stressed cells were added and inactivation experiments took place at 54 °C and 58 °C. In all scenarios, increased resistance was observed. The main characteristics of the spent medium - compared to the unmodified BHI broth - are (1) the presence of proteins (proven via SDS-PAGE) and (2) a lower pH of approximately 6. Possibly, the increased resistance is due to these proteins and/or the lower pH. Further experiments revealed that each factor separately may lead to an increased heat resistance.

Conclusions

It can be concluded that this increased heat resistance resulted from both the presence of the heat shock proteins in the spent medium and the lowered pH. Experiments, which separate both effects, showed that mainly the lower pH resulted in the increased thermotolerance.

Significance and impact of study

This study may lead to a better understanding and control of the heat stress adaptation phenomenon as displayed by E. coli at lethal temperatures. Therefore, it contributes to an improved assessment of the effect of temperature during thermal processes in the food industry.  相似文献   

15.
Growth of Escherichia coli on some organophosphonic acids   总被引:2,自引:0,他引:2  
  相似文献   

16.
17.
18.
Effect of amino acids and oxygen on chemotaxis in Escherichia coli   总被引:1,自引:6,他引:1  
Adler, Julius (University of Wisconsin, Madison). Effect of amino acids and oxygen on chemotaxis in Escherichia coli. J. Bacteriol. 92:121-129. 1966.-Motile cells of Escherichia coli placed at one end of a capillary tube containing a mixture of the 20 amino acids commonly found in proteins migrate out into the tube in two bands. The bands are clearly visible to the naked eye, and they can also be demonstrated by microscopy, photography, and densitometry, and by assaying for bacteria throughout the tube. The occurrence of more than one band is not due to heterogeneity among the bacteria, since each band can be used over to give rise to two again. The first band uses all the oxygen to oxidize portions of one or more of the amino acids, including serine, and the second band consumes the residual serine anaerobically. The results are interpreted to mean that E. coli shows chemotaxis toward oxygen and serine. When no energy source is added to the medium, a band of bacteria still appears. It consumes all the oxygen to oxidize an endogenous energy source. The addition of any one of 10 oxidizable amino acids stimulates the rate of travel of this band. Alanine, an example that was studied in detail, supports such a band that consumes all the oxygen to oxidize a portion of the alanine. Serine, the only amino acid that this strain can use either aerobically or anaerobically when grown under the conditions used here, gives rise to two bands.  相似文献   

19.
20.
分类比较了单体氨基酸核苷酸和葡萄糖,对学生全面理解这3种物质有帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号