共查询到20条相似文献,搜索用时 42 毫秒
1.
There have been studies on how the asymptotic efficiency ofa nonparametric function estimator depends on the handling ofthe within-cluster correlation when nonparametric regressionmodels are used on longitudinal or cluster data. In particular,methods based on smoothing splines and local polynomial kernelsexhibit different behaviour. We show that the generalized estimationequations based on weighted least squares regression splinesfor the nonparametric function have an interesting property:the asymptotic bias of the estimator does not depend on theworking correlation matrix, but the asymptotic variance, andtherefore the mean squared error, is minimized when the truecorrelation structure is specified. This property of the asymptoticbias distinguishes regression splines from smoothing splines. 相似文献
2.
Summary . Recently, median regression models have received increasing attention. When continuous responses follow a distribution that is quite different from a normal distribution, usual mean regression models may fail to produce efficient estimators whereas median regression models may perform satisfactorily. In this article, we discuss using median regression models to deal with longitudinal data with dropouts. Weighted estimating equations are proposed to estimate the median regression parameters for incomplete longitudinal data, where the weights are determined by modeling the dropout process. Consistency and the asymptotic distribution of the resultant estimators are established. The proposed method is used to analyze a longitudinal data set arising from a controlled trial of HIV disease ( Volberding et al., 1990 , The New England Journal of Medicine 322, 941–949). Simulation studies are conducted to assess the performance of the proposed method under various situations. An extension to estimation of the association parameters is outlined. 相似文献
3.
4.
A semivarying coefficient model for the monthly numbers of suicides in Hong Kong is developed and a new estimation procedure for estimating the parametric component is proposed. The estimators are examined in a small simulation study and fitted to monthly suicide data to estimate a nonparametric long-term trend and parametric seasonal and socioeconomic effects. Fitting the model detected interpretable structure in the data that is consistent with that driving public health policy. While exploratory, the analysis motivates the collection of more detailed data and the development of more sophisticated models to help determine target groups and strategies to reduce the suicide rate in Hong Kong. 相似文献
5.
6.
7.
SUMMARY: We propose a general multistate transition model. The model is developed for the analysis of repeated episodes of multiple states representing different health status. Transitions among multiple states are modeled jointly using multivariate latent traits with factor loadings. Different types of state transition are described by flexible transition-specific nonparametric baseline intensities. A state-specific latent trait is used to capture individual tendency of the sojourn in the state that cannot be explained by covariates and to account for correlation among repeated sojourns in the same state within an individual. Correlation among sojourns across different states within an individual is accounted for by the correlation between the different latent traits. The factor loadings for a latent trait accommodate the dependence of the transitions to different competing states from a same state. We obtain the semiparametric maximum likelihood estimates through an expectation-maximization (EM) algorithm. The method is illustrated by studying repeated transitions between independence and disability states of activities of daily living (ADL) with death as an absorbing state in a longitudinal aging study. The performance of the estimation procedure is assessed by simulation studies. 相似文献
8.
Airlane P. Alencar Julio M. Singer Francisco Marcelo M. Rocha 《Biometrical journal. Biometrische Zeitschrift》2012,54(2):214-229
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretest–posttest longitudinal data. In particular, we consider log‐normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE‐based models may be preferable when the goal is to compare the marginal expected responses. 相似文献
9.
10.
A semiparametric regression cure model with current status data 总被引:1,自引:0,他引:1
11.
In many longitudinal studies, interest focuses on the occurrence rate of some phenomenon for the subjects in the study. When the phenomenon is nonterminating and possibly recurring, the result is a recurrent-event data set. Examples include epileptic seizures and recurrent cancers. When the recurring event is detectable only by an expensive or invasive examination, only the number of events occurring between follow-up times may be available. This article presents a semiparametric model for such data, based on a multiplicative intensity model paired with a fully flexible nonparametric baseline intensity function. A random subject-specific effect is included in the intensity model to account for the overdispersion frequently displayed in count data. Estimators are determined from quasi-likelihood estimating functions. Because only first- and second-moment assumptions are required for quasi-likelihood, the method is more robust than those based on the specification of a full parametric likelihood. Consistency of the estimators depends only on the assumption of the proportional intensity model. The semiparametric estimators are shown to be highly efficient compared with the usual parametric estimators. As with semiparametric methods in survival analysis, the method provides useful diagnostics for specific parametric models, including a quasi-score statistic for testing specific baseline intensity functions. The techniques are used to analyze cancer recurrences and a pheromone-based mating disruption experiment in moths. A simulation study confirms that, for many practical situations, the estimators possess appropriate small-sample characteristics. 相似文献
12.
A Bayesian semiparametric joint hierarchical model for longitudinal and survival data 总被引:2,自引:0,他引:2
This article proposes a new semiparametric Bayesian hierarchical model for the joint modeling of longitudinal and survival data. We relax the distributional assumptions for the longitudinal model using Dirichlet process priors on the parameters defining the longitudinal model. The resulting posterior distribution of the longitudinal parameters is free of parametric constraints, resulting in more robust estimates. This type of approach is becoming increasingly essential in many applications, such as HIV and cancer vaccine trials, where patients' responses are highly diverse and may not be easily modeled with known distributions. An example will be presented from a clinical trial of a cancer vaccine where the survival outcome is time to recurrence of a tumor. Immunologic measures believed to be predictive of tumor recurrence were taken repeatedly during follow-up. We will present an analysis of this data using our new semiparametric Bayesian hierarchical joint modeling methodology to determine the association of these longitudinal immunologic measures with time to tumor recurrence. 相似文献
13.
14.
15.
A mixed-effects item response theory model that allows for three-level multivariate ordinal outcomes and accommodates multiple random subject effects is proposed for analysis of multivariate ordinal outcomes in longitudinal studies. This model allows for the estimation of different item factor loadings (item discrimination parameters) for the multiple outcomes. The covariates in the model do not have to follow the proportional odds assumption and can be at any level. Assuming either a probit or logistic response function, maximum marginal likelihood estimation is proposed utilizing multidimensional Gauss-Hermite quadrature for integration of the random effects. An iterative Fisher scoring solution, which provides standard errors for all model parameters, is used. An analysis of a longitudinal substance use data set, where four items of substance use behavior (cigarette use, alcohol use, marijuana use, and getting drunk or high) are repeatedly measured over time, is used to illustrate application of the proposed model. 相似文献
16.
An estimation method for the semiparametric mixed effects model 总被引:6,自引:0,他引:6
A semiparametric mixed effects regression model is proposed for the analysis of clustered or longitudinal data with continuous, ordinal, or binary outcome. The common assumption of Gaussian random effects is relaxed by using a predictive recursion method (Newton and Zhang, 1999) to provide a nonparametric smooth density estimate. A new strategy is introduced to accelerate the algorithm. Parameter estimates are obtained by maximizing the marginal profile likelihood by Powell's conjugate direction search method. Monte Carlo results are presented to show that the method can improve the mean squared error of the fixed effects estimators when the random effects distribution is not Gaussian. The usefulness of visualizing the random effects density itself is illustrated in the analysis of data from the Wisconsin Sleep Survey. The proposed estimation procedure is computationally feasible for quite large data sets. 相似文献
17.
Marginal models for longitudinal continuous proportional data 总被引:5,自引:0,他引:5
Summary. Continuous proportional data arise when the response of interest is a percentage between zero and one, e.g., the percentage of decrease in renal function at different follow‐up times from the baseline. In this paper, we propose methods to directly model the marginal means of the longitudinal proportional responses using the simplex distribution of Barndorff‐Nielsen and Jørgensen that takes into account the fact that such responses are percentages restricted between zero and one and may as well have large dispersion. Parameters in such a marginal model are estimated using an extended version of the generalized estimating equations where the score vector is a nonlinear function of the observed response. The method is illustrated with an ophthalmology study on the use of intraocular gas in retinal repair surgeries. 相似文献
18.
This paper develops a general approach for dealing with parametric transformations of covariates for longitudinal data, where the responses are modeled marginally and generalized estimating equations (GEEs) are used for estimation of regression parameters. We propose an iterative algorithm for obtaining regression and transformation parameters from estimating equations, utilizing existing software for GEE problems. The algorithmic technique is closely related to that used in the Box-Tidwell transformation in classical linear regression, but we develop it under the GEE setting and for more general transformation functions. We provide supporting theorems for consistency and asymptotic Normality of the estimates. Inference between two nested models is also considered. This methodology is applied to two data sets. One consists of pill dissolution data, the other is taken from the Pittsburgh Youth Study (PYS). The PYS is a prospective longitudinal study of the development of delinquency, substance use, and mental health in male youth. We use the model-based parametric approach to examine the association between alcohol use at an early stage of adolescent development and delinquency over the course of adolescence. 相似文献
19.
Semiparametric regression for clustered data 总被引:4,自引:0,他引:4
20.
We propose a response-adaptive model for functional linear regression, which is adapted to sparsely sampled longitudinal responses. Our method aims at predicting response trajectories and models the regression relationship by directly conditioning the sparse and irregular observations of the response on the predictor, which can be of scalar, vector, or functional type. This obliterates the need to model the response trajectories, a task that is challenging for sparse longitudinal data and was previously required for functional regression implementations for longitudinal data. The proposed approach turns out to be superior compared to previous functional regression approaches in terms of prediction error. It encompasses a variety of regression settings that are relevant for the functional modeling of longitudinal data in the life sciences. The improved prediction of response trajectories with the proposed response-adaptive approach is illustrated for a longitudinal study of Kiwi weight growth and by an analysis of the dynamic relationship between viral load and CD4 cell counts observed in AIDS clinical trials. 相似文献