首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of p44/42 mitogen-activated protein kinase (MAPK) in the expression of intercellular adhesion molecule-1 (ICAM-1) in NCI-H292 cells, a human bronchial epithelial cell line, was analyzed. Treatment with the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA) (16.2 nM) or interferon-gamma (IFN-gamma) (100 U/ml) induced phosphorylation of p44/42 MAPK. The MEK inhibitor U0126 (0.1 to 10 microM) enhanced the TPA-induced ICAM-1 expression but not the IFN-gamma-induced one. U0126 also enhanced the ICAM-1 expression induced by two other PKC activators teleocidin (22.5 nM) and aplysiatoxin (14.9 nM). Furthermore, PD98059 (0.5 to 50 microM), another MEK inhibitor, enhanced the TPA-induced ICAM-1 expression as well. The inhibitor of p38 MAPK SB203580 did not affect the TPA-induced ICAM-1 expression. BAY11-7082, an inhibitor of nuclear factor kappaB (NF-kappaB) activation, and MG132, a 26S proteasome inhibitor, reduced the TPA-induced ICAM-1 expression but not the IFN-gamma-induced one. TPA partially decreased the level of IkappaB-alpha and the reduction was further augmented by U0126 in a concentration-dependent manner. These findings suggested that, in NCI-H292 cells, p44/42 MAPK suppresses PKC activator-induced NF-kappaB activation, thus negatively regulating the PKC activator-induced ICAM-1 expression but not the IFN-gamma-induced one.  相似文献   

2.
α-Tomatine, isolated from Lycopersicon esculentum Linn., is a naturally occurring glycoalkaloids in immature green tomatoes. Some reports demonstrated that α-tomatine had various anti-carcinogenic properties. First, the result demonstrated α-tomatine could inhibit TPA-induced the abilities of the adhesion, morphology/actin cytoskeleton arrangement, invasion, and migration by cell–matrix adhesion assay, immunofluorescence stain assay, Boyden chamber invasion assay, and wound-healing assay. Data also showed α-tomatine could inhibit the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and protein kinase C-α (PKCα) involved in the downregulation of the enzyme activities and messenger RNA levels of matrix metalloproteinase-2/9 (MMP-2/MMP-9) induced by TPA. Next, α-tomatine also strongly inhibited TPA-induced the activation of nuclear factor kappa B (NF-κB) and phospho-inhibitor of kappa Bα (phospho-IκBα). In addition, TPA-induced translocation of PKC-α from cytosol to membranes, and suppression of TPA elicited the expression of PKC-α by adding the PKC-α inhibitors, GF-109203X and Gö-6983. The treatment of specific inhibitor for ERK (U0126) to MCF-7 cells could inhibit TPA-induced MMP-2/MMP-9 and phospho-ERK along with an inhibition on cell invasion and migration. Application of α-tomatine to prevent the invasion/migration of MCF-7 cells through blocking PKCα/ERK/NF-κB activation is first demonstrated herein.  相似文献   

3.
An increase in MMP‐9 gene expression and enzyme activity with stimulating the migration of GBM8401 glioma cells via wound healing assay by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) was detected in glioblastoma cells GBM8401. TPA‐induced translocation of protein kinase C (PKC)α from the cytosol to membranes, and migration of GBM8401 elicited by TPA was suppressed by adding the PKCα inhibitors, GF109203X and H7. Activation of extracellular signal‐regulated kinase (ERK) and c‐Jun‐N‐terminal kinase (JNK) by TPA was identified, and TPA‐induced migration and MMP‐9 activity was significantly blocked by ERK inhibitor PD98059 and U0126, but not JNK inhibitor SP600125. Activation of NF‐κB protein p65 nuclear translocation and IκBα protein phosphorylation with increased NF‐κB‐directed luciferase activity by TPA were observed, and these were blocked by the PD98059 and IkB inhibitor BAY117082 accompanied by reducing migration and MMP‐9 activity induced by TPA in GBM8401 cells. Transfection of GBM8401 cells with PKCα siRNA specifically reduced PKCα protein expression with blocking TPA‐induced MMP‐9 activation and migration. Additionally, suppression of TPA‐induced PKCα/ERK/NK‐κB activation, migration, and MMP‐9 activation by flavonoids including kaempferol (Kae; 3,5,7,4′‐tetrahydroxyflavone), luteolin (Lut; 5,7,3′4′‐tetrahydroxyflavone), and wogonin (Wog; 5,7‐dihydroxy‐8‐methoxyflavone) was demonstrated, and structure–activity relationship (SAR) studies showed that hydroxyl (OH) groups at C4′ and C8 are critical for flavonoids' action against MMP‐9 enzyme activation and migration/invasion of glioblastoma cells elicited by TPA. Application of flavonoids to prevent the migration/invasion of glioblastoma cells through blocking PKCα/ERK/NF‐κB activation is first demonstrated herein. J. Cell. Physiol. 225: 472–481, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
This study first investigates the anti-metastatic effect of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMPs and u-PA expressions in human lung cancer cells, A549. First, the result demonstrated plumbagin could inhibit TPA induced the abilities of the adhesion, invasion, and migration by cell–matrix adhesion assay and Boyden chamber assay. Data also showed plumbagin could inhibit the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) involved in the down-regulating enzyme activities, protein and messenger RNA levels of matrix metalloproteinase-2 (MMP-2), and urokinase-type plasminogen activator (u-PA) induced by TPA. Next, plumbagin also strongly inhibited TPA-induced phosphorylation and degradation of inhibitor of kappaBα (IκBα), and the nuclear levels of nuclear factor kappa B (NF-κB), c-Fos, and c-Jun. Also, a dose-dependent inhibition on the binding abilities of NF-κB and activator protein-1 (AP-1) by plumbagin treatment was further observed. Further, the treatment of specific inhibitor for ERK (U0126) to A549 cells could inhibit TPA-induced MMP-2 and u-PA expressions along with an inhibition on cell invasion and migration. Presented data reveals that plumbagin is a novel, effective, anti-metastatic agent that functions by down-regulating MMP-2 and u-PA gene expressions.  相似文献   

5.
6.
Intercellular adhesion molecule 1 (ICAM-1) has been implicated in playing a key role in the mechanism of inflammatory process initiated in response to environmental agents, and during normal hematopoietic cell differentiation. Though induction of ICAM-1 by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in myeloid cells has been reported, the molecular mechanism by which TPA upregulates ICAM-1 expression remains unclear. In the present study, we investigated the signaling mechanism associated with TPA-induced ICAM-1 expression in ML-1 cells. Herein, our microarray, flow cytometry, and Western blot analysis indicated that ICAM-1 was constitutively expressed at a low level in ML-1 cells, but its expression was further upregulated at both the mRNA and protein levels in response to TPA. ICAM-1 expression in response to TPA was inhibited by pretreatment with GF109203X [a specific inhibitor of protein kinase C (PKC)], or with PD98059 and U0126 (specific inhibitors of MEK), suggesting the importance of PKC, and Erk1/2 signaling cascades in this response. Interestingly, ICAM-1 expression in response to TPA-induced PKC activation was linked to the generation of reactive oxygen species (ROS), as pretreatment with NAC (an ROS scavenger) blocked both ErK1/2 activation and ICAM-1 expression induced by TPA. In addition, TPA-induced ICAM-1 expression was blocked by inhibition of nuclear factor-kappaB (NF-kappaB) activation following pretreatment with BAY11-7085 (a specific inhibitor of NF-kappaB activation). TPA-induced NF-kappaB activation was shown by increased degradation of IkB (NF-kappaB specific inhibitory protein). Together, these observations demonstrated that TPA, a potent activator of PKC, induces ICAM-1 expression via a ROS- and ERK1/2-dependent signaling mechanism in ML-1 cells.  相似文献   

7.
Leukemic cell lines, such as U937, THP-1, and HL60 cells, can differentiate into macrophages following exposure to various agents including 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro. It is well known that TPA enhances reactive oxygen species (ROS) generation through the activation of NADPH oxidase (NOX), and ROS act as mediators in TPA signaling. Extracellular-superoxide dismutase (EC-SOD) is a major anti-oxidative enzyme that protects the cells from damaging effects of superoxide. Recently, the reduction of Cu/Zn-SOD and the induction of Mn-SOD by TPA in leukemic cells have been reported; however, the regulation of EC-SOD by TPA remains poorly understood. Here, we explored the regulation of EC-SOD during the monocytic differentiation of U937 cells by TPA. We observed the reduction of EC-SOD and Cu/Zn-SOD, whereas the induction of Mn-SOD during the differentiation of U937 cells. The reduction of EC-SOD and Cu/Zn-SOD was attenuated by pretreatments with GF109203X (an inhibitor of protein kinase C, PKC), diphenyleneiodonium (an inhibitor of NOX), and U0126 (an inhibitor of mitogen-activated protein kinase kinase, MEK/extracellular-signal regulated kinase, ERK). Interestingly, pretreatment with BAY11-7082 (an inhibitor of nuclear factor-κB, NF-κB) suppressed the reduction of Cu/Zn-SOD, but not of EC-SOD. Furthermore, we also determined the involvement of newly synthesized protein and the instability of mRNA in the reduction of EC-SOD. Overall, our results suggest that the expression of EC-SOD is decreased by TPA through intracellular signaling consisting of PKC, NOX-derived ROS and MEK/ERK, but not of NF-κB signaling.  相似文献   

8.
In a previously published report (Kurland, J. F., Kodym, R., Story, M. D., Spurgers, K. B., McDonnell, T. J., and Meyn, R. E. (2001) J. Biol. Chem. 276, 45380-45386), we described the NF kappa B status for two murine B-cell lymphoma cell lines, LY-as (apoptosis-sensitive) and LY-ar (apoptosis-refractory) and provided evidence that NF kappa B1 (p50) homodimers contribute to the expression of Bcl-2 in the LY-ar line. In the present study, we investigated the upstream signals leading to p50 homodimer activation and Bcl-2 expression. We found that in LY-ar cells, ERK1 and ERK2 were constitutively phosphorylated, whereas LY-as cells had no detectable ERK1 or ERK2 phosphorylation. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK1 and ERK2, a reversal of nuclear p50 homodimer DNA binding, and a decrease in Bcl-2 protein expression. Similarly, activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with tumor necrosis factor-alpha, an I kappa B kinase activator, did not alter the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an I kappa B kinase-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. We conclude that the MEK/ERK pathway acts upstream of p50 homodimer activity and Bcl-2 expression in this B-cell lymphoma cell system and suggest that the use of MEK inhibitors could be useful clinically in combination with ionizing radiation to treat lymphoid malignancies.  相似文献   

9.
10.
《Free radical research》2013,47(5):376-385
Abstract

Myeloperoxidase (MPO), a major constituent of neutrophils, catalyzes the production of hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride anion. We have previously reported that MPO-deficient (MPO?/?) neutrophils produce greater amount of macrophage inflammatory protein-2 (MIP-2) in vitro than do wild type when stimulated with zymosan. In this study, we investigated the molecular mechanisms governing the up-regulation of MIP-2 production in the mutant neutrophils. Interestingly, we found that zymosan-induced production of MIP-2 was blocked by pre-treatment with U0126, an inhibitor of mitogen-activated protein kinase/extracellular-signal-regulated kinase (ERK), and with BAY11-7082, an inhibitor of nuclear factor (NF)-κB. Western blot analysis indicated that U0126 also inhibited the phosphorylation of p65 subunit of NF-κB (p65), indicating that MIP-2 was produced via the ERK/NF-κB pathway. Intriguingly, we found that ERK1/2, p65, and alpha subunit of inhibitor of κB (IκBα) in the MPO?/? neutrophils were phosphorylated more strongly than in the wild type when stimulated with zymosan. Exogenous H2O2 treatment in addition to zymosan stimulation enhanced the phosphorylation of ERK1/2 without affecting the zymosan-induced MIP-2 production. In contrast, exogenous HOCl inhibited the production of MIP-2 as well as IκBα phosphorylation without affecting ERK activity. The zymosan-induced production of MIP-2 in the wild-type neutrophils was enhanced by pre-treatment of the MPO inhibitor 4-aminobenzoic acid hydrazide. Collectively, these results strongly suggest that both lack of HOCl and accumulation of H2O2 due to MPO deficiency contribute to the up-regulation of MIP-2 production in mouse neutrophils stimulated with zymosan.  相似文献   

11.
12.
Podocyte and its slit diaphragm play an important role in maintaining normal glomerular filtration barrier function and structure. Podocyte apoptosis and slit diaphragm injury leads to proteinuria and glomerulosclerosis. However, the molecular mechanism of podocyte injury remains poorly understood. The family of mitogen-activated protein kinases including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase, and p38 signal pathways, are implicated in the progression of various glomerulopathies. However, the role of the activated signal pathway(s) in podocyte injury is elusive. This study examined phosphorylation of ERK in rat puromycin aminonucleoside (PAN) nephropathy as well as conditionally immortalized mouse podocyte treated with PAN in vitro. The effect of treatment with U0126, an inhibitor of ERK, was also investigated. In PAN nephropathy, the phosphorylation of ERK was marked. In podocyte injury, the marked and sustained activation of ERK pathway was also observed before the appearance of significant podocyte apoptosis. Pretreatment with U0126 to podocyte completely inhibited ERK activation, with complete suppression podocyte apoptosis and ameliorated nephrin protein expression along with the phosphorylation of nephrin in podocyte injury. In cultured podocyte, PAN induced actin recorganition, and U0126 inhibited such change. However, U0126 did not recovery the phosphorylation change of neph1 in podocyte injury. We concluded that the sustained activation of ERK along with the phosphorylation of neph1 might be necessary for podocyte injury. The study here suggested that ERK might become a potential target for therapeutic intervention to prevent podocytes from injury which will result in proteinuria.  相似文献   

13.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent stimulator of differentiation in human leukemia cells; however, the effects of arachidonic acid (AA) on TPA-induced differentiation are still unclear. In the present study, we investigated the contribution of AA to TPA-induced differentiation of human leukemia HL-60 cells. We found that treatment of HL-60 cells with TPA resulted in increases in cell attachment and nitroblue tetrazolium (NBT)-positive cells, which were significantly enhanced by the addition of AA. Stimulation of TPA-induced intracellular reactive oxygen species (ROS) production by AA was detected in HL-60 cells via a DCHF-DA analysis, and the addition of the antioxidant, N-acetyl-cysteine (NAC), was able to reduce TPA+AA-induced differentiation in accordance with suppression of intracellular peroxide elevation by TPA+AA. Furthermore, activation of extracellular-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by TPA+AA was identified in HL-60 cells, and the ERK inhibitor, PD98059, but not the JNK inhibitor, SP600125, inhibited TPA+AA-induced NBT-positive cells. Suppression of TPA+AA-induced ERK protein phosphorylation by PD98059 and NAC was detected, and AA enhanced ERK protein phosphorylation by TPA was in HL-60 cells. AA clearly increased TPA-induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression, which was inhibited by NAC and PD98059 addition. Eicosapentaenoic acid (EPA) as well as AA showed increased intracellular peroxide production and differentiation of HL-60 cells elicited by TPA. Evidence of AA potentiation of differentiation by TPA in human leukemia cells HL-60 via activation of ROS-dependent ERK protein phosphorylation was first demonstrated herein.  相似文献   

14.
The MAP kinase pathway has been well-characterized as a cascade of sequential protein phosphorylation events leading to the upregulation of a variety of genes in response to growth factors and mitogens. We are interested in the role of these kinases in inflammation and have thus examined their activity in vivo using TPA-induced ear edema in the mouse as a model of inflammation. We show that the activities of both ERK-1 and ERK-2 are upregulated in this model in response to TPA. Increased levels of ERK phosphorylation are measurable as early as 15 min poststimulation and reach a level 8-fold over controls at 4 h. In contrast, minimal activation of JNK or p38 is observed. Topical treatment of ears with the MEK inhibitor, U0126, prevents ERK phosphorylation and ear swelling in a dose-dependent manner in this model. These results suggest that the MEK/ERK pathway is important during an inflammatory response in vivo.  相似文献   

15.
16.
Herein we report that the prosurvival sphingolipid sphingosine 1-phosphate regulates the activities of both Bad and Bax during apoptosis of Jurkat cells. First, sphingosine 1-phosphate treatment results in Bad inactivation via the ERK/Rsk-1 pathway. Second, sphingosine 1-phosphate blocks the translocation of Bax to the mitochondria induced by Fas ligation. MEK inhibition by PD98059 or U0126 not only abrogates sphingosine 1-phosphate-induced Bad phosphorylation, but also its cytoprotective effect. Furthermore, inhibition of both mitochondrial cytochrome c efflux and Bax translocation to the mitochondria by sphingosine 1-phosphate could be overcome by PD98059 or U0126. Hence, the MEK/ERK pathway seems to be crucial for the survival effects initiated by sphingosine 1-phosphate.  相似文献   

17.
18.
19.
Vitamin K (VK) has diverse protective effects against osteoporosis, atherosclerosis and carcinogenesis. We recently reported that menatetrenone, a VK2 analogue, suppressed nuclear factor (NF)-κB activation in human hepatoma cells. Although NF-κB is regulated by isoforms of protein kinase C (PKC), the involvement of PKCs in VK2-mediated NF-κB inhibition remains unknown. Therefore, the effects of VK2 on the activation and the kinase activity of each PKC isoform were investigated. The human hepatoma Huh7 cells were treated with PKC isoform-specific inhibitors and/or siRNAs against each PKC isoform with or without 12-O-tetradecanoylphorbol-13-acetate (TPA). VK2 inhibited the TPA-induced NF-κB activation in Huh7 cells. NF-κB activity was inhibited by the pan-PKC inhibitor Ro-31-8425, but not by the PKCα-specific inhibitor Gö6976. The knockdown of individual PKC isoforms including PKCα, δ and ? showed only marginal effects on the NF-κB activity. However, the knockdown of both PKCδ and PKC?, together with treatment with a PKCα-specific inhibitor, depressed the NF-κB activity. VK2 suppressed the PKCα kinase activity and the phosphorylation of PKC? after TPA treatment, but neither the activation nor the enzyme activity of PKCδ was affected. The knockdown of PKC? abolished the TPA-induced phosphorylation of PKD1, and the effects of PKD1 knockdown on NF-κB activation were similar to those of PKC? knockdown. Collectively, all of the PKCs, including α, δ and ?, and PKD1 are involved in the TPA-mediated activation of NF-κB. VK2 inhibited the NF-κB activation through the inhibition of PKCα and ? kinase activities, as well as subsequent inhibition of PKD1 activation.  相似文献   

20.
The mitogen‐activated protein kinase (MAPK) cascade is an important contributor to synaptic plasticity and learning in both vertebrates and invertebrates. In the nudibranch mollusk Hermissenda, phosphorylation and activation of the extracellular signal‐regulated protein kinase (ERK), a key member of a MAPK cascade, is produced by one‐trial and multitrial Pavlovian conditioning. Several signal transduction pathways that are activated by 5‐hydroxytryptamine (5‐HT) and may contribute to conditioning have been identified in type B photoreceptors. However, the regulation of ERK activity by ‘upstream’ signaling molecules has not been previously investigated in Hermissenda. In the present study we examined the role of protein kinase C (PKC) in the serotonin (5‐HT) activation of the ERK pathway. The phorbol ester TPA produced an increase in ERK phosphorylation that was blocked by the PKC inhibitors GF109203X or Gö6976. TPA‐dependent ERK phosphorylation was also blocked by the MEK1 inhibitors PD098059 or U0126. The increased phosphorylation of ERK by 5‐HT was reduced but not blocked by pretreatment with the calcium chelator BAPTA‐AM or pretreatment with Gö6976 or GF109203X. These results indicate that Ca2+‐dependent PKC activation contributes to ERK phosphorylation, although a PKC‐independent pathway is also involved in 5‐HT‐dependent ERK phosphorylation and activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号