首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to determine the changes of the basic parameters of the erythrocyte system and the activity of some red blood cell (RBC) enzymes prior to and after a single physical effort leading to exhaustion. The study was carried out on male Wistar rats subjected to running on an electric rotating drum at a speed of 25 m/min. A single exercise caused a decrease in the RBC count, haemoglobin concentration (Hb) and haematocrit (Hct) by 21.9, 16.7 and 16.1%, respectively, and an increase in the reticulocyte count (Ret) by 661.5%. The exercise triggered also changes in the activities of some erythrocytic enzymes: pyruvate kinase (PK) activity increased by 12.4%, glucose-6-phosphate dehydrogenase (G6PD) by 37.8%, glutathione reductase (GR) by 30.8% and acetylcholinesterase (AChE) by 248.7%. These increases in the activities of RBC enzymes can be explained by an increase in the red cells turn-over.  相似文献   

2.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean &#45 SEM of 270 &#45 12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

3.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean ±SEM of 270 ±12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

4.
Glutathione peroxidase and thioredoxin reductase are selenocysteine-dependent enzymes that protect against oxidative injury. This study examined the effects of dietary selenium on the activity of these two enzymes in rats, and investigated the ability of selenium to modulate myocardial function post ischemia-reperfusion. Male wistar rats were fed diets containing 0, 50, 240 and 1000 microg/kg sodium selenite for 5 weeks. Langendorff perfused hearts isolated from these rats were subjected to 22.5 min global ischemia and 45 min reperfusion, with functional recovery assessed. Liver samples were collected at the time of sacrifice, and heart and liver tissues assayed for thioredoxin reductase and glutathione peroxidase activity. Selenium deficiency reduced the activity of both glutathione peroxidase and thioredoxin reductase systemically. Hearts from selenium deficient animals were more susceptible to ischemia-reperfusion injury when compared to normal controls (38% recovery of rate pressure product (RPP) vs. 47% recovery of RPP). Selenium supplementation increased the endogenous activity of thioredoxin reductase and glutathione peroxidase and resulted in improved recovery of cardiac function post ischemia reperfusion (57% recovery of RPP). Endogenous activity of glutathione peroxidase and thioredoxin reductase is dependent on an adequate supply of the micronutrient selenium. Reduced activity of these antioxidant enzymes is associated with significant reductions in myocardial function post ischemia-reperfusion.  相似文献   

5.
Effects of 10 weeks of physical training on free radical scavenging enzyme systems in erythrocytes were investigated in 7 sedentary healthy male students. The training consisted of running over 5 km, 6 times/week. Their maximum oxygen uptake and 12 min walk-run performance increased significantly after training. Of the antioxidant enzyme systems examined in the erythrocytes, both catalase activity and concentration and total glutathione reductase (GR) activity also showed significant increases following the training. The erythrocyte GR activity coefficient also increased significantly. These results suggest that chronic aerobic exercise increases riboflavin requirements and has some positive effects on antioxidative processes.  相似文献   

6.
FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.  相似文献   

7.
Protective effects of ionol, o-benzoquinone-2 and ascorbic acid, their influence on the activity of antioxidative enzymes, the level of diene conjugates (DC) and of recovered glutathione in the mitochondrial fraction in the case of ischemic and reperfusion injury of the brain have been investigated. An increase in the activity of the antioxidative system enzymes during the post-ischemic period induced probably by the accumulated products of lipid peroxidation is shown: glutathione peroxidase (EC 1.11.1.9)--by 159%, glutathione reductase (EC 1.6.4.2)--by 26%, catalase (EC 1.11.1.6)--by 79%. This effect was not observed after introduction of antioxidants lowering the DC-level. It is concluded that antihypoxic action of the investigated antioxidants providing the survival of animals not only after the 5 min total circulatory ischemia but also after the 15 min one is caused by their antiradical properties and is not connected with stimulation of activity of enzymes supporting peroxidative homeostasis.  相似文献   

8.
We investigated whether 8-week treadmill training strengthens antioxidant enzymes and decreases lipid peroxidation in rat heart. The effects of acute exhaustive exercise were also investigated. Male rats (Rattus norvegicus, Sprague-Dawley strain) were divided into trained and untrained groups. Both groups were further divided equally into two groups where the rats were studied at rest and immediately after exhaustive exercise. Endurance training consisted of treadmill running 1.5 h day(-1), 5 days week(-1) for 8 weeks. For acute exhaustive exercise, graded treadmill running was conducted. Malondialdehyde level in heart tissue was not affected by acute exhaustive exercise in untrained and trained rats. The activities of glutathione peroxidase and glutathione reductase enzymes decreased by both acute exercise and training. Glutathione S-transferase and catalase activities were not affected. Total and non-enzymatic superoxide scavenger activities were not affected either. Superoxide dismutase activity decreased by acute exercise in untrained rats; however, this decrease was not observed in trained rats. Our results suggested that rat heart has sufficient antioxidant enzyme capacity to cope with exercise-induced oxidative stress, and adaptive changes in antioxidant enzymes due to endurance training are limited.  相似文献   

9.
Glutathione peroxidase and glutathione reductase activities were measured in whole rat brains at selected ages from birth to adulthood. On a wet weight basis glutathione peroxidase activity increased 70% during development and glutathione reductase activity increased 160%. On a protein basis glutathione peroxidase declined slightly in activity during the first two weeks of life and then maintained the 14-day activity into adulthood while glutathione reductase showed a 30% increase in activity. While less than the developmental changes in many enzymes involved in aerobic glycolysis or catecholamine metabolism, these increases do suggest a role in CNS metabolism.  相似文献   

10.
We have determined the effects of maximal and submaximal cycloergometer tests on the antioxidant enzyme defences of neutrophils and lymphocytes. We also compared the neutrophil and lymphocyte basal enzyme antioxidant activities. A total of 17 well-trained amateur athletes, runners, and cyclists participated in this study. Two tests were performed on an electromagnetic reduction cycloergometer: the maximal exercise test, and the submaximal prolonged exercise test. Blood samples were taken before and after the tests. Basal enzyme activity of superoxide dismutase was higher in lymphocytes but neutrophils presented higher activities of catalase and glutathione peroxidase. The maximal test increased the circulating number of lymphocytes and the activities of catalase and glutathione peroxidase. No changes were observed in lymphocyte number or in lymphocyte antioxidant enzyme activities after the submaximal test. The circulating number of neutrophils increased significantly after the submaximal test. Maximal and submaximal tests decreased the activities of neutrophil glutathione dependent antioxidant enzymes (glutathione peroxidase and glutathione reductase), but no changes were observed in catalase or superoxide dismutase activities after either test. Neither the maximal nor submaximal test produced increases in serum activities of lactate dehydrogenase and creatine kinase (CK).  相似文献   

11.
Previous studies have shown that exogenous lactate impairs mechanical function of reperfused ischaemic hearts, while pyruvate improves post-ischaemic recovery. The aim of this study was to investigate whether the diverging influence of exogenous lactate and pyruvate on functional recovery can be explained by an effect of the exogenous substrates on endogenous protecting mechanisms against oxygen-derived free radicals. Isolated working rat hearts were perfused by a Krebs-Henseleit bicarbonate buffer containing glucose (5 mM) as basal substrate and either lactate (5 mM) or pyruvate (5 mM) as cosubstrate. In hearts perfused with glucose as sole substrate the activity of glutathione reductase was decreased by 32% during 30 min of ischaemia (p<0.10 versus control value), while the activity of superoxide dismutase and catalase was reduced by 27 and 35%, respectively, during 5 min of reperfusion (p<0.10 versus control value). The GSH level in the glucose group was reduced by 29% following 30 min of ischaemia and 35 min of reperfusion (p<0.10). In lactate- and pyruvateperfused hearts there were no significant decreases of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activity during 30 min of ischaemia, 5 min of reperfusion or 35 min of reperfusion. In pyruvate-perfused hearts the glutathione peroxidase activity was even increased by 43% during 30 min of ischaemia (p<0.05). Glutathione levels (reduced and oxidized) did not markedly change in the lactate and pyruvate groups. Thus, the endogenous defense mechanism against oxygen-derived free radicals is compromised at the onset of reperfusion when glucose as sole substrate is present, while addition of lactate or pyruvate prevents reduction of the endogenous capacity to scavenge oxygen-derived free radicals. The equivocal relationship between endogenous scavenging enzyme activity and haemodynamic recovery indicates that involvement of the endogenous antioxidants, if any, in functional recovery of the post-ischaemic heart is complex. Pyruvate may exert protective effects on mechanical function after mild ischaemia by functioning as exogenous scavenger in itself, as pyruvate is able to react with hydrogen peroxide.  相似文献   

12.
A study was made of the effect of salmonellosis endotoxin (SE) on the activity of glutathione transferase (GT), glutathione peroxidase (GP-GTB and GP-H2O2), glutathione reductase (GR) and superoxide dismutase (SOD) in cytosols of the rat jejunal mucosa and liver. The activity of all the test enzymes of both the small intestine and liver was marked by drastic changes at the early stages of SE action. Thus, the activity of SOD and GP-H2O2 in the liver decreased after 30 min or 1 h of endotoxin action, respectively. In the jejunal mucosa, the activity of GP-H2O2 and SOD dropped after 4 h of SE action. GT in the jejunum remained unchanged, whereas in the liver, it was activated. The activity of GR and GP-GTB in the liver and jejunum was dissimilar. The causes and consequences of the abnormalities of the antioxidant enzymatic system and the role they play in the pathogenesis of salmonellosis intoxication are discussed.  相似文献   

13.
Fourteen hours after partial hepatectomy there was a decrease in basal disulfide reductase and glutathione reductase activity in cytosole fraction of proliferating hepatocytes. In nuclear fraction, the activation effect of cAMP and cGMP on the disulfide recovery was replaced by inhibition. Meanwhile the activity of glutathione reductase noticeably increased. Forty-five hours after operation disulfide reductase activity of cytosole appreciably rose during maximal mitotic activity of the regenerating liver. The data obtained provide evidence in favor of the involvement of disulfide reductase enzymes into reparative regeneration of the liver.  相似文献   

14.
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense.  相似文献   

15.
Effect of high intracellular concentrations of the antioxidants ascorbate and glutathione on the extractable activity of the reducting enzymes dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase were investigated with spinach cells ( Spinacia oleracea ). An elevated ascorbate concentration was obtained by treatment with the ascorbate biosynthesis precursor L-galactono-1,4-lactone (GAL). To increase the intracellular level of glutathione, cells were treated with the 5-oxo-L-proline analog L-2-oxothiazolidin-4-carboxylate (OTC), or with the peroxidative herbicide acifluorfen (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Extractable monodehydroascorbate reductase activity increased in the presence of a high level of ascorbate or glutathione, and enzyme activity was at maximum when cells were treated with acifluorfen + OTC, or acifluorfen + GAL. Extractable dehydroascorbate reductase activity decreased when the intracellular concentration of glutathione was high and non-enzymatic reduction of dehydroascorbate by glutathione was the dominant reaction. Maximal decrease of enzyme activity was found in cells treated with acifluorfen + OTC. Extractable activity of glutathione reductase (GR) increased after treatment of cells with acifluorfen alone, or acifluorfen + OTC, but enzyme activity was unaffected by a high intracellular concentration of glutathione obtained by treatment of cells with OTC alone, or by treatment with acifluorfen + GAL. The degree of GR activation seemed to be controlled by several factors including inhibition by a high concentration of glutathione and possibly oxidative damage to the enzyme. Overall, the enzymes tested in this study, which provide the reduced forms of ascorbate and glutathione, were differently affected by high antioxidant levels.  相似文献   

16.
Aqueous extract (OE) of the leaves of Ocimum sanctum, the Indian holy basil, has been found to protect mouse against radiation lethality and chromosome damage and to possess significant antioxidant activity in vitro. Therefore a study was conducted to see if OE protects against radiation induced lipid peroxidation in liver and to determine the role, if any, of the inherent antioxidant system in radioprotection by OE. Adult Swiss mice were injected intraperitoneally (i.p.) with 10 mg/kg of OE for 5 consecutive days and exposed to 4.5 Gy of gamma radiation 30 min after the last injection. Glutathione (GSH) and the antioxidant enzymes glutathione transferase (GST), reductase (GSRx), peroxidase (GSPx) and superoxide dismutase (SOD), as well as lipid peroxide (LPx) activity were estimated in the liver at 15 min, 30 min, 1, 2, 4 and 8 hr post-treatment. LPx was also studied after treatment with a single dose of 50 mg/kg of OE with/without irradiation. OE itself increased the GSH and enzymes significantly above normal levels whereas radiation significantly reduced all the values. The maximum decline was at 30-60 min for GSH and related enzymes and at 2 hr for SOD. Pretreatment with the extract checked the radiation induced depletion of GSH and all the enzymes and maintained their levels within or above the control range. Radiation significantly increased the lipid peroxidation rate, reaching a maximum value at 2 hr after exposure (approximately 3.5 times that of control). OE pretreatment significantly (P < 0.0001) reduced the lipid peroxidation and accelerated recovery to normal levels. The results indicate that Ocimum extract protects against radiation induced lipid peroxidation and that GSH and the antioxidant enzymes appear to have an important role in the protection.  相似文献   

17.
The effects of gender difference and voluntary exercise on antioxidant capacity in rats were evaluated. The subjects were divided into two groups, physically active and sedentary. In the sedentary group, the level of hydroxyl radical in the liver was higher (P<0.001) in male rats than in female rats, however, in the physically active group, the level in male rats was lower (P<0.05) than in female rats. The levels of reduced glutathione (GSH) in physically active males and females were higher compared to those in the sedentary group. The physically active group also showed an increase in antioxidant enzymes, such as glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase activities. The level of liver GSH was higher in physically active females than in physically active males. For both groups, GPx and GR activities in females were significantly higher than in males. These results indicate that female rats have an intrinsically higher antioxidant capacity, which resulted in increased levels of GSH via the glutathione redox cycle and gamma-glutamyl cycle enzymes. The adaptation to altered antioxidant capacity, induced by physical activity, appeared to be affected by gender differences.  相似文献   

18.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

19.
In rats physical exercise (30 min running on a treadmill) lowered total glutathione, oxidized glutathione and lipid peroxide concentration in blood. In man (young healthy male volunteers, moderate to excellent physical condition) running (30 min) did not influence these parameters. It is concluded that by normal life and psychophysical vigilance the moderate oxidative stress could be compensated.  相似文献   

20.
This study was aimed to evaluate the preventive effect of diosgenin and exercise on tissue antioxidant status in isoproterenol-induced myocardial infarction (MI) in male Wistar rats. Levels of lipid peroxides, reduced glutathione (GSH), and the activities of glutathione-dependent antioxidant enzymes (glutathione peroxidise and glutathione reductase) and antiperoxidative enzymes (catalase and superoxide dismutase) in the plasma and the heart tissue of experimental groups of rats were determined. Pretreatment with diosgenin and exercise exerted an antioxidant effect against isoproterenol-induced myocardial infarction by blocking the induction of lipid peroxidation. A tendency to prevent the isoproterenol-induced alterations in the level of GSH, in the activities of glutathione-dependent antioxidant enzymes and antiperoxidative enzymes was also observed. Histopathological findings of the myocardial tissue showed a protective role for combination of diosgenin and exercise in isoproterenol (ISO)-treated rats. Thus, the present study reveals that preconditioning with diosgenin and exercise exerts cardioprotective effect against ISO-induced MI due to its free radical scavenging and antioxidant effects, which maintains the tissue defense system against myocardial damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号