首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
As 16S rRNA sequence analysis has proven inadequate for the differentiation of Bacillus cereus from closely related species, we employed the gyrase B gene (gyrB) as a molecular diagnostic marker. The gyrB genes of B. cereus JCM 2152(T), Bacillus thuringiensis IAM 12077(T), Bacillus mycoides ATCC 6462(T), and Bacillus anthracis Pasteur #2H were cloned and sequenced. Oligonucleotide PCR primer sets were designed from within gyrB sequences of the respective bacteria for the specific amplification and differentiation of B. cereus, B. thuringiensis, and B. anthracis. The results from the amplification of gyrB sequences correlated well with results obtained with the 16S rDNA-based hybridization study but not with the results of their phenotypic characterization. Some of the reference strains of both B. cereus (three serovars) and B. thuringiensis (two serovars) were not positive in PCR amplification assays with gyrB primers. However, complete sequencing of 1.2-kb gyrB fragments of these reference strains showed that these serovars had, in fact, lower homology than their originally designated species. We developed and tested a procedure for the specific detection of the target organism in boiled rice that entailed 15 h of preenrichment followed by PCR amplification of the B. cereus-specific fragment. This method enabled us to detect an initial inoculum of 0.24 CFU of B. cereus cells per g of boiled rice food homogenate without extracting DNA. However, a simple two-step filtration step is required to remove PCR inhibitory substances.  相似文献   

2.
Aiming to develop a DNA marker specific for Bacillus anthracis and able to discriminate this species from Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides, we applied the randomly amplified polymorphic DNA (RAPD) fingerprinting technique to a collection of 101 strains of the genus Bacillus, including 61 strains of the B. cereus group. An 838-bp RAPD marker (SG-850) specific for B. cereus, B. thuringiensis, B. anthracis, and B. mycoides was identified. This fragment included a putative (366-nucleotide) open reading frame highly homologous to the ypuA gene of Bacillus subtilis. The restriction analysis of the SG-850 fragment with AluI distinguished B. anthracis from the other species of the B. cereus group.  相似文献   

3.
The aim of this study was to apply the multiplex PCR and PCR-RFLP method for the identification of the B. anthracis strains and to distinguish those bacteria from other members of the Bacillus cereus group. The multiplex PCR method enables to detect the virulence factors, i.e. the toxin and the capsule in B. anthracis strains. To do that, the authors have used 5 primer pairs specific for the fragments of lef, cya, pag genes which are present in the pXO1 plasmid and encode the toxin, the cap gene, which is present in the pXO2 plasmid and encodes the capsule, and the Ba813 chromosomal sequence. Among the four B. anthracis strains examined, three contained two plasmids and the Ba813 chromosomal sequence, while the fourth one contained the pXO1 plasmid only, together and the Ba813 chromosomal sequence. Other bacterial species, belonging to the B. cereus group, were also examined: 6 strains of B. cereus, 4 strains of B. thuringiensis and one strain of B. mycoides. The presence of Ba813 chromosomal sequence has been detected in two B. cereus strains. Neither plasmids nor Ba813 chromosomal sequence have been discovered in other B. cereus, B. thuringiensis and B. mycoides strains. The results of the survey indicate that the Ba813 chromosomal sequence does not occur solely in B. anthracis strains. The PCR-RFLP method with the use of SG-749f and SG-749r primers enabled to demonstrate the presence of DNA sequence (SG-749) in B. anthracis, B. cereus, B. thuringiensis and B. mycoides strains. Restriction analysis with enzyme AluI of the SG-749 sequence, has shown the presence of two DNA fragments at the size of about 90 and 660 bp in all B. anthracis strains. The restriction profile obtained was characteristic for B. anthracis strains and it did not occur in other investigated bacterial species belonging to the B. cereus group. It was not observed even in such B. cereus strains in which the presence of Ba813 sequence was discovered and it enabled to differentiate between B. anthracis strains and other closely related species of the B. cereus group.  相似文献   

4.
Quantitative real-time PCR (qRT-PCR) offers an alternative method for the detection of bacterial contamination in food. This method provides the quantitation and determination of the number of gene copies. In our study, we established an RT-PCR assay using the LightCycler system to detect and quantify the Bacillus cereus group species, which includes B. cereus, B. anthracis, B. thuringiensis, B. weihenstephanensis, B. mycoides, and B. pseudomycoides. A TaqMan assay was designed to detect a 285-bp fragment of the motB gene encoding the flagellar motor protein, which was specific for the detection of the B. cereus group species, excluding B. pseudomycoides, and the detection of a 217-bp gene fragment of a hypothetical protein specific only for B. pseudomycoides strains. Based on three hydrolysis probes (MotB-FAM-1, MotB-FAM-2, and Bpm-FAM-1), it was possible to differentiate B. weihenstephanensis from the B. cereus group species with nonrhizoid growth and B. pseudomycoides from the whole B. cereus group. The specificity of the assay was confirmed with 119 strains belonging to the Bacillus cereus group species and was performed against 27 other Bacillus and non-Bacillus bacteria. A detection limit was determined for each assay. The assays performed well not only with purified DNA but also with DNA extracted from milk samples artificially contaminated with bacteria that belong to the B. cereus group species. This technique represents an alternative approach to traditional culture methods for the differentiation of B. cereus group species and differentiates B. weihenstephanensis and B. pseudomycoides in one reaction.  相似文献   

5.
Mung bean nuclease treatment of 16S-23S ribosomal DNA intergenic transcribed spacers (ITS) amplified from several strains of the six species of the Bacillus cereus group showed that B. anthracis Davis TE702 and B. mycoides G2 have other intermediate fragments in addition to the 220- and 550-bp homoduplex fragments typical of the B. cereus group. Long and intermediate homoduplex ITS fragments from strains Davis TE702 and G2 and from another 19 strains of the six species were sequenced. Two main types of ITS were found, either with two tRNA genes (tRNA(Ile) and tRNA(Ala)) or without any at all. Strain Davis TE702 harbors an additional ITS with a single tRNA gene, a hybrid between the tRNA(Ile) and tRNA(Ala) genes, suggesting that a recombination event rather than a deletion generated the single tDNA-containing ITS. Strain G2 showed an additional ITS of intermediate length with no tDNA and no similarity to other known sequences. Neighbor-joining analysis of tDNA-containing long ITS indicated that B. cereus and B. thuringiensis represent a single clade. Three signature sequences discriminated B. anthracis from B. cereus and B. thuringiensis, indicating that the anthrax agent started evolving separately from the related clades of the B. cereus group. B. mycoides and B. weienstephanensis were very closely related, while B. pseudomycoides appeared the most distant species.  相似文献   

6.
The genome of Bacillus anthracis is extremely monomorphic, and thus individual strains have often proven to be recalcitrant to differentiation at the molecular level. Long-range repetitive element polymorphism-PCR (LR REP-PCR) was used to differentiate various B. anthracis strains. A single PCR primer derived from a repetitive DNA element was able to amplify variable segments of a bacterial genome as large as 10 kb. We were able to characterize five genetically distinct groups by examining 105 B. anthracis strains of diverse geographical origins. All B. anthracis strains produced fingerprints comprising seven to eight bands, referred to as "skeleton" bands, while one to three "diagnostic" bands differentiated between B. anthracis strains. LR REP-PCR fingerprints of B. anthracis strains showed very little in common with those of other closely related species such as B. cereus, B. thuringiensis, and B. mycoides, suggesting relative heterogeneity among the non-B. anthracis strains. Fingerprints from transitional non-B. anthracis strains, which possessed the B. anthracis chromosomal marker Ba813, scarcely resembled those observed for any of the five distinct B. anthracis groups that we have identified. The LR REP-PCR method described in this report provides a simple means of differentiating B. anthracis strains.  相似文献   

7.
Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides, Bacillus thuringiensis, and Bacillus weihenstephanensis are closely related in phenotype and genotype, and their genetic relationship is still open to debate. The present work uses amplified 16S-23S internal transcribed spacers (ITS) to discriminate between the strains and species and to describe the genetic relationships within the "B. cereus group," advantage being taken of homoduplex-heteroduplex polymorphisms (HHP) resolved by polyacrylamide gel electrophoresis and silver staining. One hundred forty-one strains belonging to the six species were investigated, and 73 ITS-HHP pattern types were distinguished by MDE, a polyacrylamide matrix specifically designed to resolve heteroduplex and single-strand conformation polymorphisms. The discriminating bands were confirmed as ITS by Southern hybridization, and the homoduplex or heteroduplex nature was identified by single-stranded DNA mung bean nuclease digestion. Several of the ITS-HHP types corresponded to specific phenotypes such as B. anthracis or serotypes of B. thuringiensis. Unweighted pair group method arithmetic average cluster analysis revealed two main groups. One included B. mycoides, B. weihenstephanensis, and B. pseudomycoides. The second included B. cereus and B. thuringiensis, B. anthracis appeared as a lineage of B. cereus.  相似文献   

8.
9.
The identification of a region of sequence variability among individual isolates of Bacillus anthracis as well as the two closely related species, Bacillus cereus and Bacillus mycoides, has made a sequence-based approach for the rapid differentiation among members of this group possible. We have identified this region of sequence divergence by comparison of arbitrarily primed (AP)-PCR "fingerprints" generated by an M13 bacteriophage-derived primer and sequencing the respective forms of the only polymorphic fragment observed. The 1,480-bp fragment derived from genomic DNA of the Sterne strain of B. anthracis contained four consecutive repeats of CAATATCAACAA. The same fragment from the Vollum strain was identical except that two of these repeats were deleted. The Ames strain of B. anthracis differed from the Sterne strain by a single-nucleotide deletion. More than 150 nucleotide differences separated B. cereus and B. mycoides from B. anthracis in pairwise comparisons. The nucleotide sequence of the variable fragment from each species contained one complete open reading frame (ORF) (designated vrrA, for variable region with repetitive sequence), encoding a potential 30-kDa protein located between the carboxy terminus of an upstream ORF (designated orf1) and the amino terminus of a downstream ORF (designated lytB). The sequence variation was primarily in vrrA, which was glutamine- and proline-rich (30% of total) and contained repetitive regions. A large proportion of the nucleotide substitutions between species were synonymous. vrrA has 35% identity with the microfilarial sheath protein shp2 of the parasitic worm Litomosoides carinii.  相似文献   

10.
Abstract Sequences based on the conserved 20 bp inverted repeat of IS 231 variants were used as polymerase chain reaction-based fingerprinting primers of the member species of the Bacillus cereus group ( B. anthracis, B. cereus, B. thuringiensis and B. mycoides ), because of their close association with transposons, principally Tn 4430 in B. thuringiensis . Fingerprints of B. anthracis were simple, and specifically allowed its identification and sub-differentiation from other members of the group. Fingerprints for B. cereus were strain-specific; those for B. thuringensis gave a 1650 bp product, characteristic of 1S 231 variants A-F. The same reaction conditions gave one or two bands for both B. anthracis and B. cereus that differed by restriction endonuclease mapping from the B. thuringiensis PCR product and established IS 231 restriction maps; this does not preclude some kind of relationship between these products and IS 231 .  相似文献   

11.
12.
AIMS: To evaluate the genetic relationship in the Bacillus cereus group by rep-PCR fingerprinting. METHODS AND RESULTS: A collection of 112 strains of the six species of the B. cereus group was analysed by rep-PCR fingerprinting using the BOX-A1R primer. A relative genetic distinctness was found among the species. Cluster analysis of the rep-PCR patterns showed clusters of B. thuringiensis strains quite separate from those of B. cereus strains. The B. anthracis strains represented an independent lineage in a B. cereus cluster. The B. mycoides, B. pseudomycoides and B. weihenstephanensis strains were clustered into three groups at some distance from the other species. Comparison of sequences of AC-390, a typical B. anthracis rep-PCR fragment, from 27 strains of B. anthracis, B. cereus, B. thuringiensis and B. weihenstephanensis, representative of different clusters identified by rep-PCR fingerprinting, confirmed that B. anthracis diverges from its related species. CONCLUSIONS: The genetic relationship deduced from the rep-PCR patterns indicates a relatively clear separation of the six species, suggesting that they can indeed be considered as separate units. SIGNIFICANCE AND IMPACT OF THE STUDY: rep-PCR fingerprinting can make a contribution in the clarification of the genetic relationships between the species of the B. cereus group.  相似文献   

13.
rpoB and gyr genes (and their fragments) of chromosomal DNA of bacteria from Bacillus cereus group - B. anthracis, B. cereus, and B. thuringiensis - which are the potential markers for their genotyping were sequenced and phylogenetic trees were constructed. Sets of primers for species-specific detection of B. anthracis, B. cereus, and B. thuringiensis by multiplex polymerase chain reaction were designed. Also primers sets, which allow to differentiate strains of B. anthracis with various plasmid profiles (containing both plasmids (pXO1+, pXO2+), and without one (pXO1+, pXO2- or pXO1-, pXO2+) or both plasmids (pXO1-, pXO2-), determining pathogenic characteristics of the strains, were developed. For multiplex PCR primer sets were optimized on the annealing temperature of primers and amplicon length. Itwas shown that phylogenetic tree can be applied as an indicator of reliability and accuracy of taxonomical classification of microorganisms' species and subspecies. Comparison of pXO1 and pXO2 plasmid sequences of B. anthracis showed that these plasmids contain 18 and 4 palindrome sequences respectively which can potentially form thermodynamically stable hairpin-loop structures.  相似文献   

14.
We set out to analyze the sequence diversity of the Bacillus thuringiensis flagellin (H antigen [Hag]) protein and compare it with H serotype diversity. Some other Bacillus cereus sensu lato species and strains were added for comparison. The internal sequences of the flagellin (hag) alleles from 80 Bacillus thuringiensis strains and 16 strains from the B. cereus sensu lato group were amplified and cloned, and their nucleotide sequences were determined and translated into amino acids. The flagellin allele nucleotide sequences for 10 additional strains were retrieved from GenBank for a total of 106 Bacillus species and strains used in this study. These included 82 B. thuringiensis strains from 67 H serotypes, 5 B. cereus strains, 3 Bacillus anthracis strains, 3 Bacillus mycoides strains, 11 Bacillus weihenstephanensis strains, 1 Bacillus halodurans strain, and 1 Bacillus subtilis strain. The first 111 and the last 66 amino acids were conserved. They were referred to as the C1 and C2 regions, respectively. The central region, however, was highly variable and is referred to as the V region. Two bootstrapped neighbor-joining trees were generated: a first one from the alignment of the translated amino acid sequences of the amplified internal sequences of the hag alleles and a second one from the alignment of the V region amino acid sequences, respectively. Of the eight clusters revealed in the tree inferred from the entire C1-V-C2 region amino acid sequences, seven were present in corresponding clusters in the tree inferred from the V region amino acid sequences. With regard to B. thuringiensis, in most cases, different serovars had different flagellin amino acid sequences, as might have been expected. Surprisingly, however, some different B. thuringiensis serovars shared identical flagellin amino acid sequences. Likewise, serovars from the same H serotypes were most often found clustered together, with exceptions. Indeed, some serovars from the same H serotype carried flagellins with sufficiently different amino acid sequences as to be located on distant clusters. Species-wise, B. halodurans, B. subtilis, and B. anthracis formed specific branches, whereas the other four species, all in the B. cereus sensu lato group, B. mycoides, B. weihenstephanensis, B. cereus, and B. thuringiensis, did not form four specific clusters as might have been expected. Rather, strains from any of these four species were placed side by side with strains from the other species. In the B. cereus sensu lato group, B. anthracis excepted, the distribution of strains was not species specific.  相似文献   

15.
The three species of the group 1 bacilli, Bacillus anthracis, B. cereus, and B. thuringiensis, are genetically very closely related. All inhabit soil habitats but exhibit different phenotypes. B. anthracis is the causative agent of anthrax and is phylogenetically monomorphic, while B. cereus and B. thuringiensis are genetically more diverse. An amplified fragment length polymorphism analysis described here demonstrates genetic diversity among a collection of non-anthrax-causing Bacillus species, some of which show significant similarity to B. anthracis. Suppression subtractive hybridization was then used to characterize the genomic differences that distinguish three of the non-anthrax-causing bacilli from B. anthracis Ames. Ninety-three DNA sequences that were present in B. anthracis but absent from the non-anthrax-causing Bacillus genomes were isolated. Furthermore, 28 of these sequences were not found in a collection of 10 non-anthrax-causing Bacillus species but were present in all members of a representative collection of B. anthracis strains. These sequences map to distinct loci on the B. anthracis genome and can be assayed simultaneously in multiplex PCR assays for rapid and highly specific DNA-based detection of B. anthracis.  相似文献   

16.
Bacillus cereus is one of the important food pathogens. Since B. cereus group cells, such as B. cereus, B. thuringiensis, B. anthracis and B. mycoides, share many phenotypical properties and a high level of chromosomal sequence similarity, it is interesting to investigate the virulence profiles for B. cereus group cells, including B. cereus strains isolated from foods and samples associated with food-poisoning outbreaks. For this investigation, the presence of enterotoxin genes, such as those of haemolysin BL, B. cereus enterotoxin T and enterotoxin FM, were assayed by polymerase chain reaction (PCR) methods. Meanwhile, their enterotoxin activities were assayed using the BCET-RPLA kit, haemolytic patterns on sheep blood agar and their cytotoxicity to Chinese hamster ovary (CHO) cells. Results showed that there were 12 enterotoxigenic profiles for the 98 B. cereus group strains collected. In addition, if any of the three types of enterotoxins was present in the B. cereus group cells, these cells were shown to be cytotoxic to the CHO cells. Similar enterotoxigenic profiles could be found among strains of B. cereus, B. mycoides and B. thuringiensis. Thus, all B. cereus group strains may be potentially toxigenic and the detection of these cells in foods is important. We thus designed PCR primers, termed Ph1/Ph2, from the sphingomyelinase gene of B. cereus cells. These primers were specific for all B. cereus group strains and could be used for the detection of B. cereus cells contaminated in food samples.  相似文献   

17.
The prevalence of the hemolytic enterotoxin complex HBL was determined in all species of the Bacillus cereus group with the exception of Bacillus anthracis. hblA, encoding the binding subunit B, was detected by PCR and Southern analysis and was confirmed by partial sequencing of 18 strains. The sequences formed two clusters, one including B. cereus and Bacillus thuringiensis strains and the other one consisting of Bacillus mycoides, Bacillus pseudomycoides, and Bacillus weihenstephanensis strains. From eight B. thuringiensis strains, the enterotoxin gene hblA could be amplified. Seven of them also expressed the complete HBL complex as determined with specific antibodies against the L(1), L(2), and B components. Eleven of 16 B. mycoides strains, all 3 B. pseudomyoides strains, 9 of 15 B. weihenstephanensis strains, and 10 of 23 B. cereus strains carried hblA. While HBL was not expressed in the B. pseudomycoides strains, the molecular assays were in accordance with the immunological assays for the majority of the remaining strains. In summary, the hemolytic enterotoxin HBL seems to be broadly distributed among strains of the B. cereus group and relates neither to a certain species nor to a specific environment. The consequences of this finding for food safety considerations need to be evaluated.  相似文献   

18.
19.
One hundred and seventeen strains of Bacillus were examined by the fluorescent-antibody technique by using the globulin fraction of serum prepared against spores of B. cereus T. All but one strain of the 59 B. cereus tested fluoresced at the exosporium surface. Fluorescent staining of B. anthracis, B. thuringiensis, and B. mycoides was also observed. Absorption of the globulin fraction with B. anthracis and B. mycoides resulted in the elimination of staining of these organisms. Absorption with B. thuringiensis ATCC 10792 removed antibodies reacting with 6 of the strains of B. thuringiensis tested. Absorption with B. thuringiensis var. galleriae removed antibodies against B. cereus to such a degree that the globulin fraction was unusable.  相似文献   

20.
A novel enterotoxin gene was cloned from Bacillus cereus FM1, and its nucleotide sequence was determined. Previously, a 45-kDa protein causing characteristic enterotoxin symptoms in higher animals had been isolated (K. Shinagawa, p. 181-193, in A. E. Pohland et al., ed., Microbial Toxins in Foods and Feeds, 1990) from the same B. cereus strain, but no report of cloning of the enterotoxin gene has been published. In the present study, a specific antibody to the purified enterotoxin was produced and used to screen the genomic library of B. cereus FM1 made with the lambda gt11 vector. An immunologically positive clone was found to contain the full protein-coding region and some 5' and 3' flanking regions. The deduced amino acid sequence of the cloned gene indicated that the protein is rich in beta structures and contains some unusual sequences, such as consecutive Asn residues. In order to clone enterotoxin genes from Bacillus thuringiensis, two PCR primers were synthesized based on the nucleotide sequence of the B. cereus gene. These primers were designed to amplify the full protein-coding region. PCR conducted with DNA preparations from the B. thuringiensis subsp. sotto and B. thuringiensis subsp. israelensis strains successfully amplified a segment of DNA with a size almost identical to that of the protein-coding region of the B. cereus enterotoxin. Nucleotide sequences of the amplified DNA segments showed that these B. thuringiensis strains contain an enterotoxin gene very similar to that of B. cereus. Further PCR screening of additional B. thuringiensis strains with four primer pairs in one reaction revealed that some additional B. thuringiensis strains contain enterotoxin-like genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号