首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sometimes, commercial products obtained from wild animals are sold as if they were from domestic animals and vice versa. At this point of the productive chain, legal control of possible wildlife products is difficult. Common in the commerce of northern Argentina, skins of two wild species, the carpincho and the collared peccary, look very similar to each other and to those of the domestic pig; it is extremely difficult to differentiate them after they have been tanned. Because there was no an adequate methodology to discriminate between leather of these three species, we developed a new methodology of DNA extraction from skin and leather. This new method involves digesting a leather sample using proteinase K, followed by precipitation of proteins with 5 M NaCl, cleaning with absolute isopropanol and DNA precipitation with 70% ethanol. DNA is hydrated in Tris-EDTA buffer. This protocol provided good-quality DNA suitable for analysis with molecular markers. This new protocol has potential for use in identifying leather products of these species using molecular markers based on RAPDs.  相似文献   

2.
This study focuses on the specific problems of protein extraction from recalcitrant plant tissues and evaluates several methods to bypass them. Sample preparation is a critical step in a two-dimensional gel electrophoresis proteome approach and is absolutely essential for good results. We evaluated four methods: the classical trichloroacetic acid (TCA)/acetone precipitation, TCA/acetone precipitation and fractionation, an alternative based on fractionation and without precipitation, and phenol extraction methanol/ammonium acetate precipitation. We optimized the phenol extraction protocol for small amounts of tissue, which is essential when the study material is limited. The protocol was optimized for banana (Musa spp.) and was subsequently applied to two other plant species: apple (Malus domestica L.) and potato (Solanum tuberosum L.). Banana (Musa spp.) is a good representative of a "difficult" plant species since it contains many interfering metabolites. Only classical TCA/acetone precipitation and phenol extraction methods proved useful as standard methods. Both methods are associated with a minor but reproducible loss of proteins. Every extraction method and the subsequent analytical procedure have their physicochemical limitations; both methods should be investigated before selecting an appropriate protocol. The study, which is presented in this paper, is useful for guiding the experimental setup of many other nonmodel species, containing various interfering elements.  相似文献   

3.
Protocols for genomic DNA extraction from plants are generally lengthily, since they require that tissues be ground in liquid nitrogen, followed by a precipitation step, washing and drying of the DNA pellet, etc. This represents a major challenge especially when several hundred samples must be screened/analyzed within a working day. There is therefore a need for a rapid and simple procedure, which will produce DNA quality suitable for various analyses. Here, we describe a time and cost efficient protocol for genomic DNA isolation from plants suitable for all routine genetic screening/analyses. The protocol is free from hazardous reagents and therefore safe to be executed by non-specialists. With this protocol more than 100 genomic DNA samples could manually be extracted within a working day, making it a promising alternative in genetic studies of large-scale genomic screening projects.  相似文献   

4.
A simplified technique was developed for DNA sequence-based diagnosis of harmful dinoflagellate species. This protocol integrates procedures for DNA extraction and polymerase chain reaction (PCR) amplification into a single tube. DNA sequencing reactions were performed directly, using unpurified PCR products as the DNA template for subsequent sequencing reactions. PCR reactions using DNA extracted from single cells of Cocodinium polykrikoides and Alexandrium catenella successfully amplified the target ribosomal DNA regions. DNA sequencing of the unpurified PCR products showed that DNA sequences corresponded to the expected locus of ribosomal DNA regions of both A. catenella and C. polykrikoides (each zero genetic distance and 100% sequence similarity). Using the protocol described in this article, there was little DNA loss during the purification step, and the technique was found to be rapid and inexpensive. This protocol clearly resolves the taxonomic ambiguities of closely related algal species (such as Alexandrium and Cochlodinium), and it constitutes a significant breakthrough for the molecular analysis of nonculturable dinoflagellate species.  相似文献   

5.
In order to investigate the mutation characteristics and to further examine the genetic variation of mutant sunflower (Helianthus annuus) obtained in plants grown from seeds exposed to space conditions, only the mature tissues such as leaf and flower could be used for DNA extraction after mutation characteristics were confirmed. The rich contents of polysaccharides, tannins, secondary metabolites, and polyphenolics made it difficult to isolate high-quality DNA from mature leaves of sunflower according to previous reports. Based on the comparison of the differences in previously reported protocols, a modified method for the extraction of high-quality DNA was developed. Using this protocol, the DNA isolated from sunflower was high in quality and suitable for restriction digestion (EcoRI, HindII, BamHI), random amplified polymorphic DNA study and further molecular research. Therefore, the modified protocol was suitable for investigating the genetic variation of sunflower using mature leaf DNA.  相似文献   

6.
A cost-effective, reliable and efficient method of obtaining DNA samples is essential in large-scale genetic analyses. This study examines the possibility of using a threatened vole species, Microtus cabrerae, as a model for the collection and preservation of faecal samples for subsequent DNA extraction with a protocol based on the HotSHOT technique. Through the examination of the probability of multi-copies (mitochondrial) and single copy (microsatellite) loci amplification (including the genotype error) and of the DNA yield (estimated by real-time qPCR), the new protocol was compared with both the frequently employed methods that successfully use ethanol to preserve faecal samples and with commercial kit-based DNA extraction. The single-tube HotSHOT-based protocol is a user-friendly, non-polluting, time-saving and inexpensive method of faeces sample collection, preservation and PCR-quality gDNA preparation. This technique therefore provides researchers with a new approach that can be employed in high-throughput, noninvasive genetic analyses of wild animal populations.  相似文献   

7.
This protocol permits the simultaneous extraction of clean DNA from many samples with little reagent waste, thus decreasing the cost of analysis per sample. The procedure is rapid, permitting the processing of 80–100 samples per day. Using this protocol, we analyzed naturally propagated and micropropagated populations of henequen and otherAgavaceae species using amplified fragment length polymorphism (AFLP). Agaves have succulent leaves with a content that is high in fiber and chemical compounds. Therefore, this protocol should work for other tropical and subtropical plant species. The protocol involves precipitation and resuspension of DNA 3 times at the end of the preparation; this increases DNA digestibility and the sharpness of AFLP bands.  相似文献   

8.
Dimorphandra mollis (Leguminosae), known as faveiro and fava d'anta, is a tree that is widely distributed throughout the Brazilian Cerrado (a savanna-like biome). This species is economically valuable and has been extensively exploited because its fruits contain the flavonoid rutin, which is used to produce medications for human circulatory diseases. Knowledge about its genetic diversity is needed to guide decisions about the conservation and rational use of this species in order to maintain its diversity. DNA extraction is an essential step for obtaining good results in a molecular analysis. However, DNA isolation from plants is usually compromised by excessive contamination by secondary metabolites. DNA extraction of D. mollis, mainly from mature leaves, results in a highly viscous mass that is difficult to handle and use in techniques that require pure DNA. We tested four protocols for plant DNA extraction that can be used to minimize problems such as contamination by polysaccharides, which is more pronounced in material from mature leaves. The protocol that produced the best DNA quality initially utilizes a sorbitol buffer to remove mucilaginous polysaccharides. The macerated leaf material is washed with this buffer until there is no visible mucilage in the sample. This protocol is adequate for DNA extraction both from young and mature leaves, and could be useful not only for D. mollis but also for other species that have high levels of polysaccharide contamination during the extraction process.  相似文献   

9.
In molecular biology studies of Anura, nondestructive methods to obtain genetic material are needed as alternatives to toe clipping. This work evaluates a nondestructive method for sampling DNA from blood puncture, comparing the performance of three different extraction protocols (Qiagen Kit, Salting-out and Chelex). We collected 134 individuals of Eleutherodactylus johnstonei, extracting blood via puncture of the medial vein using commercial-grade glucometer lancets. We extracted 100-1880 ng DNA, finding no differences between the extraction protocols. We compared the quality of the resulting DNA through amplification and sequencing of the 16S mitochondrial gene. Amplification was successful for the three extraction protocols, although Chelex showed better performance, making it the most recommendable protocol for extraction of DNA from blood. The resulting sequences corresponded to those registered in the GenBank for this species. Additionally, we found no significant differences in survival or weight change between the individuals that were manipulated and a control group (mean survival 66.7% treated, 62.9% untreated). Data reveal that blood samples obtained by puncture are a convenient alternative to other tissues (phalange, buccal swab, liver) that have traditionally been used as DNA sources for anurans. The technique is applicable to small and large species, covering most anuran diversity, provides enough DNA for many genetic applications and produces no noticeable effect on the survival or performance, given that it does not affect the motor parts or the dexterity of the animals.  相似文献   

10.
Genomic DNA extraction protocol with relatively high quantity and purity is prerequisite for the successful molecular identification and characterisation of plant pathogens. Conventional DNA extraction methods are often time-consuming and yield only very poor quantity of genomic DNA for samples with higher mycelial age. In our laboratory, we have aimed at establishing an efficient DNA isolation procedure, exclusively for the oomycete pathogen Phytophthora colocasiae causing serious leaf blight disease in taro. For this a phenol free protocol was adopted, which involves SDS/Proteinase K-based inactivation of protein contaminants, extraction of nucleic acids using chloroform: isoamyl alcohol and later precipitation of genomic DNA using isopropanol and sodium acetate. The purity of the isolated DNA was analysed by A260/280 and A260/230 spectrophotometric readings and confirmed by restriction digestion with restriction enzyme Eco RI. In this study, a comparative assessment was done with CTAB method and the commercial genomic DNA purification kit (Thermo Fisher Scientific, Fermentas, EU). The extracted DNA was found to be suitable for further downstream applications like ITS amplification of the rDNA ITS region and PCR amplification with species-specific primers.  相似文献   

11.
Origanum onites is an economically important medicinal plant with high essential oil content. Lack of an appropriate DNA isolation procedure is a limiting factor for any molecular study of this plant. We have used a protocol for genomic DNA isolation based on a hexadecyltrimethylammonium bromide (CTAB) method described for other plant species. The method involves mortar grinding of leaf tissue, modified CTAB extraction using high salt concentrations and polyvinyl pyrrolidone, and successive isoamyl alcohol/chloroform extractions. The yield was approx. 20 microg DNA per 200 mg of initial fresh plant material. The genomic DNA obtained by this method was suitable to be used in restriction digests, inter simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) reactions. This extraction method should facilitate the molecular analysis of Origanum chemotypes.  相似文献   

12.
Wild felids and canids are usually the main predators in the food chains where they dwell and are almost invisible to behavior and ecology researchers. Due to their grooming behavior, they tend to swallow shed hair, which shows up in the feces. DNA found in hair shafts can be used in molecular studies that can unravel, for instance, genetic variability, reproductive mode and family structure, and in some species, it is even possible to estimate migration and dispersion rates in given populations. First, however, DNA must be extracted from hair. We extracted successfully and dependably hair shaft DNA from eight wild Brazilian felids, ocelot, margay, oncilla, Geoffroy's cat, pampas cat, jaguarundi, puma, and jaguar, as well as the domestic cat and from three wild Brazilian canids, maned wolf, crab-eating fox, and hoary fox, as well as the domestic dog. Hair samples came mostly from feces collected at the S?o Paulo Zoo and were also gathered from non-sedated pet or from recently dead wild animals and were also collected from museum specimens. Fractions of hair samples were stained before DNA extraction, while most samples were not. Our extraction protocol is based on a feather DNA extraction technique, based in the phenol:chloroform:isoamyl alcohol general method, with proteinase K as digestive enzyme.  相似文献   

13.
Molecular analyses for the study of soil microbial communities often depend on the extraction of DNA directly from soils. These extractions are by no means trivial, being complicated by humic substances that are inhibitory to PCR and restriction enzymes or being too highly colored for blot hybridization protocols. Many different published protocols exist, but none have been found to be suitable enough to be generally accepted as a standard. Most direct extraction protocols start with relatively harsh cell breakage steps such as bead-beating and freeze-thaw cycles, followed by the addition of detergents and high salt buffers and/or enzymic digestion with lysozyme and proteases. After typical organic extraction and alcohol precipitation, further purification is usually needed to remove inhibitory substances from the extract. The purification steps include size-exclusion chromatography, ion-exchange chromatography, silica gel spin columns, and cesium chloride gradients, among others. A direct DNA extraction protocol is described that has been shown to be effective in a wide variety of soil types. This protocol is experimentally compared to several published protocols.  相似文献   

14.
Genomic DNA was extracted from eight medicinal plants using the present DNA extraction protocols (CTAB extraction method) with some modifications. Leaves were fixed in different fixing solutions containing absolute alcohol (99.99%), chloroform and EDTA, but without liquid nitrogen. DNA quality and quantity obtained were comparable to those isolated with liquid nitrogen, as the lambda260/lambda280 ratio with liquid nitrogen was in range 1.3-1.7 and with other fixing solutions it was 1.1-1.5. Absolute alcohol showed best results as fixing solution. Good quality of DNA was isolated without using liquid nitrogen from different medicinal plant species. DNA isolated by this method was suitable for various molecular biology applications.  相似文献   

15.
The barcoding of life initiative provides a universal molecular tool to distinguish animal species based on the amplification and sequencing of a fragment of the subunit 1 of the cytochrome oxidase (COI) gene. Obtaining good quality DNA for barcoding purposes is a limiting factor, especially in studies conducted on small‐sized samples or those requiring the maintenance of the organism as a voucher. In this study, we compared the number of positive amplifications and the quality of the sequences obtained using DNA extraction methods that also differ in their economic costs and time requirements and we applied them for the genetic characterization of louse flies. Four DNA extraction methods were studied: chloroform/isoamyl alcohol, HotShot procedure, Qiagen DNeasy® Tissue and Blood Kit and DNA Kit Maxwell® 16LEV. All the louse flies were morphologically identified as Ornithophila gestroi and a single COI‐based haplotype was identified. The number of positive amplifications did not differ significantly among DNA extraction procedures. However, the quality of the sequences was significantly lower for the case of the chloroform/isoamyl alcohol procedure with respect to the rest of methods tested here. These results may be useful for the genetic characterization of louse flies, leaving most of the remaining insect as a voucher.  相似文献   

16.
DNA extraction from crayfish exoskeleton   总被引:1,自引:0,他引:1  
Crayfish exoskeleton (CE) samples are generally less invasive and easy to be collected. However, it is difficult to extract DNA from them. This study was intended to investigate CE as a DNA source and design an easy and efficient DNA extraction protocol for polymerase chain reactions. Specific primer pair (PPO-F, PPO-R) was used to amplify extracted DNA from CE, and compared to crayfish tail muscle DNA sample. Moreover, seven microsatellites markers were used to amplify the CE DNA samples set. Since the extracted DNA from CE is suitable for gene amplification, the results present usefulness of CE as an easy and convenient DNA source for PCR-based population genetic research.  相似文献   

17.
Five published DNA extraction protocols were compared for their ability to produce good quality DNA from fresh and herbarium leaves of several species of the genus Dalbergia. The leaves of these species contain high amounts of secondary metabolites, which make it difficult to perform a clean DNA extraction and thereby interfering with subsequent PCR amplification. The protocol that produced the best DNA quality in most of the Dalbergia species analyzed, utilizes polyvinylpyrrolidone to bind the phenolic compounds, a high molar concentration of NaCl to inhibit co-precipitation of polysaccharides and DNA, and LiCl for removing RNA by selective precipitation. The DNA quality of herbarium specimens was worse than that for fresh leaves, due to collecting conditions and preservation of samples. We analyzed 54 herbarium specimens, but the recovered DNA allowed successful PCR amplification in only eight. For the genus Dalbergia, the herbarium is an important source of material for phylogenetic and evolutionary studies; due to the occurrence of the different species in various geographical regions in Brazil, it is difficult to obtain fresh material in nature. Our results demonstrated that for Dalbergia species the methods used for the collection and preservation of herbarium specimens have a mayor influence on DNA quality and in the success of phylogenetic studies of the species.  相似文献   

18.
目的:建立简便、快捷、经济的模式小鼠总DNA提取方法,以快速鉴定大批量模式小鼠基因型。方法采用苯酚抽提法、异丙醇沉淀法、鼠耳煮沸法提取同种模式小鼠总DNA,对比DNA纯度、得率、耗费时间,并比较基因型鉴定结果。结果苯酚抽提法得率最高,异丙醇沉淀法最低;而纯度则按照苯酚抽提法、异丙醇沉淀法、鼠耳煮沸法顺序递减;在耗时上鼠耳煮沸法最短。三种方法提取的DNA均可做模版用于基因型鉴定。结论鼠耳煮沸法操作简单、成本最低,快速、基因型鉴定结果可靠,可用于规模化的基因型鉴定实验中。  相似文献   

19.
The quality and yield of extracted DNA are critical for the majority of downstream applications in molecular biology. Moreover, molecular techniques such as quantitative real-time PCR (qPCR) are becoming increasingly widespread; thus, validation and cross-laboratory comparison of data require standardization of upstream experimental procedures. DNA extraction methods depend on the type and size of starting material(s) used. As such, the extraction of template DNA is arguably the most significant variable when cross-comparing data from different laboratories. Here, we describe a reliable, inexpensive and rapid method of DNA purification that is equally applicable to small or large scale or high-throughput purification of DNA. The protocol relies on a CTAB-based buffer for cell lysis and further purification of DNA with phenol : chloroform : isoamyl alcohol. The protocol has been used successfully for DNA purification from rumen fluid and plant cells. Moreover, after slight alterations, the same protocol was used for large-scale extraction of DNA from pure cultures of Gram-positive and Gram-negative bacteria. The yield of the DNA obtained with this method exceeded that from the same samples using commercial kits, and the quality was confirmed by successful qPCR applications.  相似文献   

20.
More than 700 bacterial species inhabit oral cavity of humans. Various oral diseases are related to changes in the structure of this complex community. Their pathogenesis can, thus, be better understood by study of oral microbial flora. As many bacteria are refractory to cultivation, molecular approaches based on PCR followed by downstream analysis are more suitable for community analysis than culture dependent methods. Effective DNA extraction from the sample matrix is a fundamental part of the pre-analytical phase but it can be influenced by processing of the starting material. The aim of this study was to analyze the effects of saliva processing on DNA extraction using several non-commercial isolation procedures. Bacterial chromosomal DNA was extracted from three different sample matrices: fresh saliva, diluted saliva and pelleted saliva using four different extraction methods: phenol chloroform protocol, benzyl-chloride protocol, extraction with Chelex-100 and extraction with Triton X. Extraction from different saliva samples and the use of different extraction methods significantly affected the effectiveness of DNA extraction. The most suitable material for bacterial DNA extraction for molecular analysis is a fresh saliva sample. The most effective methods for isolating salivary DNA are the benzyl-chloride protocol and Chelex-100 extraction. Our results have implications for studies concentrating on salivary microbiome and its role in the pathogenesis of oral diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号