首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
DeltaF508 CFTR can be functionally restored in the plasma membrane by exposure of the cell to lower temperature. However, restored DeltaF508 CFTR has a much shorter half-life than normal. We studied whether NHERF1, which binds to the PDZ motif of CFTR, might be a critical mediator in the turnover of DeltaF508 CFTR from the cell surface. We used RNAi to reduce the expression of NHERF1 in human airway epithelial cells. Knockdown of NHERF1 reversibly reduces surface expression of WT-CFTR without altering its total expression. As expected, temperature correction increased mature C band DeltaF508 CFTR (rDeltaF508) but unexpectedly allowed immature B band of rDeltaF508 to traffic to the cell surface. Both surface and total expression of rDeltaF508 in NHERF1 knockdown cells were reduced and degradation of surface localized rDeltaF508 was even faster in NHERF1 knockdown cells. Proteasomal and lysosomal inhibitor treatments led to a significant decrease in the accelerated degradation of surface rDeltaF508 in NHERF1 knockdown cells. These results indicate that NHERF1 plays a role in the turnover of CFTR at the cell surface, and that rDeltaF508 CFTR at the cell surface remains highly susceptible to degradation.  相似文献   

2.
The DeltaF508 mutation of cystic fibrosis transmembrane conductance regulator (CFTR) is a trafficking mutant, which is retained and degraded in the endoplasmic reticulum by the ubiquitin-proteasome pathway. The mutant protein fails to reach a completely folded conformation that is no longer a substrate for ubiquitination ("stable B"). Wild type protein reaches this state with 25% efficiency. In this study the rabbit reticulocyte lysate with added microsomal membranes has been used to reproduce the post-translational events in the folding of wild type and DeltaF508 CFTR. In this system wild type CFTR does not reach the stable B form if the post-translational temperature is 37 degrees C, whereas at 30 degrees C the behavior of both wild type and mutant proteins mimics that observed in the cell. Geldanamycin stabilizes DeltaF508 CFTR with respect to ubiquitination only when added post-translationally. The interaction of wild type and mutant CFTR with the molecular chaperones heat shock cognate 70 (hsc70) and heat shock protein 90 (hsp90) has been assessed. Release of wild type protein from hsc70 coincides with the cessation of ubiquitination and formation of stable B. Geldanamycin immediately prevents the binding of hsp90 to DeltaF508 CFTR, and after a delay releases it from hsc70. Release of mutant protein from hsc70 also coincides with the formation of stable B DeltaF508 CFTR.  相似文献   

3.
Secreted proteins that fail to achieve their native conformations, such as cystic fibrosis transmembrane conductance regulator (CFTR) and particularly the DeltaF508-CFTR variant can be selected for endoplasmic reticulum (ER)-associated degradation (ERAD) by molecular chaperones. Because the message corresponding to HSP26, which encodes a small heat-shock protein (sHsp) in yeast was up-regulated in response to CFTR expression, we examined the impact of sHsps on ERAD. First, we observed that CFTR was completely stabilized in cells lacking two partially redundant sHsps, Hsp26p and Hsp42p. Interestingly, the ERAD of a soluble and a related integral membrane protein were unaffected in yeast deleted for the genes encoding these sHsps, and CFTR polyubiquitination was also unaltered, suggesting that Hsp26p/Hsp42p are not essential for polyubiquitination. Next, we discovered that DeltaF508-CFTR degradation was enhanced when a mammalian sHsp, alphaA-crystallin, was overexpressed in human embryonic kidney 293 cells, but wild-type CFTR biogenesis was unchanged. Because alphaA-crystallin interacted preferentially with DeltaF508-CFTR and because purified alphaA-crystallin suppressed the aggregation of the first nucleotide-binding domain of CFTR, we suggest that sHsps maintain the solubility of DeltaF508-CFTR during the ERAD of this polypeptide.  相似文献   

4.
Deletion of phenylalanine at position 508 (DeltaF508) is the most common cystic fibrosis (CF)-associated mutation in the CF transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel. The consensus notion is that DeltaF508 imposes a temperature-sensitive folding defect and targets newly synthesized CFTR for degradation at endoplasmic reticulum (ER). A limited amount of CFTR activity, however, appears at the cell surface in the epithelia of homozygous DeltaF508 CFTR mice and patients, suggesting that the ER retention is not absolute in native tissues. To further elucidate the reasons behind the inability of DeltaF508 CFTR to accumulate at the plasma membrane, its stability was determined subsequent to escape from the ER, induced by reduced temperature and glycerol. Biochemical and functional measurements show that rescued DeltaF508 CFTR has a temperature-sensitive stability defect in post-ER compartments, including the cell surface. The more than 4-20-fold accelerated degradation rate between 37 and 40 degrees C is, most likely, due to decreased conformational stability of the rescued DeltaF508 CFTR, demonstrated by in situ protease susceptibility and SDS-resistant thermoaggregation assays. We propose that the decreased stability of the spontaneously or pharmacologically rescued mutant may contribute to its inability to accumulate at the cell surface. Thus, therapeutic efforts to correct the folding defect should be combined with stabilization of the native DeltaF508 CFTR.  相似文献   

5.
Mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) cause cystic fibrosis. The most common disease-causing mutation, DeltaF508, is retained in the endoplasmic reticulum (ER) and is unable to function as a plasma membrane chloride channel. To investigate whether the ER retention of DeltaF508-CFTR is caused by immobilization and/or aggregation, we have measured the diffusional mobility of green fluorescent protein (GFP) chimeras of wild type (wt)-CFTR and DeltaF508-CFTR by fluorescence recovery after photobleaching. GFP-labeled DeltaF508-CFTR was localized in the ER and wt-CFTR in the plasma membrane and intracellular membranes in transfected COS7 and Chinese hamster ovary K1 cells. Both chimeras localized to the ER after brefeldin A treatment. Spot photobleaching showed that CFTR diffusion (diffusion coefficient approximately 10(-9) cm(2)/s) was not significantly slowed by the DeltaF508 mutation and that nearly all wt-CFTR and DeltaF508-CFTR diffused throughout the ER without restriction. Stabilization of molecular chaperone interactions by ATP depletion produced remarkable DeltaF508-CFTR immobilization ( approximately 50%) and slowed diffusion (6.5 x 10(-10) cm(2)/s) but had little effect on wt-CFTR. Fluorescence depletion experiments revealed that the immobilized DeltaF508-CFTR in ATP-depleted cells remained in an ER pattern. The mobility of wt-CFTR and DeltaF508-CFTR was reduced by maneuvers that alter CFTR processing or interactions with molecular chaperones, including tunicamycin, geldanamycin, and lactacystin. Photobleaching of the fluorescent ER lipid diOC(4)(3) showed that neither ER restructuring nor fragmentation during these maneuvers was responsible for the slowing and immobilization of CFTR. These results suggest that (a) the ER retention of DeltaF508-CFTR is not due to restricted ER mobility, (b) the majority of DeltaF508-CFTR is not aggregated or bound to slowly moving membrane proteins, and (c) DeltaF508-CFTR may interact to a greater extent with molecular chaperones than does wt-CFTR.  相似文献   

6.
Cystic fibrosis (CF) is caused by the mutation in CF transmembrane conductance regulator (CFTR), a cAMP-dependent Cl(-) channel at the plasma membrane of epithelium. The most common mutant, DeltaF508 CFTR, has competent Cl(-) channel function, but fails to express at the plasma membrane since it is retained in the endoplasmic reticulum (ER) by the ER quality control system. Here, we show that calnexin (CNX) is not necessary for the ER retention of DeltaF508 CFTR. Our data show that CNX knockout (KO) does not affect the biosynthetic processing, cellular localization or the Cl(-) channel function of DeltaF508 CFTR. Importantly, cAMP-induced Cl(-) current in colonic epithelium from CNX KO/DeltaF508 CFTR mice was comparable with that of DeltaF508 CFTR mice, indicating that CNX KO failed to rescue the ER retention of DeltaF508 CFTR in vivo. Moreover, we show that CNX assures the efficient expression of WT CFTR, but not DeltaF508 CFTR, by inhibiting the proteasomal degradation, indicating that CNX might stimulate the productive folding of WT CFTR, but not DeltaF508 CFTR, which has folding defects.  相似文献   

7.
Intracellular trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) is a focus of attention because it is defective in most patients with cystic fibrosis. DeltaF508 CFTR, which does not mature conformationally, normally does not exit the endoplasmic reticulum, but if induced to do so at reduced temperature is short-lived at the surface. We used external epitope-tagged constructs to elucidate the itinerary and kinetics of wild type and DeltaF508 CFTR in the endocytic pathway and visualized movement of CFTR from the surface to intracellular compartments. Modulation of different endocytic steps with low temperature (16 degrees C) block, protease inhibitors, and overexpression of wild type and mutant Rab GTPases revealed that surface CFTR enters several different routes, including a Rab5-dependent initial step to early endosomes, then either Rab11-dependent recycling back to the surface or Rab7-regulated movement to late endosomes or alternatively Rab9-mediated transit to the trans-Golgi network. Without any of these modulations DeltaF508 CFTR rapidly disappears from and does not return to the cell surface, confirming that its altered structure is detected in the distal as well as proximal secretory pathway. Importantly, however, the mutant protein can be rescued at the plasma membrane by Rab11 overexpression, proteasome inhibitors, or inhibition of Rab5-dependent endocytosis.  相似文献   

8.
The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in individuals with cystic fibrosis, DeltaF508, causes retention of DeltaF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl(-) channels in the apical plasma membrane. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the DeltaF508 mutation reduces the half-life of DeltaF508-CFTR in the apical plasma membrane. Because DeltaF508-CFTR retains some Cl(-) channel activity, increased expression of DeltaF508-CFTR in the apical membrane could serve as a potential therapeutic approach for cystic fibrosis. However, little is known about the mechanisms responsible for the short apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. Accordingly, the goal of this study was to determine the cellular defects in the trafficking of rescued DeltaF508-CFTR that lead to the decreased apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. We report that in polarized human airway epithelial cells (CFBE41o-) the DeltaF508 mutation increased endocytosis of CFTR from the apical membrane without causing a global endocytic defect or affecting the endocytic recycling of CFTR in the Rab11a-specific apical recycling compartment.  相似文献   

9.
The most common cause of CF (cystic fibrosis) is the deletion of Phe(508) (DeltaF508) in the CFTR [CF TM (transmembrane) conductance regulator] chloride channel. One major problem with DeltaF508 CFTR is that the protein is defective in folding so that little mature protein is delivered to the cell surface. Expression of DeltaF508 CFTR in the presence of small molecules known as correctors or pharmacological chaperones can increase the level of mature protein. Unfortunately, the efficiency of corrector-induced maturation of DeltaF508 CFTR is probably too low to have therapeutic value and approaches are needed to increase maturation efficiency. We postulated that expression of DeltaF508 CFTR in the presence of multiple correctors that bound to different sites may have an additive effect on maturation. In support of this mechanism, we found that expression of P-glycoprotein (CFTR's sister protein) processing mutants in the presence of two compounds that bind to different sites (rhodamine B and Hoechst 33342) had an additive effect on maturation. Therefore we tested whether expression of DeltaF508 CFTR in the presence of combinations of three different classes of corrector molecules would increase its maturation efficiency. It was found that the combination of the quinazoline VRT-325 together with the thiazole corr-2b or bisaminomethylbithiazole corr-4a doubled the steady-state maturation efficiency of DeltaF508 CFTR (approx. 40% of total CFTR was mature protein) compared with expression in the presence of a single compound. The additive effect of the correctors on DeltaF508 CFTR maturation suggests that they directly interact at different sites of the protein.  相似文献   

10.
The DeltaF508 gene mutation prevents delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) to the plasma membrane. The current study examines the biochemical basis for the upregulation of DeltaF508 CFTR expression by sodium butyrate and low temperature. Surface CFTR protein expression was determined by quantitative immunoblot following surface biotinylation and streptavidin extraction. CF gene expression was measured by Northern analysis and CFTR function by forskolin-stimulated (125)I efflux. Butyrate increased DeltaF508 mRNA levels and protein expression but did not increase the biochemical or functional expression of DeltaF508 CFTR at the cell surface. Low temperature increased the biochemical and functional expression of DeltaF508 CFTR at the cell surface but did not increase CFTR mRNA levels. Combining treatments led to a synergistic increase in both DeltaF508 mRNA and surface protein levels that results from the stabilization of CFTR mRNA and protein by low temperature. These findings indicate that surface expression of DeltaF508 CFTR can be markedly enhanced by carefully selected combination agents.  相似文献   

11.
Curcumin has been reported to correct cystic fibrosis caused by the DeltaF508 mutation of the cystic fibrosis transmembrane regulator (CFTR) but its mechanistic action remains unclear. We have recently demonstrated that the ER chaperone calreticulin (CRT) negatively regulates the CFTR cell surface expression and activity. Thus, we aimed at determining whether CRT mediates the effect of curcumin on CFTR. We show here that the treatment with curcumin of Chinese hamster ovary cells suppressed CRT expression and increased wild-type CFTR but did not affect DeltaF508 CFTR expression. However, we determined that although curcumin did not augment DeltaF508 CFTR expression, it enhanced the functional competence of DeltaF508 CFTR induced by 26 degrees C incubation. Knock down of CRT by siRNA at low-temperature had a similar effect. Our findings suggest that the positive effect of curcumin on CFTR expression is mediated through the down-regulation of CRT, a negative regulator of CFTR.  相似文献   

12.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis. Its expression and functional interactions in the apical membrane are regulated by several PDZ (PSD-95, discs large, zonula occludens-1) proteins, which mediate protein-protein interactions, typically by binding C-terminal recognition motifs. In particular, the CFTR-associated ligand (CAL) limits cell-surface levels of the most common disease-associated mutant DeltaF508-CFTR. CAL also mediates degradation of wild-type CFTR, targeting it to lysosomes following endocytosis. Nevertheless, wild-type CFTR survives numerous cycles of uptake and recycling. In doing so, how does it repeatedly avoid CAL-mediated degradation? One mechanism may involve competition between CAL and other PDZ proteins including Na (+)/H (+) exchanger-3 regulatory factors 1 and 2 (NHERF1 and NHERF2), which functionally stabilize cell-surface CFTR. Thus, to understand the biochemical basis of WT-CFTR persistence, we need to know the relative affinities of these partners. However, no quantitative binding data are available for CAL or the individual NHERF2 PDZ domains, and published estimates for the NHERF1 PDZ domains conflict. Here we demonstrate that the affinity of the CAL PDZ domain for the CFTR C-terminus is much weaker than those of NHERF1 and NHERF2 domains, enabling wild-type CFTR to avoid premature entrapment in the lysosomal pathway. At the same time, CAL's affinity is evidently sufficient to capture and degrade more rapidly cycling mutants, such as DeltaF508-CFTR. The relatively weak affinity of the CAL:CFTR interaction may provide a pharmacological window for stabilizing rescued DeltaF508-CFTR in patients with cystic fibrosis.  相似文献   

13.
14.
A complex involving Derlin-1 and p97 mediates the retrotranslocation and endoplasmic reticulum (ER)-associated degradation of misfolded proteins in yeast and is used by certain viruses to promote host cell protein degradation (Romisch, K. (2005) Annu. Rev. Cell Dev. Biol. 21, 435-456; Lilley, B. N., and Ploegh, H. L. (2004) Nature 429, 834-840; Ye, Y., Shibata, Y., Yun, C., Ron, D., and Rapoport, T. A. (2004) Nature 429, 841-847). We asked whether the components of this pathway are involved in the endoplasmic reticulum-associated degradation of the mammalian integral membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), a substrate for the ubiquitin-proteasome system. We report that Derlin-1 and p97 formed complexes with CFTR in human airway epithelial cells. Derlin-1 interacted with nonubiquitylated CFTR, whereas p97 associated with ubiquitylated CFTR. Exogenous expression of Derlin-1 led to its co-localization with CFTR in the ER where it reduced wild type (WT) CFTR expression and efficiently degraded the disease-associated CFTR folding mutants, DeltaF508 and G85E (>90%). Consistent with this, Derlin-1 also reduced the amount of WT or DeltaF508 CFTR appearing in detergent-in-soluble aggregates. An approximately 70% knockdown of endogenous Derlin-1 by RNA interference increased the steady-state levels of WT and DeltaF508 CFTR by 10-15-fold, reflecting its significant role in CFTR degradation. Derlin-1 mediated the degradation of N-terminal CFTR fragments corresponding to the first transmembrane domain of CFTR, but CFTR fragments that incorporated additional domains were degraded less efficiently. These findings suggest that Derlin-1 recognizes misfolded, nonubiquitylated CFTR to initiate its dislocation and degradation early in the course of CFTR biogenesis, perhaps by detecting structural instability within the first transmembrane domain.  相似文献   

15.
Proteostasis (Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science 2008;319:916-919) refers to the biology that maintains the proteome in health and disease. Proteostasis is challenged by the most common mutant in cystic fibrosis, DeltaF508, a chloride channel [the cystic fibrosis transmembrane conductance regulator (CFTR)] that exhibits a temperature-sensitive phenotype for coupling to the coatomer complex II (COPII) transport machine for exit from the endoplasmic reticulum. Whether rescue of export of DeltaF508 CFTR at reduced temperature simply reflects energetic stabilization of the chemical fold defined by its primary sequence or requires a unique proteostasis environment is unknown. We now show that reduced temperature (30 degrees C) export of DeltaF508 does not occur in some cell types, despite efficient export of wild-type CFTR. We find that DeltaF508 export requires a local biological folding environment that is sensitive to heat/stress-inducible factors found in some cell types, suggesting that the energetic stabilization by reduced temperature is necessary, but not sufficient, for export of DeltaF508. Thus, the cell may require a proteostasis environment that is in part distinct from the wild-type pathway to restore DeltaF508 coupling to COPII. These results are discussed in the context of the energetics of the protein fold and the potential application of small molecules to achieve a proteostasis environment favoring export of a functional form of DeltaF508.  相似文献   

16.
The most common cause of cystic fibrosis (CF) is defective folding of a cystic fibrosis transmembrane conductance regulator (CFTR) mutant lacking Phe(508) (DeltaF508). The DeltaF508 protein appears to be trapped in a prefolded state with incomplete packing of the transmembrane (TM) segments, a defect that can be repaired by expression in the presence of correctors such as corr-4a, VRT-325, and VRT-532. To determine whether the mechanism of correctors involves direct interactions with CFTR, our approach was to test whether correctors blocked disulfide cross-linking between cysteines introduced into the two halves of a Cys-less CFTR. Although replacement of the 18 endogenous cysteines of CFTR with Ser or Ala yields a Cys-less mutant that does not mature at 37 degrees C, we found that maturation could be restored if Val(510) was changed to Ala, Cys, Ser, Thr, Gly, Ala, or Asp. The V510D mutation also promoted maturation of DeltaF508 CFTR. The Cys-less/V510A mutant was used for subsequent cross-linking analysis as it yielded relatively high levels of mature protein that was functional in iodide efflux assays. We tested for cross-linking between cysteines introduced into TM6 and TM7 of Cys-less CFTR/V510A because cross-linking between TM6 and TM7 of P-glycoprotein, the sister protein of CFTR, was inhibited with the corrector VRT-325. Cys-less CFTR/V510A mutant containing cysteines at I340C(TM6) and S877C(TM7) could be cross-linked with a homobifunctional cross-linker. Correctors and the CFTR channel blocker benzbromarone, but not P-glycoprotein substrates, inhibited cross-linking of mutant I340C(TM6)/S877C(TM7). These results suggest that corrector molecules such as corr-4a interact directly with CFTR.  相似文献   

17.
Cystic fibrosis commonly occurs as a consequence of the DeltaF508 mutation in the first nucleotide binding fold domain (NBF-1) of CFTR. The mutation causes retention of the mutant CFTR molecule in the endoplasmic reticulum, and this aberrant trafficking event is believed to be due to defective interactions between the mutant NBF-1 domain and other cellular factors in the endoplasmic reticulum. Since the NBF-1 domain has been shown to interact with membranes, we wanted to investigate whether NBF-1 and CFTR interactions with specific phospholipid chaperones might play a role in trafficking. We have found that the recombinant wild-type NBF-1 interacts selectively with phosphatidylserine (PS) rather than phosphatidylcholine (PC). By contrast, NBF-1 carrying the DeltaF508 mutation loses the ability to discriminate between these two phospholipids. In cells expressing DeltaF508-CFTR, replacement of PC by noncharged analogues results in an absolute increase in CFTR expression. In addition, we detected progressive expression of higher molecular weight CFTR forms. Thus, phospholipid chaperones may be important for CFTR trafficking, and contribute to the pathology of cystic fibrosis.  相似文献   

18.
The most common mutation of the cystic fibrosis (CF) gene, the deletion of Phe508, encodes a protein (DeltaF508-CFTR) that fails to fold properly, thus mutated DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) is recognized and degraded via the ubiquitin-proteasome endoplasmic reticulum-associated degradation pathway. Chemical and pharmacological chaperones and ligand-induced transport open options for designing specific drugs to control protein (mis)folding or transport. A class of compounds that has been proposed as having potential utility in DeltaF508-CFTR is that which targets the molecular chaperone and proteasome systems. In this study, we have selected deoxyspergualin (DSG) as a reference molecule for this class of compounds and for ease of cross-linking to human serum albumin (HSA) as a protein transporter. Chemical cross-linking of DSG to HSA via a disulfide-based cross-linker and its administration to cells carrying DeltaF508-CFTR resulted in a greater enhancement of DeltaF508-CFTR function than when free DSG was used. Function of the selenium-dependent oxidoreductase system was required to allow intracellular activation of HSA-DSG conjugates. The principle that carrier proteins can deliver pharmacological chaperones to cells leading to correction of defective CFTR functions is therefore proven and warrants further investigations.  相似文献   

19.
Misfolding accounts for the endoplasmic reticulum-associated degradation of mutant cystic fibrosis transmembrane conductance regulators (CFTRs), including deletion of Phe508 (DeltaF508) in the nucleotide-binding domain 1 (NBD1). To study the role of Phe508, the de novo folding and stability of NBD1, NBD2 and CFTR were compared in conjunction with mutagenesis of Phe508. DeltaF508 and amino acid replacements that prevented CFTR folding disrupted the NBD2 fold and its native interaction with NBD1. DeltaF508 caused limited alteration in NBD1 conformation. Whereas nonpolar and some aliphatic residues were permissive, charged residues and glycine compromised the post-translational folding and stability of NBD2 and CFTR. The results suggest that hydrophobic side chain interactions of Phe508 are required for vectorial folding of NBD2 and the domain-domain assembly of CFTR, representing a combined co- and post-translational folding mechanism that may be used by other multidomain membrane proteins.  相似文献   

20.
Thurmond DC  Pessin JE 《The EMBO journal》2000,19(14):3565-3575
To examine the temporal relationship between pre- and post-docking events, we generated a Munc18c temperature-sensitive mutant (Munc18c/TS) by substitution of arginine 240 with a lysine residue. At the permissive temperature (23 degrees C), overexpression of both the wild type (Munc18c/WT) and the R240K mutant inhibited insulin-stimulated GLUT4/IRAP vesicle translocation. However, at the non-permissive temperature (37 degrees C) only Munc18c/WT inhibited GLUT4/IRAP translocation whereas Munc18c/TS was without effect. Moreover, Munc18c/WT bound to syntaxin 4 at both 23 and 37 degrees C whereas Munc18c/TS bound syntaxin 4 only at 23 degrees C. This was due to a temperature-dependent conformational change in Munc18c/TS, as its ability to bind syntaxin 4 and effects on GLUT4 translocation were rapidly reversible while protein expression levels remained unchanged. Furthermore, insulin stimulation of Munc18c/TS-expressing cells at 23 degrees C followed by temperature shift to 37 degrees C resulted in an increased rate of GLUT4 translocation compared with cells stimulated at 37 degrees C. To date, this is the first demonstration that the rate-limiting step for insulin-stimulated GLUT4 translocation is the trafficking of GLUT4 vesicles and not their fusion with the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号