首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In chick (Gallus gallus domesticus) embryos, instantaneous heart rate begins to fluctuate with the appearance of rapid, transient decelerations at around the end of the second week of incubation. Previously, it was shown that instantaneous heart rate decelerations were eliminated by administration of atropine and concurrently heart rate baseline was elevated in late embryos. Because the previous study lacked statistical treatment and there has been recent controversy over the development of tonic vagal control of the heart, we reexamine the hypothesis that transient decelerations of instantaneous heart rate are mediated by vagus nerve and the vagal tone begins to appear at around the end of the second week of incubation. Atropine administration tests were conducted for sixty-seven 11- to 14-day-old and 18-day-old embryos in total. Heart rate decelerations appeared sporadically in three out of ten 12-day-old embryos, but the difference of mode heart rate before and after administration of atropine was not significant. Seven out of nine 13-day-old embryos and all nine 14-day-old embryos showed heart rate decelerations and the difference of mode heart rate before and after atropine administration was significant. In late (18-day-old) embryos, magnitude and frequency of instantaneous heart rate decelerations further increased with additional appearance of transient, irregular accelerations. Administration of varying doses of atropine completely eliminated the heart rate decelerations and elevated the heart rate baseline more markedly than in young embryos, indicating the maturation of vagal tone late in incubation.  相似文献   

2.
Stimulation of the vagus nerve with a volley of electric impulses changed the action of grass-snake heart producing a negative chronotropic and inotropic effect. The effect of vagal stimulation was not different from the effect of acetylcholine administration and it was absent in the presence of atropine and hexamethonium. It was not possible to demonstrate sympathetic nervous fibres in the stimulated segment of the vagus nerve and trials of finding a separate nerve increasing the heart rate were unsuccessful. Parasympathicotonic agents caused bradycardia and a fall in the amplitude of cardiac contractions, and in sufficiently high doses they arrested the heart in diastole. The action of muscarine-like agents was stronger than that of nicotine, and the anticholinergic action of tubocurarine was weaker than that of atropine. Catecholamines exerted a positive inotropic and chronotropic effect which was completely blocked by propranolol in some tests only.  相似文献   

3.
Postnatal changes in the resting heart rate and in its parasympathetic tonic inhibition have been measured in awake rats and compared with changes in the activity of choline acetyltransferase (ChAT) in the heart atria. The heart rate at rest increased from 372.min-1 on the 1st to 456 and 442.min-1 on the 15th and 24th day of life and then again decreased to 358 and 356.min-1 in 60-day-old and adult rats. Until the 15th day of postnatal life, the administration of atropine did not bring about an increase in the heart rate; the cardio-acceleratory effect of atropine (indicating the presence of tonic vagal inhibition of the heart) appeared only on the 18th day and increased steeply up to the 40th day of postnatal life. The activity of ChAT in the heart atria was measured as the difference between the synthesis of acetylcholine in atrial homogenates incubated in the absence and in the presence of bromoacetylcholine (BrACh), a specific inhibitor of ChAT; this procedure eliminated the contribution of carnitine acetyltransferase to the synthesis of acetylcholine. The activity of ChAT was found to increase steeply from the 1st to the 25th days of postnatal life; the steepest increase in the activity of the enzyme occurred between the 4th and the 15th days. Temporal correlation between the changes in the activity of ChAT, in the content of acetylcholine in the heart atria (Kuntscherová and Vlk 1979) and in the efficiency of transmural stimulation of sinoatrial region on the heart rate (Vlk 1979) indicate that the functional maturation of intracardiac cholinergic neurones, proceeding in rats during the first three weeks of their postnatal life, plays an important role in the onset and temporal development of the tonic parasympathetic inhibition of the heart rate.  相似文献   

4.
The renin-angiotensin system (RAS) plays an important role in the regulation of the cardiovascular system and the kallikrein-kinin system (KKS) appears to counteract most of the RAS effects. In this study the vagal and the sympathetic influences on the heart rate and the baroreflex control of the heart rate were evaluated in transgenics rats with human tissue kallikrein gene expression [TGR(hKLK1)], and transgenics rats with tissue renin overexpression [TGR(mREN2)27]. Heart rate was similar in all groups but mean arterial pressure was higher in mREN2 rats than in kallikrein and control rats (149+/-4 vs. 114+/-3 vs. 113+/-3 mm Hg, respectively). The intrinsic heart rate was lower in mREN2 rats than in kallikrein and control rats (324+/-5 vs. 331+/-3 vs. 343+/-7 bpm). The HR response to atropine was similar but the response to propranolol was higher in kallikrein rats than control group (61+/-7 vs. 60+/-9 vs. 38+/-7 bpm, respectively). The vagal tonus was lower in mREN2 than in SD and hKAL rats (18+/-3 vs. 40+/-6 vs. 35+/-6 bpm) whereas the sympathetic tonus was higher in kallikrein rats (118+/-7 vs. 96+/-1 vs. 81+/-9 bpm in the mREN2 and SD rats), respectively. Baroreflex sensitivity to bradycardic responses was attenuated in mREN2 rats (0.37+/-0.05 vs. 1.34+/-0.08 vs. 1.34+/-0,13 bpm/mm Hg) while the tachycardic responses were unchanged. The bradycardic responses to electrical stimulation of the vagal nerve were depressed in both renin and kallikrein rats (129+/-47 vs. 129+/-22 vs. 193+/-25 bpm in control group in response to 32 Hz). In conclusion: 1.The rats with overexpression of renin showed decreased intrinsic heart rate and impairment of vagal function, characterized by decreased vagal tonus, reduced response of HR to electrical stimulation of vagus nerve, and depressed reflex bradycardia provoked by increases of blood pressure. 2. The rats with overexpression of kallikrein showed an increase of sympathetic activity that regulates the heart rate, characterized by increased HR response to propranolol and increased sympathetic tonus, accompanied by decreased bradycardic responses to electrical vagal stimulation.  相似文献   

5.
We studied whether the muscarinic antagonist, atropine, given intravenously or by inhalation, inhibits the bronchoconstrictor responses to inhaled acetylcholine and to acetylcholine released by electrical stimulation of the vagus nerves to the same degree. We assessed bronchoconstrictor responses in anesthetized dogs by determining the increase in total pulmonary resistance before and after increasing doses of atropine and then constructing inhibition dose-response curves. Before atropine the responses to the two stimuli were equal in magnitude. After intravenous atropine (initial dose 0.12 micrograms/kg, total dose 16 micrograms/kg) both responses were progressively inhibited to a similar degree. By contrast, after inhaled atropine (initial dose 0.02 micrograms/kg, total dose 2.4 micrograms/kg) the response to acetylcholine inhalation was inhibited to a much greater degree than the response to vagal stimulation. Thus, in studies designed to inhibit bronchoconstriction due to an inhaled muscarinic agonist to the same degree as bronchoconstriction due to a vagal reflex, atropine might better be given intravenously than by inhalation.  相似文献   

6.
Regulation of heart rate was studied in rats receiving either i.v. saline at 64 microL/min or synthetic 28-residue rat atrial natriuretic peptide (ANF) at a dose sufficient to decrease mean arterial blood pressure by 10%. Autonomic influences were deduced from steady-state heart rate responses of each group to propranolol, atropine, or propranolol and atropine combined. A multiplicative model of heart rate control was used to derive quantitatively from the data the modulation of intrinsic heart rate by sympathetic and parasympathetic mechanisms. Animals receiving ANF showed a lower heart rate than control animals. This relative bradycardia was abolished by atropine. Blocking of sympathetic effects with propranolol had no effect on basal heart rate in either group, and atropinization led to significant increases in heart rate in both groups of rats. Mathematical analysis of the results showed that the bradycardia produced by ANF was due predominantly to a reduced intrinsic heart rate and to enhanced vagal inhibition of postganglionic sympathetic activity. Parasympathetic contribution to heart rate in the absence of sympathetic activity was negligible in control rats and small during ANF. We conclude that the major influences of ANF on heart rate control are a decrease of intrinsic heart rate and enhanced parasympathetic inhibition of postganglionic presynaptic sympathetic activity.  相似文献   

7.
Changes in the diameter of liver sinusoids were studied by an intravital television microscope method in pentobarbital-anaesthetized rats. Dilatation of liver sinusoids was observed during parasympathetic neural stimulation and during acetylcholine administration. Frequency-dependent stimulation-effect relationships were obtained by electrical excitation of intact vagus nerves at supramaximal intensity from 2 to 8 Hz. Acetylcholine concentration-effect relationships were also obtained by intraportal venous infusions of acetylcholine 30 microliter for 5 s from 10(-9) to 10(-2) mol.1(-1). Systemic cholinergic receptor blockade with atropine (1 mg.kg-1) markedly reduced dilatation of liver sinusoids produced by both vagus nerve stimulation and acetylcholine administration. Changes in diameter of liver sinusoids with frequency of neural stimulation and with concentration of administered acetylcholine were also expressed as percentage of observed maximum effect and the respective stimulation-effect curves were constructed such that at a certain percentage of diameter change, the equivalent level of vagus nerve activity was represented by a given concentration of administered acetylcholine. Liver plasma concentration of acetylcholine presumably released during electrical vagal stimulation and reaching liver sinusoids was also estimated and found to be within physiological range. It is therefore proposed that rat liver sinusoids have the capacity for parasympathetic cholinergic vasodilatation.  相似文献   

8.
Cholecystokinin-58 has been shown to be the major form of cholecystokinin (CCK) released to the circulation upon lumenal stimulation of the small intestine in humans and dogs. In anesthetized dogs, electrical vagal stimulation evokes pancreatic exocrine secretion that is in part mediated through the release of CCK. We studied the molecular form of CCK stored in canine vagus nerves and that released into circulation upon electrical vagal stimulation. Gel filtration and radioimmunoassay of the water and acid extracts of canine vagus nerves indicated CCK-8 (35%) and CCK-58 (65%) as the major molecular forms in the vagus nerve. Both forms of CCK isolated from the vagal extracts were equally bioactive as the standard CCK-8 and CCK-58, respectively, in stimulation of amylase release from isolated rat pancreatic acini. Analysis of plasma collected after electrical vagal stimulation indicated that CCK-8 is the only form released into the circulation. The release of CCK-8 upon electrical vagal stimulation was not affected by application of lidocaine to the upper small intestinal mucosa, suggesting that it was released from vagal nerve terminals.  相似文献   

9.
梅懋华  陈奇 《生理学报》1985,37(5):410-415
用5条制备有 Thomas 胰瘘和胃瘘的狗作慢性麻醉实验,观察刺激迷走神经和酸化十二指肠对胰液分泌的相互影响,结果如下:1.在酸化肠的情况下,刺激迷走神经所引起的胰蛋白质和碳酸氢盐的排出量显著增多,其效应超过单独刺激迷走神经和酸化肠所产生效应之和。2.在酸化肠引起胰分泌停止后的短时间内,再刺激迷走神经,胰液分泌的潜伏期缩短,蛋白质和碳酸氢盐排出量增多。3.阻断迷走冲动或注射阿托品后,酸化肠所引起胰液的分泌明显减少。4.用利多卡因麻痹肠粘膜后,酸化肠所引起胰液的分泌也明显降低。这些结果提示,在酸化十二指肠引起胰液分泌的机制中,有迷走神经和局部神经参与,迷走冲动和促胰液素及促胰酶素共同作用靶器官时,有相互加强作用,一旦迷走冲动被阻断,这两种激素的作用即明显降低。  相似文献   

10.
Parasympathetic neural activity modulates some ventricular arrhythmias in man. Therefore, a canine model of arrhythmias produced by the interaction of halothane and catecholamines was used to study the effects of vagal stimulation on the induction of ventricular fibrillation. The dose of catecholamine required to induce ventricular fibrillation was determined during a constant heart rate. Vagal stimulation reversibly raised the norepinephrine dose that produced ventricular fibrillation from 16.4 +/- 2.4 to 30.0 +/- 3.8 micrograms (p less than 0.001, n = 10), and the epinephrine dose from 15.5 +/- 2.0 to 22.5 +/- 2.6 micrograms (p less than 0.001, n = 5). Following atropine, vagal stimulation failed to raise the threshold dose of norepinephrine (16.8 +/- 2.4 vs. 18.3 +/- 3.3 micrograms, nonsignificant, n = 6) or epinephrine (15.5 +/- 2.0 vs. 16.0 +/- 2.3 micrograms, nonsignificant, n = 5). Ligation of the cervical vagus nerves did not affect the epinephrine threshold dose (16.3 +/- 3.3 vs. 17.5 +/- 2.7 micrograms, nonsignificant, n = 5). Following elevation of basal vagal tone by morphine premedication, the norepinephrine threshold of 53.0 +/- 9.2 micrograms declined by a nonsignificant amount to 46.5 +/- 11.5 micrograms after vagotomy (nonsignificant, n = 5). Thus resting vagal tone does not prevent catecholamine-halothane-induced ventricular fibrillation, whereas increasing vagal tone by electrical stimulation substantially protects against this arrhythmia. The protection is mediated through a muscarinic cholinergic receptor.  相似文献   

11.
The possible interactions between inhibitory vagal control of the heart and circulating levels of catecholamines in dogfish (Squalus acanthias) were studied using an in situ preparation of the heart, which retained intact its innervation from centrally cut vagus nerves. The response to peripheral vagal stimulation typically consisted of an initial cardiac arrest, followed by an escape beat, leading to renewed beating at a mean heart rate lower than the prestimulation rate (partial recovery). Cessation of vagal stimulation led to a transient increase in heart rate, above the prestimulation rate. This whole response was completely abolished by 10(-4) M atropine (a muscarinic cholinergic antagonist). The degree of vagal inhibition was evaluated in terms of both the initial, maximal cardiac interval and the mean heart rate during partial recovery, both expressed as a percentage of the prestimulation heart rate. The mean prestimulation heart rate of this preparation (36+/-4 beats min(-1)) was not affected by noradrenaline but was significantly reduced by 10(-4) M nadolol (a beta-adrenergic receptor antagonist), suggesting the existence of a resting adrenergic tone arising from endogenous catecholamines. The degree of vagal inhibition of heart rate varied with the rate of stimulation and was increased by the presence of 10(-8) M noradrenaline (the normal in vivo level in routinely active fish), while 10(-7) M noradrenaline (the in vivo level measured in disturbed or deeply hypoxic fish) reduced the cardiac response to vagal stimulation. In the presence of 10(-7) M noradrenaline, 10(-4) M nadolol further reduced the vagal response, while 10(-4) M nadolol + 10(-4) M phentolamine had no effect, indicating a complex interaction between adrenoreceptors, possibly involving presynaptic modulation of vagal inhibition.  相似文献   

12.
消化管括约肌部VIP免疫活性神经细胞分布   总被引:1,自引:0,他引:1  
应用免疫组织化学方法研究了食管下部,幽门和回盲部肌间神经丛内VIP免疫活性神经细胞的分布。VIP免疫活性神经细胞在括约肌部比相邻部位数量多。并用Open-tiP法测量了刺激迷走神经后食管下段括约肌部压力的变化。用高阈值参数电刺激迷走神经引起预先投给阿托品的狗食管下段括约肌部压力的降低;这样条件下延长迷走神经刺激引起肌间神经丛内VIP免疫活性神经细胞数量明显增加。由此结果提示含有或产生VIP的神经细胞可能接受迷走神经的控制。由于刺激节前迷走神经纤维可能作用到这些细胞。  相似文献   

13.
本文对电刺激家兔腹部的迷走神经外周端所引起的降压反应进行了研究。在121只家兔中的实验结果表明:电刺激腹部迷走神经外周端可引起动脉压、小肠和后肢的灌流压同时降低,而心率则无明显变化。这一降压反应发生时,小肠静脉血中的组织胺含量较刺激前明显升高,然后恢复;将小剂量的组织胺 H_1受体阻断剂扑尔敏、非乃根和 H_2受体阻断剂甲氰咪胍(Cimetidine)分别注入肠系膜上动脉均能减弱刺激腹部迷走神经外周端引起的动脉压和小肠灌流压的降低。心得安能削弱此降压反应,而阿托品无效;切断两侧内脏大神经能显著削弱刺激腹部迷走神经外周端引起的降压反应。此残余的降压反应在注入抗组织胺剂后完全消失。由此推论,刺激家兔腹部迷走神经外周端引起的降压反应是通过中枢和外周两方面因素的作用,使血管舒张,外周阻力降低而实现的。  相似文献   

14.
The effects of naloxone, an opiate antagonist, on basal and vagus nerve-induced secretions of GRP, gastrin, and somatostatin were examined using the isolated perfused rat stomach prepared with vagal innervation. Naloxone (10(-6) M) significantly inhibited basal somatostatin secretion in the presence and absence of atropine and of hexamethonium, whereas basal GRP and gastrin secretion was not affected by naloxone. Electrical stimulation (10 Hz, lms duration, 10V) of the distal end of the subdiaphragmatic vagal trunks elicited a significant increase in both GRP and gastrin but a decrease in somatostatin. Naloxone (10(-6) M) failed to affect these responses in the presence or absence of atropine. On the other hand, when hexamethonium was infused, naloxone significantly inhibited both the GRP and gastrin responses to electrical vagal stimulation. Somatostatin secretion was unchanged by vagal stimulation during the infusion of hexamethonium with or without naloxone. These findings suggest that basal somatostatin secretion is under the control of an opiate neuron and that opioid peptides might be involved in vagal regulation of GRP and gastrin secretion.  相似文献   

15.
Summary ECG of mole rats (Spalax ehrenbergi) was recorded by chronically implanted electrodes. The average heart rate of unrestrained, resting animals (mean body mass 191 g±35 S.D.) in normoxia and at room temperature is 152 beats/min±42 S.D. It is nonrhythmic and about one third of the rate expected for an animal of this mass. ECG revealed that each heart beat is normal. From atropine and propranolol administration, it was evident that the low heart rate results from : (a) low intrinsic heart rate (285 b/min±30 S.D.), (b) high parasympathetic tone (51%±12 S.D.) and (c) low sympathetic tone (3.6%±1.6 S.D.). Unilateral vagotomy showed that the degree of left or right vagus dominancy in the mole rat differs in each individual: it may even reach a complete left vagus control, in contrast to other mammals where right vagus dominancy is apparent.  相似文献   

16.
This purpose of this investigation was to determine the influence of experimental diabetes (3 months) on the responsiveness of rat isolated atria to alpha 1-adrenoceptor stimulation by phenylephrine. Diabetes was chemically induced with streptozotocin (65 mg/kg i.v.) in 42- to 43-day-old, nonfasted male Sprague-Dawley derived rats. Chronotropic (right atria) and inotropic (left atria) indices were recorded in response to alpha 1-adrenoceptor stimulation by phenylephrine. These experiments were performed in the presence of beta-adrenoceptor antagonism (timolol). Isolated right atria from diabetic rats demonstrated a greater increase in heart rate in response to phenylephrine than did corresponding control atria. Left atria were supersensitive (decrease in EC50 values) and hyperresponsive to alpha 1-adrenoceptor stimulation by phenylephrine when compared with stimulation of control left atria. Diabetic left atria in response to phenylephrine were observed to exchange more radioactive calcium (45Ca2+) than control left atria, whereas both diabetic and control left atria exchanged the same amount of 45Ca2+ during basal contractile conditions. Phenylephrine had no effect on 45Ca2+ efflux from either diabetic or control atria. These results indicate that 3 months of uncontrolled experimental diabetes in the rat produces an enhancement of alpha 1-adrenoceptor activation of isolated atria, and that there is an alteration in Ca2+ mobilization which may contribute to the enhanced receptor activation.  相似文献   

17.
Y Seino  S Nishi  H Imura 《Life sciences》1985,37(7):651-656
In order to elucidate the role of the vagus nerve in the regulation of pancreatic somatostatin secretion, the effect of electrical stimulation of the vagus on the isolated perfused rat pancreas was studied. Somatostatin release induced by 19 mM arginine in the presence of 11 mM glucose or 10(-6)M glucagon in the presence of 5.5 mM glucose was suppressed by vagal stimulation. This suppressive effect on somatostatin was eliminated in the presence of 10(-5)M atropine plus glucagon, while somatostatin release was significantly enhanced in the presence of atropine plus arginine. We conclude that pancreatic somatostatin secretion may be regulated not only by a cholinergic inhibitory neuron but also by a stimulatory non-cholinergic neuron.  相似文献   

18.
Uneyama H  Niijima A  Tanaka T  Torii K 《Life sciences》2002,72(4-5):415-423
Systemic administration (i.v.) of serotonin (5-HT) evoked a transient vagal afferent nerve discharge, bradycardia, and hypotension in the rat. The half-effective dose of 5-HT for nerve discharge was 13 micro g/kg. The time- and dose-dependent kinetics of the nerve discharge rate were similar to the change of heart rate. The afferent neuronal discharge was mimicked by a selective 5-HT3 receptor agonist, 1-phenylbiguanide hydrochloride (PBA), and inhibited by a selective 5-HT3 antagonist, granisetron. The 5-HT(3/4) agonist, cisapride partially activated the vagus nerve, but the 5-HT4 agonist, RS6733 had no effect on the vagal afferent activity. Intra-gastric perfusion of lidocaine, moreover, abolished the 5-HT-induced vagal activation. These results indicate that the 5-HT transmission signal in the gastric mucosa inputs to the brain stem via 5-HT3 receptor-mediated vagal nerve afferent.  相似文献   

19.
Baroreflex control of heart rate (HR) is impaired after chronic intermittent hypoxia (CIH). However, the location and nature of this response remain unclear. We examined baroreceptor afferent, vagal efferent, and central components of the baroreflex circuitry. Fischer 344 (F344) rats were exposed to room air (RA) or CIH for 35-50 days and were then anesthetized with isoflurane, ventilated, and catheterized for measurement of mean arterial blood pressure (MAP) and HR. Baroreceptor function was characterized by measuring percent changes of integrated aortic depressor nerve (ADN) activity (Int ADNA) relative to the baseline value in response to sodium nitroprusside- and phenylephrine-induced changes in MAP. Data were fitted to a sigmoid logistic function curve. HR responses to electrical stimulation of the left ADN and the right vagus nerve were assessed under ketamine-acepromazine anesthesia. Compared with RA controls, CIH significantly increased maximum baroreceptor gain or maximum slope, maximum Int ADNA, and Int ADNA range (maximum - minimum Int ADNA), whereas other parameters of the logistic function were unchanged. In addition, CIH increased the maximum amplitude of bradycardic response to vagal efferent stimulation and decreased the time from stimulus onset to peak response. In contrast, CIH significantly reduced the maximum amplitude of bradycardic response to left ADN stimulation and increased the time from stimulus onset to peak response. Therefore, CIH decreased central mediation of the baroreflex but augmented baroreceptor afferent function and vagal efferent control of HR.  相似文献   

20.
The parasympathetic nervous system innervates the heart through two cervical vagal branches. The right vagal branch mainly influences the heart rate by the modulation of the rhythmogenesis of the sinoatrial node. The left branch predominantly influences the conduction properties of the atrioventricular (AV) node. We investigated the effect of asynchronous stimulation by the vagal nerves on the occurrence of irregularities in heart rate. In rats, the vagal nerves were isolated and cut. Different vagal stimulation patterns (continuous, pulsed) were applied. The heart was beating spontaneously under continuous vagal stimulation. In case of pulsed vagal stimulation, the atria were paced at different rates. Asynchronicity was induced by delaying the right stimulus with respect to the left stimulus (early right) or the left stimulus with respect to the right stimulus (early left). The value of the fraction of deviated R-R or P-Q intervals in the distribution in the histogram was used to characterize irregularities during a stimulation protocol (duration in case of continuous stimulation: 20 s; pulsed stimulation: 120 s). Under both stimulation patterns (continuous or pulsed), we found that early left vagal stimulation introduced a much larger fraction of deviated intervals in the R-R or P-Q histogram (in R-R: 29.1 +/- 4.9%; in P-Q: 12.90 +/- 1.95%) than early right vagal stimulation (in R-R: 7.4 +/- 2.0%; in P-Q: 1. 05 +/- 0.50%) or synchronous stimulation (in R-R: 8.2 +/- 3.6%; in P-Q: 2.15 +/- 0.75%). We conclude that early stimulation by the left vagal nerve can introduce irregularities in heart rate, mainly due to different degrees of AV nodal blockade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号