首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Human co-infection with malaria and helmimths is ubiquitous throughout Africa. Nevertheless, its public health significance on malaria severity remains poorly understood.

Methodology/Principal Findings

To contribute to a better understanding of epidemiology and control of this co-infection in Cameroon, a cross-sectional study was carried out to assess the prevalence of concomitant intestinal geohelminthiasis and malaria, and to evaluate its association with malaria and anaemia in Nkassomo and Vian. Finger prick blood specimens from a total of 263 participants aged 1–95 years were collected for malaria microscopy, assessment of haemoglobin levels, and molecular identification of Plasmodium species by PCR. Fresh stool specimens were also collected for the identification and quantification of geohelminths by the Kato-Katz method. The prevalence of malaria, geohelminths, and co-infections were 77.2%, 28.6%, and 22.1%, respectively. Plasmodium falciparum was the only malaria parasite species identified with mean parasite density of 111 (40; 18,800) parasites/µl of blood. The geohelminths found were Ascaris lumbricoides (21.6%) and Trichuris trichiura (10.8%), with mean parasite densities of 243 (24; 3,552) and 36 (24; 96) eggs/gram of faeces, respectively. Co-infections of A. lumbricoides and P. falciparum were the most frequent and correlated positively. While no significant difference was observed on the prevalences of single and co-infections between the two localities, there was a significant difference in the density of A. lumbricoides infection between the two localities. The overall prevalence of anaemia was 42%, with individuals co-infected with T. trichiura and P. falciparum (60%) being the most at risk. While the prevalence of malaria and anaemia were inversely related to age, children aged 5–14 years were more susceptible to geohelminthiasis and their co-infections with malaria.

Conclusion/Significance

Co-existence of geohelminths and malaria parasites in Nkassomo and Vian enhances the occurrence of co-infections, and consequently, increases the risk for anaemia.  相似文献   

2.
BackgroundCurrent knowledge on the burden of, and interactions between malaria and helminth co-infections, as well as the impact of the dual infections on anaemia, remains inconclusive. We have conducted a systematic review with meta-analysis to update current knowledge as a first step towards developing and deploying coordinated approaches to the control and, ultimately, elimination of malaria-helminth co-infections among children living in endemic countries.Methodology/Principal findingsWe searched Medline, Embase, Global Health and Web of Science from each database inception until 16 March 2020, for peer-reviewed articles reporting malaria-helminth co-infections in children living in endemic countries. No language restriction was applied. Following removal of duplicates, two reviewers independently screened the studies for eligibility. We used the summary odds ratio (OR) and 95% confidence intervals (CI) as a measure of association (random-effects model). We also performed Chi-square heterogeneity test based on Cochrane’s Q and evaluated the severity of heterogeneity using I2 statistics. The included studies were examined for publication bias using a funnel plot and statistical significance was assessed using Egger’s test (bias if p<0.1).Fifty-five of the 3,507 citations screened were eligible, 28 of which had sufficient data for meta-analysis. The 28 studies enrolled 22, 114 children in 13 countries across sub-Saharan Africa, Southeast Asia and South America. Overall, the pooled estimates showed a prevalence of Plasmodium-helminth co-infections of 17.7% (95% CI 12.7–23.2%). Summary estimates from 14 studies showed a lower odds of P. falciparum infection in children co-infected with Schistosoma spp (OR: 0.65; 95%CI: 0.37–1.16). Similar lower odds of P. falciparum infection were observed from the summary estimates of 24 studies in children co-infected with soil transmitted helminths (STH) (OR: 0.42; 95%CI: 0.28–0.64).When adjusted for age, gender, socio-economic status, nutritional status and geographic location of the children, the risk of P. falciparum infection in children co-infected with STH was higher compared with children who did not have STH infection (OR = 1.3; 95% CI 1.03–1.65).A subset of 16 studies showed that the odds of anaemia were higher in children co-infected with Plasmodium and STH than in children with Plasmodium infection alone (OR = 1.20; 95% CI: 0.59–2.45), and were almost equal in children co-infected with Plasmodium-Schistosoma spp or Plasmodium infection alone (OR = 0.97, 95% CI: 0.30–3.14).Conclusions/SignificanceThe current review suggests that prevalence of malaria-helminth co-infection is high in children living in endemic countries. The nature of the interactions between malaria and helminth infection and the impact of the co-infection on anaemia remain inconclusive and may be modulated by the immune responses of the affected children.  相似文献   

3.

Background

Co-infection with malaria and HIV increases the severity and mortality of both diseases, but the cytokine responses related to this co-infection are only partially characterised. The aim of this study was to explore cytokine responses in relation to severity and mortality in malaria patients with and without HIV co-infection.

Methods

This was a prospective cross-sectional study. Clinical data and blood samples were collected from adults in Mozambique. Plasma was analysed for 21 classical pro- and anti-inflammatory cytokines, including interleukins, interferons, and chemokines.

Results

We included 212 in-patients with fever and/or suspected malaria and 56 healthy controls. Falciparum malaria was diagnosed in 131 patients, of whom 70 were co-infected with HIV-1. The malaria patients had marked increases in their cytokine responses compared with the healthy controls. Some of these changes, particularly interleukin 8 (IL-8) and interferon-γ-inducing protein 10 (IP-10) were strongly associated with falciparum malaria and disease severity. Both these chemokines were markedly increased in patients with falciparum malaria as compared with healthy controls, and raised levels of IL-8 and IP-10 were associated with increased disease severity, even after adjusting for relevant confounders. For IL-8, particularly high levels were found in malaria patients that were co-infected with HIV and in those who died during hospitalization.

Interpretations

Our findings underscore the complex role of inflammation during infection with P. falciparum, and suggest a potential pathogenic role for IL-8 and IP-10. However, the correlations do not necessarily mean any causal relationship, and further both clinical and mechanistic research is necessary to elucidate the role of cytokines in pathogenesis and protection during falciparum malaria.  相似文献   

4.

Background

Malaria and dengue are the most prevalent vector-borne diseases worldwide and represent major public health problems. Both are endemic in tropical regions, propitiating co-infection. Only few co-infection cases have been reported around the world, with insufficient data so far to enhance the understanding of the effects of co-infection in the clinical presentation and severity.

Methodology/Principal Findings

A cross-sectional study was conducted (2009 to 2011) in hospitalized patients with acute febrile syndrome in the Brazilian Amazon. All patients were submitted to thick blood smear and PCR for Plasmodium sp. detection, ELISA, PCR and NS1 tests for dengue, viral hepatitis, HIV and leptospirosis. In total, 1,578 patients were recruited. Among them, 176 (11.1%) presented P. vivax malaria mono-infection, 584 (37%) dengue fever mono-infection, and 44 (2.8%) were co-infected. Co-infected patients had a higher chance of presenting severe disease (vs. dengue mono-infected), deep bleeding (vs. P. vivax mono-infected), hepatomegaly, and jaundice (vs. dengue mono-infected).

Conclusions/Significance

In endemic areas for dengue and malaria, jaundice (in dengue patients) and spontaneous bleeding (in malaria patients) should raise the suspicion of co-infection. Besides, whenever co-infection is confirmed, we recommend careful monitoring for bleeding and hepatic complications, which may result in a higher chance of severity, despite of the fact that no increased fatality rate was seen in this group.  相似文献   

5.

Background

Plasmodium vivax is responsible for a significant portion of malaria cases worldwide, especially in Asia and Latin America, where geo-helminthiasis have a high prevalence. Impact of the interaction between vivax malaria and intestinal helminthes has been poorly explored. The objective of this study was to evaluate the influence of intestinal helminthiasis on the concentration of hemoglobin in children with Plasmodium vivax malaria in rural areas in the municipality of Careiro, in the Western Brazilian Amazon.

Methodology/Principal Findings

A cohort study was conducted from April to November 2008, enrolling children from 5 to 14 years old in two rural areas endemic for malaria. A cross-sectional evaluation was performed in April to actively detect cases of malaria and document baseline hemoglobin and nutritional status. Children were followed-up for six months through passive case detection of malaria based on light microscopy. Throughout the follow-up interval, hemoglobin value and stool examination (three samples on alternate days) were performed on children who developed P. vivax malaria. For 54 schoolchildren with a single infection by P. vivax, hemoglobin during the malaria episode was similar to the baseline hemoglobin for children co-infected with Ascaris lumbricoides (n = 18), hookworm (n = 11) and Trichuris trichiura (n = 9). In children without intestinal helminthes, a significant decrease in the hemoglobin during the malarial attack was seen as compared to the baseline concentration. In the survival analysis, no difference was seen in the time (in days) from the baseline cross-sectional to the first malarial infection, between parasitized and non-parasitized children.

Conclusion/Significance

For the first time, a cohort study showed that intestinal helminthes protect against hemoglobin decrease during an acute malarial attack by P. vivax.  相似文献   

6.

Background

Regulatory T cells (Tregs) suppress host immune responses and participate in immune homeostasis. In co-infection, secondary parasite infections may disrupt the immunologic responses induced by a pre-existing parasitic infection. We previously demonstrated that schistosomiasis-positive (SP) Malian children, aged 4–8 years, are protected against the acquisition of malaria compared to matched schistosomiasis-negative (SN) children.

Methods and Findings

To determine if Tregs contribute to this protection, we performed immunologic and Treg depletion in vitro studies using PBMC acquired from children with and without S. haematobium infection followed longitudinally for the acquisition of malaria. Levels of Tregs were lower in children with dual infections compared to children with malaria alone (0.49 versus 1.37%, respectively, P = 0.004) but were similar months later, during a period with negligible malaria transmission. The increased levels of Tregs in SN subjects were associated with suppressed serum Th1 cytokine levels, as well as elevated parasitemia compared to co-infected counterparts.

Conclusions

These results suggest that lower levels of Tregs in helminth-infected children correlate with altered circulating cytokine and parasitologic results which may play a partial role in mediating protection against falciparum malaria.  相似文献   

7.
The aim of this work was to elucidate the immunopathological mechanisms of how helminths may influence the course of a viral infection, using a murine model. Severe virulence, a relevant increase in the virus titres in the lung and a higher mortality rate were observed in Ascaris and Vaccinia virus (VACV) co-infected mice, compared with VACV mono-infected mice. Immunopathological analysis suggested that the ablation of CD8+ T cells, the marked reduction of circulating CD4+ T cells producing IFN-γ, and the robust pulmonary inflammation were associated with the increase of morbidity/mortality in co-infection and subsequently with the negative impact of concomitant pulmonary ascariasis and respiratory VACV infection for the host. On the other hand, when evaluating the impact of the co-infection on the parasitic burden, co-infected mice presented a marked decrease in the total number of migrating Ascaris lung-stage larvae in comparison with Ascaris mono-infection. Taken together, our major findings suggest that Ascaris and VACV co-infection may potentiate the virus-associated pathology by the downmodulation of the VACV-specific immune response. Moreover, this study provides new evidence of how helminth parasites may influence the course of a coincident viral infection.  相似文献   

8.

Background

Helminth infection and malaria remain major causes of ill-health in the tropics and subtropics. There are several shared risk factors (e.g., poverty), and hence, helminth infection and malaria overlap geographically and temporally. However, the extent and consequences of helminth-Plasmodium co-infection at different spatial scales are poorly understood.

Methodology

This study was conducted in 92 schools across Côte d’Ivoire during the dry season, from November 2011 to February 2012. School children provided blood samples for detection of Plasmodium infection, stool samples for diagnosis of soil-transmitted helminth (STH) and Schistosoma mansoni infections, and urine samples for appraisal of Schistosoma haematobium infection. A questionnaire was administered to obtain demographic, socioeconomic, and behavioral data. Multinomial regression models were utilized to determine risk factors for STH-Plasmodium and Schistosoma-Plasmodium co-infection.

Principal Findings

Complete parasitological and questionnaire data were available for 5,104 children aged 5-16 years. 26.2% of the children were infected with any helminth species, whilst the prevalence of Plasmodium infection was 63.3%. STH-Plasmodium co-infection was detected in 13.5% and Schistosoma-Plasmodium in 5.6% of the children. Multinomial regression analysis revealed that boys, children aged 10 years and above, and activities involving close contact to water were significantly and positively associated with STH-Plasmodium co-infection. Boys, wells as source of drinking water, and water contact were significantly and positively associated with Schistosoma-Plasmodium co-infection. Access to latrines, deworming, higher socioeconomic status, and living in urban settings were negatively associated with STH-Plasmodium co-infection; whilst use of deworming drugs and access to modern latrines were negatively associated with Schistosoma-Plasmodium co-infection.

Conclusions/Significance

More than 60% of the school children surveyed were infected with Plasmodium across Côte d’Ivoire, and about one out of six had a helminth-Plasmodium co-infection. Our findings provide a rationale to combine control interventions that simultaneously aim at helminthiases and malaria.  相似文献   

9.

Background

Dual epidemics of the malaria parasite Plasmodium and HIV-1 in sub-Saharan Africa and Asia present a significant risk for co-infection in these overlapping endemic regions. Recent studies of HIV/Plasmodium falciparum co-infection have reported significant interactions of these pathogens, including more rapid CD4+ T cell loss, increased viral load, increased immunosuppression, and increased episodes of clinical malaria. Here, we describe a novel rhesus macaque model for co-infection that supports and expands upon findings in human co-infection studies and can be used to identify interactions between these two pathogens.

Methodology/Principal Findings

Five rhesus macaques were infected with P. cynomolgi and, following three parasite relapses, with SIV. Compared to macaques infected with SIV alone, co-infected animals had, as a group, decreased survival time and more rapid declines in markers for SIV progression, including peripheral CD4+ T cells and CD4+/CD8+ T cell ratios. The naïve CD4+ T cell pool of the co-infected animals was depleted more rapidly than animals infected with SIV alone. The co-infected animals also failed to generate proliferative responses to parasitemia by CD4+ and CD8+ T cells as well as B cells while also having a less robust anti-parasite and altered anti-SIV antibody response.

Conclusions/Significance

These data suggest that infection with both SIV and Plasmodium enhances SIV-induced disease progression and impairs the anti-Plasmodium immune response. These data support findings in HIV/Plasmodium co-infection studies. This animal model can be used to further define impacts of lentivirus and Plasmodium co-infection and guide public health and therapeutic interventions.  相似文献   

10.

Background

Plasmodium falciparum malaria remains endemic in sub-Saharan Africa including Ghana. The epidemiology of malaria in special areas, such as mining areas needs to be monitored and controlled. Newmont Ghana Gold Limited is conducting mining activities in the Brong Ahafo Region of Ghana that may have an impact on the diseases such as malaria in the mining area.

Methods

Prior to the start of mining activities, a cross-sectional survey was conducted in 2006/2007 to determine malaria epidemiology, including malaria parasitaemia and anaemia among children < 5 years and monthly malaria transmission in a mining area of Ghana.

Results

A total of 1,671 households with a child less than five years were selected. About 50% of the household heads were males. The prevalence of any malaria parasitaemia was 22.8% (95% CI 20.8 - 24.9). Plasmodium falciparum represented 98.1% (95% CI 96.2 - 99.2) of parasitaemia. The geometric mean P. falciparum asexual parasite count was 1,602 (95% CI 1,140 - 2,252) and 1,195 (95% CI 985 - 1,449) among children < 24 months and ≥ 24 months respectively. Health insurance membership (OR 0.60, 95% CI 0.45 - 0.80, p = 0.001) and the least poor (OR 0.57, 95% CI 0.37 - 0.90, p = 0.001) were protected against malaria parasitaemia. The prevalence of anaemia was high among children < 24 months compared to children ≥ 24 months (44.1% (95% CI 40.0 - 48.3) and 23.8% (95% CI 21.2 - 26.5) respectively. About 69% (95% CI 66.3 - 70.9) of households own at least one ITN. The highest EIRs were record in May 2007 (669 ib/p/m) and June 2007 (826 ib/p/m). The EIR of Anopheles gambiae were generally higher than Anopheles funestus.

Conclusion

The baseline malaria epidemiology suggests a high malaria transmission in the mining area prior to the start of mining activities. Efforts at controlling malaria in this mining area have been intensified but could be enhanced with increased resources and partnerships between the government and the private sector.  相似文献   

11.

Background

Malaria, schistosomiasis and soil transmitted helminth infections (STH) are important parasitic infections in Sub-Saharan Africa where a significant proportion of people are exposed to co-infections of more than one parasite. In Tanzania, these infections are a major public health problem particularly in school and pre-school children. The current study investigated malaria and helminth co-infections and anaemia in school and pre-school children in Magu district, Tanzania.

Methodology

School and pre-school children were enrolled in a cross-sectional study. Stool samples were examined for Schistosoma mansoni and STH infections using Kato Katz technique. Urine samples were examined for Schistosoma haematobium using the urine filtration method. Blood samples were examined for malaria parasites and haemoglobin concentrations using the Giemsa stain and Haemoque methods, respectively.

Principal Findings

Out of 1,546 children examined, 1,079 (69.8%) were infected with one or more parasites. Malaria-helminth co-infections were observed in 276 children (60% of all children with P. falciparum infection). Malaria parasites were significantly more prevalent in hookworm infected children than in hookworm free children (p = 0.046). However, this association was non-significant on multivariate logistic regression analysis (OR = 1.320, p = 0.064). Malaria parasite density decreased with increasing infection intensity of S. mansoni and with increasing number of co-infecting helminth species. Anaemia prevalence was 34.4% and was significantly associated with malaria infection, S. haematobium infection and with multiple parasite infections. Whereas S. mansoni infection was a significant predictor of malaria parasite density, P. falciparum and S. haematobium infections were significant predictors of anaemia.

Conclusions/Significance

These findings suggest that multiple parasite infections are common in school and pre-school children in Magu district. Concurrent P. falciparum, S. mansoni and S. haematobium infections increase the risk of lower Hb levels and anaemia, which in turn calls for integrated disease control interventions. The associations between malaria and helminth infections detected in this study need further investigation.  相似文献   

12.

Background

Childhood anaemia is considered a severe public health problem in most countries of sub-Saharan Africa. We investigated the geographical distribution of prevalence of anaemia and mean haemoglobin concentration (Hb) in children aged 1–4 y (preschool children) in West Africa. The aim was to estimate the geographical risk profile of anaemia accounting for malnutrition, malaria, and helminth infections, the risk of anaemia attributable to these factors, and the number of anaemia cases in preschool children for 2011.

Methods and Findings

National cross-sectional household-based demographic health surveys were conducted in 7,147 children aged 1–4 y in Burkina Faso, Ghana, and Mali in 2003–2006. Bayesian geostatistical models were developed to predict the geographical distribution of mean Hb and anaemia risk, adjusting for the nutritional status of preschool children, the location of their residence, predicted Plasmodium falciparum parasite rate in the 2- to 10-y age group (Pf PR2–10), and predicted prevalence of Schistosoma haematobium and hookworm infections. In the four countries, prevalence of mild, moderate, and severe anaemia was 21%, 66%, and 13% in Burkina Faso; 28%, 65%, and 7% in Ghana, and 26%, 62%, and 12% in Mali. The mean Hb was lowest in Burkina Faso (89 g/l), in males (93 g/l), and for children 1–2 y (88 g/l). In West Africa, severe malnutrition, Pf PR2–10, and biological synergisms between S. haematobium and hookworm infections were significantly associated with anaemia risk; an estimated 36.8%, 14.9%, 3.7%, 4.2%, and 0.9% of anaemia cases could be averted by treating malnutrition, malaria, S. haematobium infections, hookworm infections, and S. haematobium/hookworm coinfections, respectively. A large spatial cluster of low mean Hb (<80 g/l) and maximal risk of anaemia (>95%) was predicted for an area shared by Burkina Faso and Mali. We estimate that in 2011, approximately 6.7 million children aged 1–4 y are anaemic in the three study countries.

Conclusions

By mapping the distribution of anaemia risk in preschool children adjusted for malnutrition and parasitic infections, we provide a means to identify the geographical limits of anaemia burden and the contribution that malnutrition and parasites make to anaemia. Spatial targeting of ancillary micronutrient supplementation and control of other anaemia causes, such as malaria and helminth infection, can contribute to efficiently reducing the burden of anaemia in preschool children in Africa. Please see later in the article for the Editors'' Summary  相似文献   

13.
Co-infections of helminths and malaria parasites are common in human populations in most endemic areas. It has been suggested that concomitant helminth infections inhibit the control of malaria parasitemia but down-modulate severe malarial disease. We tested this hypothesis using a murine co-infection model of schistosomiasis and cerebral malaria. C57BL/6 mice were infected with Schistosoma mansoni and 8-9 weeks later, when Schistosoma infection was patent, mice were co-infected with Plasmodium berghei ANKA strain. We found that a concomitant Schistosoma infection increased parasitemia at the beginning of the P. berghei infection. It did not protect against P. berghei-induced weight loss and hypothermia, and P. berghei-mono-infected as well as S. mansoni-P. berghei-co-infected animals showed a high case fatality between days 6 and 8 of malarial infection. However, co-infection significantly reduced P. berghei-induced brain pathology. Over 40% of the S. mansoni-P. berghei-co-infected animals that died during this period were completely protected against haemorrhaging, plugging of blood vessels and infiltration, indicating that mortality in these animals was not related to cerebral disease. Schistosoma mansoni-P. berghei-co-infected mice had elevated plasma concentrations of IL-5 and IL-13 and on day 6 lower levels of IFN-γ, IL-10, monocyte chemoattractant protein-1 (MCP-1) and monokine induced by IFN-γ (MIG) than P. berghei-mono-infected mice. We conclude that in P. berghei infections, disease and early death are caused by distinct pathogenic mechanisms, which develop in parallel and are differentially influenced by the immune response to S. mansoni. This might explain why, in co-infected mice, death could be induced in the absence of brain pathology.  相似文献   

14.

Background

Parasitic infections, which are among the most common infections worldwide, disproportionately affect children; however, little is known about the impact of parasitic disease on growth in very early childhood. Our objective was to document the prevalence of parasitic infections and examine their association with growth during the first three years of life among children in coastal Kenya.

Methodology/Principal Findings

Children enrolled in a maternal-child cohort were tested for soil transmitted helminths (STHs: Ascaris, Trichuris, hookworm, Strongyloides), protozoa (malaria, Entamoeba histolytica and Giardia lamblia), filaria, and Schistosoma infection every six months from birth until age three years. Anthropometrics were measured at each visit. We used generalized estimating equation (GEE) models to examine the relationship between parasitic infections experienced in the first three years of life and growth outcomes (weight, length and head circumference). Of 545 children, STHs were the most common infection with 106 infections (19%) by age three years. Malaria followed in period prevalence with 68 infections (12%) by three years of age. Filaria and Schistosoma infection occurred in 26 (4.8%) and 16 (2.9%) children, respectively. Seven percent were infected with multiple parasites by three years of age. Each infection type (when all STHs were combined) was documented by six months of age. Decreases in growth of weight, length and head circumference during the first 36 months of life were associated with hookworm, Ascaris, E. histolytica, malaria and Schistosoma infection. In a subset analysis of 180 children who followed up at every visit through 24 months, infection with any parasite was associated with decelerations in weight, length and head circumference growth velocity. Multiple infections were associated with greater impairment of linear growth.

Conclusions/Significance

Our results demonstrate an under-recognized burden of parasitism in the first three years of childhood in rural Kenya. Parasitic infection and polyparasitism were common, and were associated with a range of significant growth impairment in terms of weight, length and/or head circumference.  相似文献   

15.

Background

Malaria continues to claim one to two million lives a year, mainly those of children in sub-Saharan Africa. Reduction in mortality depends, in part, on improving the quality of hospital care, the training of healthcare workers and improvements in public health. This study examined the prognostic indicators of severe falciparum malaria in Gabonese children.

Methods

An observational study examining the clinical presentations and laboratory features of severe malaria was conducted at the Centre Hospitalier de Libreville, Gabon over two years. Febrile children aged from 0 to 10 years with Plasmodium falciparum infection and one or more features of severe malaria were enrolled.

Results

Most children presenting with severe falciparum malaria were less than 5 years (92.3% of 583 cases). Anaemia was the most frequent feature of severe malaria (67.8% of cases), followed by respiratory distress (31%), cerebral malaria (24%) hyperlactataemia (16%) and then hypoglycaemia (10%). Anaemia was more common in children under 18 months old, while cerebral malaria usually occurred in those over 18 months. The overall case fatality rate was 9%. The prognostic indicators with the highest case fatality rates were coma/seizures, hyperlactataemia and hypoglycaemia, and the highest case fatality rate was in children with all three of these features.

Conclusions

Prompt and appropriate, classification and treatment of malaria helps identify the most severely ill children and aids early and appropriate management of the severely ill child.  相似文献   

16.

Background

Helminth co-infection in humans is common in tropical regions of the world where transmission of soil-transmitted helminths such as Ascaris lumbricoides, Trichuris trichiura, and the hookworms Necator americanus and Ancylostoma duodenale as well as other helminths such as Schistosoma mansoni often occur simultaneously.

Methodology

We investigated whether co-infection with another helminth(s) altered the human immune response to crude antigen extracts from either different stages of N. americanus infection (infective third stage or adult) or different crude antigen extract preparations (adult somatic and adult excretory/secretory). Using these antigens, we compared the cellular and humoral immune responses of individuals mono-infected with hookworm (N. americanus) and individuals co-infected with hookworm and other helminth infections, namely co-infection with either A. lumbricoides, Schistosoma mansoni, or both. Immunological variables were compared between hookworm infection group (mono- versus co-infected) by bootstrap, and principal component analysis (PCA) was used as a data reduction method.

Conclusions

Contrary to several animal studies of helminth co-infection, we found that co-infected individuals had a further downmodulated Th1 cytokine response (e.g., reduced INF-γ), accompanied by a significant increase in the hookworm-specific humoral immune response (e.g. higher levels of IgE or IgG4 to crude antigen extracts) compared with mono- infected individuals. Neither of these changes was associated with a reduction of hookworm infection intensity in helminth co-infected individuals. From the standpoint of hookworm vaccine development, these results are relevant; i.e., the specific immune response to hookworm vaccine antigens might be altered by infection with another helminth.  相似文献   

17.

Background

Pregnant women are more susceptible to malaria, which is associated with serious adverse effects on pregnancy. The presentation of malaria during pregnancy varies according to the level of transmission in the area. Our study aimed to demonstrate the prevalence and risk factors for malaria (age, parity and gestational age) among pregnant women of eastern Sudan, which is characterized by unstable malaria transmission.

Methods

The prevalence and possible risk factors for Plasmodium falciparum malaria were investigated in 744 pregnant Sudanese women attending the antenatal clinic of New Haifa Teaching Hospital, eastern Sudan, during October 2003-April 2004.

Results

A total 102 (13.7%) had P. falciparum malaria, 18(17.6%) of these were severe cases (jaundice and severe anaemia). Univariate and multivariate analysis showed that, age and parity were not associated with malaria. Women who attended the antenatal clinic in the third trimester were at highest risk for malaria (OR = 1.58, 95% CI = 1.02–2.4; P < 0.05). Women with malaria had significantly lower mean haemoglobin (9.4 g/dl, 95% CI 9.1–9.7 versus 10.7, CI 10.6–10.8, P < 0.05). A significantly lower haemoglobin was observed in those with severe falciparum malaria compared to non-severe form (8.3 g/dl, 95% CI 7.6–9.1 versus 9.4, 95% CI 9.1–9.7, P = < 0.05).

Conclusion

The results suggest that P. falciparum malaria is common in pregnant women attending antenatal care and that anaemia is an important complication. Preventive measures (chemoprophylaxis and insecticide-treated bednets) may be beneficial in this area for all women irrespective of age or parity.  相似文献   

18.

Background

In spite of the significant mortality associated with Plasmodium falciparum infection, the mechanisms underlying severe disease remain poorly understood. We have previously shown evidence of endothelial activation in Ghanaian children with malaria, indicated by elevated plasma levels of both von Willebrand factor (VWF) and its propeptide. In the current prospective study of children in Malawi with retinopathy confirmed cerebral malaria, we compared these markers with uncomplicated malaria, non malarial febrile illness and controls.

Methods and Findings

Children with cerebral malaria, mild malaria and controls without malaria were recruited into the study. All comatose patients were examined by direct and indirect ophthalmoscopy. Plasma VWF and propeptide levels were measured by ELISA. Median VWF and propeptide levels were significantly higher in patients with uncomplicated malaria than in children with non-malarial febrile illness of comparable severity, in whom levels were higher than in non-febrile controls. Median concentrations of both markers were higher in cerebral malaria than in uncomplicated malaria, and were similar in patients with and without retinopathy. Levels of both VWF and propeptide fell significantly 48 hours after commencing therapy and were normal one month later.

Conclusions

In children with malaria plasma VWF and propeptide levels are markedly elevated in both cerebral and mild paediatric malaria, with levels matching disease severity, and these normalize upon recovery. High levels of both markers also occur in retinopathy-negative ‘cerebral malaria’ cases, many of whom are thought to be suffering from diseases other than malaria, indicating that further studies of these markers will be required to determine their sensitivity and specificity.  相似文献   

19.

Background

The heritable haemoglobinopathy α+-thalassaemia is caused by the reduced synthesis of α-globin chains that form part of normal adult haemoglobin (Hb). Individuals homozygous for α+-thalassaemia have microcytosis and an increased erythrocyte count. α+-Thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA) (Hb concentration < 50 g/l), but does not influence parasite count. We tested the hypothesis that the erythrocyte indices associated with α+-thalassaemia homozygosity provide a haematological benefit during acute malaria.

Methods and Findings

Data from children living on the north coast of Papua New Guinea who had participated in a case-control study of the protection afforded by α+-thalassaemia against severe malaria were reanalysed to assess the genotype-specific reduction in erythrocyte count and Hb levels associated with acute malarial disease. We observed a reduction in median erythrocyte count of ∼1.5 × 1012/l in all children with acute falciparum malaria relative to values in community children (p < 0.001). We developed a simple mathematical model of the linear relationship between Hb concentration and erythrocyte count. This model predicted that children homozygous for α+-thalassaemia lose less Hb than children of normal genotype for a reduction in erythrocyte count of >1.1 × 1012/l as a result of the reduced mean cell Hb in homozygous α+-thalassaemia. In addition, children homozygous for α+-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02) for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for α+-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24–1.12, p = 0.09).

Conclusions

The increased erythrocyte count and microcytosis in children homozygous for α+-thalassaemia may contribute substantially to their protection against SMA. A lower concentration of Hb per erythrocyte and a larger population of erythrocytes may be a biologically advantageous strategy against the significant reduction in erythrocyte count that occurs during acute infection with the malaria parasite Plasmodium falciparum. This haematological profile may reduce the risk of anaemia by other Plasmodium species, as well as other causes of anaemia. Other host polymorphisms that induce an increased erythrocyte count and microcytosis may confer a similar advantage.  相似文献   

20.
Cerebral malaria is an infrequent but serious complication of Plasmodium falciparum infection in humans. Co-infection with different Plasmodium species is common in endemic areas and the existence of benign malaria parasites, such as Plasmodium vivax, during P. falciparum infection has been considered to reduce the risk of developing pathogenesis. However, it is still unknown how disease severity is reduced in the host during co-infection. In the present study, we investigated the influence of co-infection with non-lethal malaria parasites, Plasmodium berghei (Pb) XAT strain, on the outcome of Pb ANKA strain infection which causes experimental cerebral malaria (ECM) in mice. The co-infection with non-lethal Pb XAT suppressed ECM caused by Pb ANKA infection and prolonged survival of mice. The production of TNF-α and IFN-γ, which had been shown to be involved in development of ECM, was suppressed in co-infected mice early in infection. The suppression of ECM by co-infection with Pb XAT was abrogated in IL-10-deficient mice. IL-10 plays a crucial role in the suppression of ECM by co-infection with non-lethal malaria parasites, probably due to its suppressive effect on the induction of TNF-α and IFN-γ. Co-infection with Pb XAT and Pb ANKA is a useful model for understanding how ECM is suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号