共查询到20条相似文献,搜索用时 15 毫秒
1.
Okell LC Griffin JT Kleinschmidt I Hollingsworth TD Churcher TS White MJ Bousema T Drakeley CJ Ghani AC 《PloS one》2011,6(5):e20179
Mass treatment as a means to reducing P. falciparum malaria transmission was used during the first global malaria eradication campaign and is increasingly being considered for current control programmes. We used a previously developed mathematical transmission model to explore both the short and long-term impact of possible mass treatment strategies in different scenarios of endemic transmission. Mass treatment is predicted to provide a longer-term benefit in areas with lower malaria transmission, with reduced transmission levels for at least 2 years after mass treatment is ended in a scenario where the baseline slide-prevalence is 5%, compared to less than one year in a scenario with baseline slide-prevalence at 50%. However, repeated annual mass treatment at 80% coverage could achieve around 25% reduction in infectious bites in moderate-to-high transmission settings if sustained. Using vector control could reduce transmission to levels at which mass treatment has a longer-term impact. In a limited number of settings (which have isolated transmission in small populations of 1000-10,000 with low-to-medium levels of baseline transmission) we find that five closely spaced rounds of mass treatment combined with vector control could make at least temporary elimination a feasible goal. We also estimate the effects of using gametocytocidal treatments such as primaquine and of restricting treatment to parasite-positive individuals. In conclusion, mass treatment needs to be repeated or combined with other interventions for long-term impact in many endemic settings. The benefits of mass treatment need to be carefully weighed against the risks of increasing drug selection pressure. 相似文献
2.
3.
4.
The lethal species of malaria parasite, Plasmodium falciparum, continues to exact a huge toll of mortality and morbidity, particularly in sub-Saharan Africa. Completion of the genome sequence of this organism and advances in proteomics and mass spectrometry have opened up unprecedented opportunities for understanding the complex biology of this parasite and how it responds to drug challenge and other interventions. This review describes recent progress that has been made in applying proteomics technology to this important pathogen and provides a look forward to likely future developments. 相似文献
5.
Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contributing factor for their pathogenesis in the host. As with other eukaryotes, successful mitosis is an essential requirement for Plasmodium reproduction; however, some aspects of Plasmodium mitosis are quite distinct and not fully understood. In this review, we will discuss the current understanding of the architecture and key events of mitosis in Plasmodium falciparum and related parasites and compare them with the traditional mitotic events described for other eukaryotes. 相似文献
6.
Müller S 《Molecular microbiology》2004,53(5):1291-1305
The malaria parasite Plasmodium falciparum is highly adapted to cope with the oxidative stress to which it is exposed during the erythrocytic stages of its life cycle. This includes the defence against oxidative insults arising from the parasite's metabolism of haemoglobin which results in the formation of reactive oxygen species and the release of toxic ferriprotoporphyrin IX. Central to the parasite's defences are superoxide dismutases and thioredoxin-dependent peroxidases; however, they lack catalase and glutathione peroxidases. The vital importance of the thioredoxin redox cycle (comprising NADPH, thioredoxin reductase and thioredoxin) is emphasized by the confirmation that thioredoxin reductase is essential for the survival of intraerythrocytic P. falciparum. The parasites also contain a fully functional glutathione redox system and the low-molecular-weight thiol glutathione is not only an important intracellular thiol redox buffer but also a cofactor for several redox active enzymes such as glutathione S-transferase and glutaredoxin. Recent findings have shown that in addition to these cytosolic redox systems the parasite also has an important mitochondrial antioxidant defence system and it is suggested that lipoic acid plays a pivotal part in defending the organelle from oxidative damage. 相似文献
7.
In the past few years, methods have been developed which allow the introduction of exogenous DNA into the human malaria parasite Plasmodium falciparum. This important technical advance known as parasite transfection, provides powerful new tools to study the function of Plasmodium proteins and their roles in biology and disease. Already it has allowed the analysis of promoter function and has been successfully applied to establish the role of particular molecules and/or mutations in the biology of this parasite. This review summarises the current state of the technology and how it has been applied to dissect the function of the P. falciparum genome. 相似文献
8.
E Pussard F Verdier M C Blayo J J Pocidalo 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1985,301(8):383-385
The authors have devised a specific HPLC method for amodiaquine assay which demonstrated that the drug disappeared rapidly from the blood of subjects under prophylaxis for malaria (10 mg/kg/week in a single oral dose). The main metabolite was identified as the monodesethyl derivative which is the only active form of the drug. The low erythrocytic levels of the metabolite, observed at day +7, might account for the failure in the prophylaxis of P. falciparum malaria with amodiaquine in a few cases. The in vitro activity of monodesethyl amodiaquine should be evaluated during the chemosensitivity tests and the chemoprophylaxis schedule, re-evaluated. 相似文献
9.
Baker DA 《IUBMB life》2004,56(9):535-540
Completion of several malaria parasite genome sequences and advances in Plasmodium gene manipulation technology, will lead to significant advances in our knowledge of the biology of these organisms. Biochemical analysis of the cyclic nucleotide signalling pathways of P. falciparum has provided important information on malaria parasite development. The Plasmodium purine nucleotide cyclase enzymes have extremely unusual structures and the regulatory mechanisms controlling parasite enzyme activity are distinct from those operating on the analogous host molecules. Study of these enzymes could therefore lead to novel strategies for anti-malarial intervention in addition to providing unique insights into the intriguing biology of the parasite. 相似文献
10.
Goldring JP 《Immunology and cell biology》2004,82(4):447-452
Sequestration and the attachment of Plasmodium falciparum malaria-infected RBC to venous endothelial cells involves parasite-encoded ligands interacting with up to nine host receptors. Antisequestration immunotherapy as an adjunct to quinine did not alter the dynamics of parasite clearance or prove beneficial for the patient. Estimated concentrations of antibody likely to reverse adherence in patients were based on the concentrations of parasite ligands, host receptors and patient equivalents derived from in vitro observations. Calculations presented here indicate that concentrations in excess of a fivefold increase in antibody concentrations used in the immunotherapy trial and equivalent to doubling normal peripheral blood antibody concentrations are anticipated for the successful reversal of sequestration to occur. It is suggested that immunotherapy aimed at either parasite ligands or host receptors to reverse sequestration in the treatment of severe malaria infections is unlikely to be successful given the complexity and number of receptors and ligands and the calculated concentrations of antibodies required. 相似文献
11.
The Plasmodium falciparum genome sequence has boosted hopes for a new era of malaria research and for the application of comprehensive molecular knowledge to disease control, but formidable obstacles remain: approximately 60% of the predicted P. falciparum proteins have no known functions or homologues, and most life cycle stages of this haploid eukaryotic parasite are relatively intractable to cultivation and biochemical manipulation. Genetic mapping based on high-resolution maps saturated with single-nucleotide polymorphisms or microsatellites is now providing effective strategies for discovering candidate genes determining important parasite phenotypes. Here we review classical linkage studies using laboratory crosses and population associations that are now amenable to genome-wide approaches and are revealing multiple candidate genes involved in complex drug responses. Moreover, mapping by linkage disequilibrium is practicable in cases where chromosomal segments flanking drug-selected genes have been preserved in populations during relatively recent P. falciparum evolution. We discuss the advantages and limitations of these various genetic mapping strategies, results from which offer complementary insights to those emerging from gene knockout experiments and/or high-throughput genomic technologies. 相似文献
12.
《Parasitology today (Personal ed.)》1995,11(1):19-23
The attachment of erythrocytes infected with Plasmodium falciparum to the microvessels of the brain leads to a pathological condition known as cerebral malaria. There are no effective therapeutic means for alleviating this. In this review, Kirkwood Land, Irwin Sherman, Jurg Gysin and Ian Crandall discuss the potential of anti-adhesive peptides and antibodies as a means of treating cerebral malaria. Adhesin proteins on the surface of the parasite-infected red blood cell as well as target cell ligand molecules are discussed in the context of anti-adhesion therapy. 相似文献
13.
Although the control of malaria epidemics has been a priority for the World Health Organization and other agencies for many years, surprisingly little is known about the public health burden of these epidemics. Here, we evaluate the available evidence of the morbidity and mortality impacts of individual epidemics in Africa and examine the problems associated with using these data to estimate the average annual burden of epidemics at national and continental scales. We argue that conventional approaches that are used to assess the burden of epidemics are inadequate, and outline the future steps that are required to produce estimates that are more accurate. 相似文献
14.
The membrane potential (Deltapsi) of the mature asexual form of the human malaria parasite, Plasmodium falciparum, isolated from its host erythrocyte using a saponin permeabilization technique, was investigated using both the radiolabeled Deltapsi indicator tetraphenylphosphonium ([(3)H]TPP(+)) and the fluorescent Deltapsi indicator DiBAC(4)(3) (bis-oxonol). For isolated parasites suspended in a high Na(+), low K(+) solution, Deltapsi was estimated from the measured distribution of [(3)H]TPP(+) to be -95 +/- 2 mV. Deltapsi was reduced by the specific V-type H(+) pump inhibitor bafilomycin A(1), by the H(+) ionophore CCCP, and by glucose deprivation. Acidification of the parasite cytosol (induced by the addition of lactate) resulted in a transient hyperpolarization, whereas a cytosolic alkalinization (induced by the addition of NH(4)(+)) resulted in a transient depolarization. A decrease in the extracellular pH resulted in a membrane depolarization, whereas an increase in the extracellular pH resulted in a membrane hyperpolarization. The parasite plasma membrane depolarized in response to an increase in the extracellular K(+) concentration and hyperpolarized in response to a decrease in the extracellular K(+) concentration and to the addition of the K(+) channel blockers Ba(2+) or Cs(+) to the suspending medium. The data are consistent with Deltapsi of the intraerythrocytic P. falciparum trophozoite being due to the electrogenic extrusion of H(+) via the V-type H(+) pump at the parasite surface. The current associated with the efflux of H(+) is countered, in part, by the influx of K(+) via Ba(2+)- and Cs(+)-sensitive K(+) channels in the parasite plasma membrane. 相似文献
15.
The intra-erythrocytic stages of the malaria parasite endocytose large quantities of the surrounding erythrocyte cytoplasm and deliver it to a digestive food vacuole via endocytic vesicles. Digestion provides amino acids for parasite protein synthesis and is required to maintain the osmotic integrity of the host cell. The parasite endocytic pathway has been described morphologically by electron microscopy, but the molecular mechanisms that mediate and regulate it remain elusive. Given the involvement of actin in endocytosis in other eukaryotes, we have used actin inhibitors to assess the requirement for this protein in the endocytic pathway of the human malaria parasite, Plasmodium falciparum . Treatment of cultures with cytochalasin D did not affect haemoglobin levels in the parasites when co-administered with protease inhibitors, and neither did it affect the uptake of the endocytic tracer horseradish peroxidase, suggesting the absence of actin in the mechanism of endocytosis. However, in the absence of protease inhibitors, treated parasites contained increased levels of haemoglobin due to an accumulation of enlarged endocytic vesicles, as determined by immunofluorescence and electron microscopy, suggesting a role for actin in vesicle trafficking, possibly by mediating vesicle maturation and/or fusion to the digestive vacuole. In contrast to cytochalasin D, treatment with jasplakinolide led to an inhibition of endocytosis, an accumulation of vesicles closer to the plasma membrane and a marked concentration of actin in the parasite cortex. We propose that the stabilization of cortical actin filaments by jasplakinolide interferes with normal endocytic vesicle formation and migration from the cell periphery. 相似文献
16.
Tangpukdee N Krudsood S Srivilairit S Phophak N Chonsawat P Yanpanich W Kano S Wilairatana P 《The Korean journal of parasitology》2008,46(2):65-70
Artemisinin-based combination therapy (ACT) is currently promoted as a strategy for treating both uncomplicated and severe falciparum malaria, targeting asexual blood-stage Plasmodium falciparum parasites. However, the effect of ACT on sexual-stage parasites remains controversial. To determine the clearance of sexual-stage P. falciparum parasites from 342 uncomplicated, and 217 severe, adult malaria cases, we reviewed and followed peripheral blood sexual-stage parasites for 4 wk after starting ACT. All patients presented with both asexual and sexual stage parasites on admission, and were treated with artesunate-mefloquine as the standard regimen. The results showed that all patients were asymptomatic and negative for asexual forms before discharge from hospital. The percentages of uncomplicated malaria patients positive for gametocytes on days 3, 7, 14, 21, and 28 were 41.5, 13.1, 3.8, 2.0, and 2.0%, while the percentages of gametocyte positive severe malaria patients on days 3, 7, 14, 21, and 28 were 33.6, 8.2, 2.7, 0.9, and 0.9%, respectively. Although all patients were negative for asexual parasites by day 7 after completion of the artesunate-mefloquine course, gametocytemia persisted in some patients. Thus, a gametocytocidal drug, e.g., primaquine, may be useful in combination with an artesunate-mefloquine regimen to clear gametocytes, so blocking transmission more effectively than artesunate alone, in malaria transmission areas. 相似文献
17.
18.
The immune mechanisms whereby malaria parasites are eliminated by the human host or how they may avoid the immune response are poorly understood. Individuals living in malaria-endemic areas gradually acquire immunity. It is well established that this immunity involves both cell-mediated and humoral mechanisms and that T cells are the major regulators in both these events. The existence of functionally distinct P. falciparum-specific CD4+ T-cell subsets in humans has been shown in several studies. However, in contrast to what is the case in murine models there is no definitive link between the activation of various T cells and the course of human P. falciparum blood-stage infection. In the present paper we will review recent findings which illustrate how the balance between functionally different T-cell subsets affects the development of malaria immunity but also may contribute to its pathogenicity. An example of the latter is the deposition of IgE-containing immune complexes in small vessels, probably leading to local overproduction of tumor-necrosis factor (TNF), a pathogenic factor in malaria. 相似文献
19.
Ramya TN Surolia N Surolia A 《Biochemical and biophysical research communications》2006,348(2):579-584
We demonstrate, for the first time, a functional polyamine biosynthetic pathway in the malaria parasite Plasmodium falciparum that culminates in the synthesis of spermine. Additionally, we also report putrescine and spermidine salvage in the malaria parasite. Putrescine and spermidine transport in P. falciparum infected red blood cells is a highly specific, carrier mediated and active process, mediated by new transporters that differ from the transporters of uninfected red blood cells in their kinetic parameters, Vmax and km, as well as in their activation energy. 相似文献
20.
Wellems TE 《Parasitology today (Personal ed.)》1991,7(5):110-112
Resistance to dihydro folate reductase inhibitors and resistance to chloroquine have been mapped to single genetic loci in Plasmodium falciparum. Specific point mutations in the dihydro folate reductase gene confer different degrees of resistance to two dihydro folate inhibitors, cycloguanil and pyrimethamine, depending on the positions of the mutations and the residues involved. The chloroquine resistance locus has been mapped to a 400 kilobase (kb) segment of chromosome 7 in a P. falciparum cross. Identification and characterization of genes within this segment should lead to an understanding of the rapid drug efflux mechanism responsible for chloroquine resistance. 相似文献