首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Functional analysis of lung ventilation in salamanders combined with historical analysis of respiratory pumps provides new perspectives on the evolution of breathing mechanisms in vertebrates. Lung ventilation in the aquatic salamander Necturus maculosus was examined by means of cineradiography, measurement of buccal and pleuroperitoneal cavity pressures, and electromyography of hypaxial musculature. In deoxygenated water Necturus periodically rises to the surface, opens its mouth, expands its buccal cavity to draw in fresh air, exhales air from the lungs, closes its mouth, and then compresses its buccal cavity and pumps air into the lungs. Thus Necturus produces only two buccal movements per breath: one expansion and one compression. Necturus shares the use of this two-stroke buccal pump with lungfishes, frogs and other salamanders. The ubiquitous use of this system by basal sarcopterygians is evidence that a two-stroke buccal pump is the primitive lung ventilation mechanism for sarcopterygian vertebrates. In contrast, basal actinopterygian fishes use a four-stroke buccal pump. In these fishes the buccal cavity expands to fill with expired air, compresses to expel the pulmonary air, expands to fill with fresh air, and then compresses for a second time to pump air into the lungs. Whether the sarcopterygian two-stroke buccal pump and the actinopterygian four-stroke buccal pump arose independently, whether both are derived from a single, primitive osteichthyian breathing mechanism, or whether one might be the primitive pattern and the other derived, cannot be determined. Although Necturus and lungfishes both use a two-stroke buccal pump, they differ in their expiration mechanics. Unlike a lungfish (Protopterus), Necturus exhales by contracting a portion of its hypaxial trunk musculature (the m. Iransversus abdominis) to increase pleuroperitoneal pressure. The occurrence of this same expiratory mechanism in amniotes is evidence that the use of hypaxial musculature for expiration, but not for inspiration, is a primitive tetrapod feature. From this observation we hypothesize that aspiration breathing may have evolved in two stages: initially, from pure buccal pumping to the use of trunk musculature for exhalation but not for inspiration (as in Necturus); and secondarily, to the use of trunk musculature for both exhalation and inhalation by costal aspiration (as in amniotes).  相似文献   

2.
One of the most important physiological changes during the conquest of land by vertebrates was the increasing reliance on lung breathing, with the concomitant decrease in importance of gill breathing. The main problem involved here was to cope with the excessive accumulation of CO2 in the body and to avoid respiratory acidosis. In the past, several often mutually contradicting hypotheses of CO2‐elimination via skin, lungs and gills in early tetrapods have been proposed, based on theoretical physiological considerations and comparison with extant air‐breathing fishes and amphibians. This study proposes a revised scenario of CO2‐elimination in early tetrapods based on fossil evidence, that is recently identified osteological correlates of gills, skin structure and mode of lung ventilation. In stem tetrapods of the Devonian and Carboniferous, O2‐uptake via the lungs by buccal pumping was decoupled from CO2‐release via internal gills, and the rather gas‐impermeable skin played a minor role in gaseous exchange. The two main lineages of crown‐group tetrapods, the amphibian and amniote lineage, used different strategies of CO2‐elimination. As in stem tetrapods, O2‐uptake and CO2‐release remained always largely decoupled in temnospondyls, which ventilated their lungs via buccal pumping and relied mainly on their internal gills for CO2‐release. Temnospondyls were not able to reduce their internal gills before their skin became more gas permeable and their body size was reduced, to shift from internal gills to the skin as the major site of CO2‐elimination, a pattern that is retained in most lissamphibians. In contrast, internal gills were lost very early in stem amniote evolution. This was associated with the evolution of the more effective aspiration pump that allowed the elimination of the bulk of CO2 via the lungs, leading to a coupled O2‐uptake and CO2‐loss in stem amniotes and later in amniotes.  相似文献   

3.
Movements of the hyobranchial apparatus in reptiles and amphibians contribute to many behaviors including feeding, lung ventilation, buccopharyngeal respiration, thermoregulation, olfaction, defense and display. In a semi-aquatic turtle, Platysternon megacephalum, x-ray video and airflow measurements from blowhole pneumotachography show no evidence that above water hyobranchial movements contribute to lung inflation, as in the buccal or gular pump of amphibians and some lizards. Instead, hyobranchial movements produce symmetrical oscillations of air into and out of the buccal cavity. The mean tidal volume of these buccal oscillations is 7.8 times smaller than the mean tidal volume of lung ventilation (combined mean for four individuals). Airflow associated with buccal oscillation occurs in the sequence of inhalation followed by exhalation, distinguishing it from lung ventilation which occurs as exhalation followed by inhalation. No fixed temporal relationship between buccal oscillation and lung ventilation was observed. Periods of ventilation often occur without buccal oscillation and buccal oscillation sometimes occurs without lung ventilation. When the two behaviors occur together, the onset of lung ventilation often interrupts buccal oscillation. The initiation of lung ventilation was found to occur in all phases of the buccal oscillation cycle, suggesting that the neural control mechanisms of the two behaviors are not coupled. The pattern of occurrence of both buccal oscillation and lung ventilation was found to vary over time with no obvious effect of activity levels.  相似文献   

4.
Movements of the hyobranchial apparatus in reptiles and amphibians contribute to many behaviors including feeding, lung ventilation, buccopharyngeal respiration, thermoregulation, olfaction, defense and display. In a semi-aquatic turtle, Platysternon megacephalum, x-ray video and airflow measurements from blowhole pneumotachography show no evidence that above water hyobranchial movements contribute to lung inflation, as in the buccal or gular pump of amphibians and some lizards. Instead, hyobranchial movements produce symmetrical oscillations of air into and out of the buccal cavity. The mean tidal volume of these buccal oscillations is 7.8 times smaller than the mean tidal volume of lung ventilation (combined mean for four individuals). Airflow associated with buccal oscillation occurs in the sequence of inhalation followed by exhalation, distinguishing it from lung ventilation which occurs as exhalation followed by inhalation. No fixed temporal relationship between buccal oscillation and lung ventilation was observed. Periods of ventilation often occur without buccal oscillation and buccal oscillation sometimes occurs without lung ventilation. When the two behaviors occur together, the onset of lung ventilation often interrupts buccal oscillation. The initiation of lung ventilation was found to occur in all phases of the buccal oscillation cycle, suggesting that the neural control mechanisms of the two behaviors are not coupled. The pattern of occurrence of both buccal oscillation and lung ventilation was found to vary over time with no obvious effect of activity levels.  相似文献   

5.
SYNOPSIS. Structural evolution of the vertebrate lung illustratesthe principle that the emergence of seemingly new structuressuch as the mammalian lung is due to intensification of oneof the functions of the original piscine lung. The configurationof the mechanical support of the lung in which elastic and collagenfibers form a continuous framework is well matched with thefunctional demands. The design of the mammalian gas exchangecells is an ingenious solution to meet the functional demandsof optimizing maintenance pathways from nucleus to the cytoplasmwhile simultaneously providing minimal barrier thickness. Surfactantis found in the most primitive lungs providing a protectivecontinuous film of fluid over the delicate epithelium. As thelung became profusely partitioned, surfactant became a functionallynew surface-tension reduction device to prevent the collapseof the super-thin foam-like respiratory surface. Experimentalanalyses have established that in lower vertebrates lungs areventilated with a buccal pulse pump, which is driven by identicalsets of muscles acting in identical patterns in fishes and frogs.In the aquatic habitats suction is the dominant mode of feedinggenerating buccal pressure changes far exceeding those recordedduring air ventilation. From the perspective of air ventilationthe buccal pulse pump is overdesigned. However in terrestrialhabitats vertebrates must operate with higher metabolic demandsand the lung became subdivided into long narrow airways andprogressively smaller air spaces, rendering the pulse pump inefficient.With the placement of the lungs inside a pump, the aspirationpump was established. In mammals, the muscular diaphragm representsa key evolutionary innovation since it led to an energeticallymost efficient aspiration pump. Apparently the potential energycreated by contraction of the diaphragm during inhalation isstored in the elastic tissues of the thoracic unit and lung.This energy is released when lung and thorax recoil to bringabout exhalation. It is further determined experimentally thatrespiratory and locomotory patterns are coupled, further maximizingthe efficiency of mammalian respiration. Symmorphosis is exhibitedin the avian breathing apparatus, which is endowed with a keyevolutionary innovation by having the highly specialized lungcontinuously ventilated by multiple air sacs that function asbellows. Functional morphologists directly deal with these kindsof functional and structural complexities that provide an enormouspotential upon simple changes in underlying mechanisms.  相似文献   

6.
Summary Air ventilation in most Anabantoid species is diphasic, consisting of exhalation and inhalation. Exhalation is the release of air from the accessory breathing organs (suprabranchial chambers) through the mouth either into the water near the surface (e.g.,Ctenopoma) or directly into the atmosphere (e.g.,Osphronemus goramy). Inhalation, i.e., taking in fresh air through the mouth at the surface, immediately follows exhalation. X-ray films show (Figs. 5 and 6) that evacuation of the suprabranchial chambers during exhalation is total or nearly total. This, together with the fact that these chambers can contract at most to a very small extent, led to the conclusion that gas is replaced by water entering the chambers during exhalation and that this water is replaced by fresh air during inhalation. Further analysis of films, including conventional films showing the behavior of the opercular apparatus during air ventilation (Fig. 7), leads to a theory of a double-pumping mechanism responsible for air ventilation. This mechanism consists of the buccal apparatus and the opercular apparatus. It is suggested that both of these structures are able to act as both suction and pressure pumps, and thus air ventilation may be explained as the result of alternating activity of these two pumps.In the monophasic air ventilation characteristic of (adult)Anabas testudineus, there is no exhalation phase comparable to that of other Anabantoids. Therefore, no water enters the suprabranchial chambers, which remain filled with gas during the whole ventilation process (Fig. 10). Ventilation is limited to one phase comparable to inhalation in other Anabantoids.The structure of the accessory breathing organs (Fig. 1) and its progressive complication with growth (Fig. 4) were studied inOsphronemus goramy. The arrangement of the labyrinthine plates is in accordance with the requirements of transport of water and gas through the suprabranchial chambers. One plate (the inner plate, Fig. 1) separates these chambers into atrium, ventro-caudal, and dorso-caudal compartments, each with its own opening (valve). This organization seems essential for the transport of gas and water through the suprabranchial chambers and ensures that during exhalation, water flows into the chambers from above, so that while water is filling these chambers displaced gas can be sucked through the deep-lying pharyngeal openings into the expanding buccal cavity.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

7.
Slow breathing is widely applied to improve symptoms of hyperarousal, but it is unknown whether its beneficial effects relate to the reduction in respiration rate per se, or, to a lower inhalation/exhalation (i/e) ratio. The present study examined the effects of four ventilatory patterns on heart rate variability and self-reported dimensions of relaxation. Thirty participants were instructed to breathe at 6 or 12 breaths/min, and with an i/e ratio of 0.42 or 2.33. Participants reported increased relaxation, stress reduction, mindfulness and positive energy when breathing with the low compared to the high i/e ratio. A lower compared to a higher respiration rate was associated only with an increased score on positive energy. A low i/e ratio was also associated with more power in the high frequency component of heart rate variability, but only for the slow breathing pattern. Our results show that i/e ratio is an important modulator for the autonomic and subjective effects of instructed ventilatory patterns.  相似文献   

8.
SYNOPSIS. The axial musculature of all vertebrates consistsof two principal masses, the epaxial and hypaxial muscles. Theprimitive function of both axial muscle masses is to generatelateral bending of the trunk during swimming, as is seen inmost fishes. Within amphibians we see multiple functional andmorphological elaborations of the axial musculature. These elaborationsappear to be associated not only with movement into terrestrialhabits (salamanders), but also with subsequent locomotor specializationsof two of the three major extant amphibian clades (frogs andcaecilians). Salamanders use both epaxial and hypaxial musclesto produce lateral bending during swimming and terrestrial,quadrupedal locomotion. However during terrestrial locomotionthe hypaxial muscles are thought to perform an added function,resisting long-axis torsion of the trunk. Relative to salamanders,frogs have elaborate epaxial muscles, which function to bothstabilize and extend the iliosacral and coccygeosacral joints.These actions are important in the effective use of the hindlimbsduring terrestrial saltation and swimming. In contrast, caecilianshave relatively elaborate hypaxial musculature that is linkedto a helix of connective tissue embedded in the skin. The helixand associated hypaxial muscles form a hydrostatic skeletonaround the viscera that is continuously used to maintain bodyposture and also contributes to forward force production duringburrowing.  相似文献   

9.
We made anatomical and physiological observations of the breathing mechanisms in Pacific hagfish Eptatretus stoutii, with measurements of nostril flow and pressure, mouth and pharyngo-cutaneous duct (PCD) pressure and velum and heart impedance and observations of dye flow patterns. Resting animals frequently exhibit spontaneous apnea. During normal breathing, water flow is continuous at a high rate (~125 ml kg−1 min−1 at 12°C) powered by a two-phase unidirectional pumping system with a fast suction pump (the velum, ~22 min−1) for inhalation through the single nostril and a much slower force pump (gill pouches and PCD ~4.4 min−1) for exhalation. The mouth joins the pharynx posterior to the velum and plays no role in ventilation at rest or during swimming. Increases in flow up to >400 ml kg−1 min−1 can be achieved by increases in both velum frequency and stroke volume and the ventilatory index (product of frequency x nostril pressure amplitude) provides a useful proxy for ventilatory flow rate. Two types of coughing (flow reversals) are described. During spontaneous swimming, ventilatory pressure and flow pulsatility becomes synchronised with rhythmic body undulations.  相似文献   

10.
This study explored how the clinicians'/experimenters' breath patterns affected subjects' inhalation volume. 20 volunteer subjects inhaled 20 sequential breaths (10 normal and 10 paced) with their eyes closed. During the paced exhalation, the experimenter audibly exhaled in phase with the subjects' exhalation. The subjects's inhalation volumes significantly increased during the paced as compared to the initial normal breathing phase, F(1,19)=8.82, p<.01, repeated measures ANOVA. These findings confirm that the clinician's breathing style directly affects the client's breath pattern.  相似文献   

11.
Numerous aquatic reptiles and amphibians that typically breathe both air and water can remain fully aerobic in normoxic (aerated) water by taking up oxygen from the water via extrapulmonary avenues. Nevertheless, if air access is available, these animals do breathe air, however infrequently. We suggest that such air breathing does not serve an immediate gas exchange function under these conditions, nor is it necessarily related to buoyancy requirements, but serves to keep lungs inflated that would otherwise collapse during prolonged submergence. We also suggest that lung deflation is routine in hibernating aquatic reptiles and amphibians in the northern portions of their ranges, where ice cover prevents surfacing for extended periods.  相似文献   

12.
Typhlonectes natans empty their lungs in a single extended exhalation and subsequently fill their lungs by using a series of 10-20 inspiratory buccal oscillations. These animals always use this breathing pattern, which effectively separates inspiratory and expiratory airflows, unlike most urodele and anuran amphibians that may use one to many buccal oscillations for lung inflation and typically mix expired and inspired gases. Aquatic hypoxia had no significant effect on the breathing pattern or mechanics in these animals. Aerial hypoxia stimulated ventilatory frequency and increased the number of inspiratory oscillations but had little effect on inspiratory and expiratory tidal volume. Aquatic hypercapnia elicited a large significant increase in air-breathing frequency and minute ventilation compared to the small stimulation of minute ventilation seen during aerial hypercapnia. Some animals responded to aquatic hypercapnia with a series of three or four closely spaced breaths separated by long nonventilatory periods. Overall, T. natans showed little capacity to modulate expiratory or inspiratory tidal volumes and depended heavily on changing air-breathing frequency to meet hypoxic and hypercapnic challenges. These responses are different from those of anurans or urodeles studied to date, which modulate both the number of ventilatory oscillations in lung-inflation cycles and the degree of lung inflation when challenged with peripheral or central chemoreceptor stimulation.  相似文献   

13.
The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid-base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in modern reptiles, which experience hypercapnia when submerged in water, these animals would have experienced hypercapnia on land, owing to likely inefficient means of eliminating carbon dioxide. The different patterns of dermal bone sculpture in these tetrapods largely correlates with levels of terrestriality: sculpture is reduced or lost in stem amniotes that likely had the more efficient lung ventilation mode of costal aspiration, and in small-sized stem amphibians that would have been able to use the skin for gas exchange.  相似文献   

14.
The perivertebral musculature of lizards is critical for the stabilization and the mobilization of the trunk during locomotion. Some trunk muscles are also involved in ventilation. This dual function of trunk muscles in locomotion and ventilation leads to a biomechanical conflict in many lizards and constrains their ability to breathe while running (“axial constraint”) which likely is reflected by their high anaerobic scope. Furthermore, different foraging and predator‐escape strategies were shown to correlate with the metabolic profile of locomotor muscles in lizards. Because knowledge of muscle's fiber‐type composition may help to reveal a muscle's functional properties, we investigated the distribution pattern of muscle fiber types in the perivertebral musculature in two small lizard species with a generalized body shape and subjected to the axial constraint (Dipsosaurus dorsalis, Acanthodactylus maculatus) and one species that circumvents the axial constraint by means of gular pumping (Varanus exanthematicus). Additionally, these species differ in their predator‐escape and foraging behaviors. Using refined enzyme‐histochemical protocols, muscle fiber types were differentiated in serial cross‐sections through the trunk, maintaining the anatomical relationships between the skeleton and the musculature. The fiber composition in Dipsosaurus and Acanthodactylus showed a highly glycolytic profile, consistent with their intermittent locomotor style and reliance on anaerobic metabolism during activity. Because early representatives of diapsids resemble these two species in several postcranial characters, we suggest that this glycolytic profile represents the plesiomorphic condition for diapsids. In Varanus, we found a high proportion of oxidative fibers in all muscles, which is in accordance with its high aerobic scope and capability of sustained locomotion. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Aspiration breathing is the dominant mechanism of lung inflation among extant amniotes. However, aspiration has two fundamental problems associated with it: paradoxical visceral translation and partial lung collapse. These can constrain the inspiratory tidal volume, reduce the effective lung ventilation, and ultimately curtail the aerobic capacity of an animal. Separation of the pleural and peritoneal cavities by an intracoelomic septum can restrict the cranial shift of abdominal viscera and provide structural support to the caudal lung surface. A muscular septum, such as the diaphragm of mammals or the diaphragmaticus of crocodilians, can exert active control over visceral translation and the degree of lung inflation. To a lesser degree, a nonmuscular septum can also function as a passive barrier when stretched taut by rib rotation. Studies of the posthepatic septum in teiid lizards and the postpulmonary septum in varanid lizards underscore the importance of nonmuscular septa in aspiration. These septa provide plausible functional models that help us infer the evolution of mammalian and avian lung ventilatory systems, respectively.  相似文献   

16.
The purpose of this study was to explore new insights in non-linearity, hysteresis and ventilation heterogeneity of asthmatic human lungs using four-dimensional computed tomography (4D-CT) image data acquired during tidal breathing. Volumetric image data were acquired for 5 non-severe and one severe asthmatic volunteers. Besides 4D-CT image data, function residual capacity and total lung capacity image data during breath-hold were acquired for comparison with dynamic scans. Quantitative results were compared with the previously reported analysis of five healthy human lungs. Using an image registration technique, local variables such as regional ventilation and anisotropic deformation index (ADI) were estimated. Regional ventilation characteristics of non-severe asthmatic subjects were similar to those of healthy subjects, but different from the severe asthmatic subject. Lobar airflow fractions were also well correlated between static and dynamic scans (R2 > 0.84). However, local ventilation heterogeneity significantly increased during tidal breathing in both healthy and asthmatic subjects relative to that of breath-hold perhaps because of airway resistance present only in dynamic breathing. ADI was used to quantify non-linearity and hysteresis of lung motion during tidal breathing. Non-linearity was greater on inhalation than exhalation among all subjects. However, exhalation non-linearity among asthmatic subjects was greater than healthy subjects and the difference diminished during inhalation. An increase of non-linearity during exhalation in asthmatic subjects accounted for lower hysteresis relative to that of healthy ones. Thus, assessment of non-linearity differences between healthy and asthmatic lungs during exhalation may provide quantitative metrics for subject identification and outcome assessment of new interventions.  相似文献   

17.
This study investigates the effects of partial exhalation to feelings of anxiety. Thirty five volunteer subjects (14 male, 21 female, mean age 40.6) were first trained in slow diaphragmatic breathing (SDB). Then subjects rated their anxiety levels on a scale from 1 (none) to 5 (extreme) in sequential conditions of SDB, 70% subjective exhalation, and SDB. During the 70% subjective exhalation phase, subjects were instructed to breathe and limit their exhalation to 70% of the inhaled volume during each consecutive breath. The 70% subjective condition significantly (P<.0005) increased=" subjects'=" anxiety=" levels=" as=" compared=" to=" the=" initial=" sdb=" baseline,=" while=" a=" return=" to=" sdb=" significantly=" reduced=" the=" anxiety=" levels.=" the=" 70%=" approach=" appears=" useful=" in=" demonstrating=" to=" the=" client=" that=" possible=" changes=" in=" breathing=" patterns=" can=" affect=">We gratefully acknowledge the assistance of Richard Steiner, Ph.D. for his comments and help with the statistical analysis in this article. The preliminary findings of this article were presented at the Twenty-first Annual Meeting of the Association for Applied Psychophysiology and Biofeedback.  相似文献   

18.
In a series of recent studies, the organization of the basal ganglia of amphibians, more in particular their connectivity and chemoarchitecture, has been thoroughly analyzed. The pattern of organization found for the amphibian basal ganglia includes dorsal and ventral striatopallidal systems, reciprocal connections between the striatopallidal complex and structures derived from the diencephalic and mesencephalic parts of the basal plate (striatonigral and nigrostriatal projections), and descending pathways from the striatopallidal system to the midbrain tectum and the reticular formation of the brain stem. A comparative analysis of the organization of the basal ganglia in tetrapods strongly supports the notion that a primitive pattern was most likely present in ancestral tetrapods, and that many features can still be recognized in extant amphibians and amniotes.  相似文献   

19.
In 20 normal and four anosmic participants, instantaneous inhalation and exhalation flow rates were recorded in response to 15 s stimulations with clean air or propionic acid concentrations (0.16, 1.14, 8.22 and 59.15 p.p.m., v/v) that ranged from peri-threshold for normals to clearly supra-threshold for anosmics. Each odorant/irritant delivery to the face-mask began with an exhalation. This allowed concentration to reach full value before stimulus onset, defined as the point where the participant began to bring the stimulus into the nose by inhalation. Two seconds after this stimulus onset, normals exhibited cumulative inhaled volume (CIV) declines of 39 and 14%, and latencies of 500 and 710 ms, with presentations of 59.15 and 8.22 p.p.m., respectively. With anosmics, 59.15 p.p.m. caused a 19% decline in CIV that began at 730 ms. Examination of the first inhalation after stimulus onset shows that the CIV declines in normals were achieved by a progressive decline in volume (InVol), beginning with a slight drop at 1.14 p.p.m., and a marked decline in duration (InDur) with only the highest concentration. Anosmics exhibited declines in InDur and InVol with only the 59.15 p.p.m. stimulus, and these declines were much more modest than the changes seen in normals. Comparison of these breathing results with perceptual responses from this same experiment demonstrates that: (i) in normals, odor perception rises slightly, but breathing does not change, with the lowest concentration; (ii) the higher breathing sensitivity (declines in InVol) of normals is paralleled by both the higher nasal irritation of these individuals and the presence of odor sensation; (iii) InDur declines in normals only with a stimulus concentration sufficient to cause marked nasal irritation in anosmics; and iv) in anosmics, modest but reliable declines in both InDur and InVol mirror the marked elevation in nasal irritation magnitude seen with only the highest concentration. In view of the failure of prior work to provide evidence that olfactory activation alone can cause any of the breathing changes we observed, we conclude that some breathing parameters are quite useful as rapid and sensitive measures of nasal irritation that arises from activation of nasal trigeminal afferents alone or in combination with the olfactory nerve.  相似文献   

20.
The general structural patterns of jaw adductors in all orders of extant amphibians and reptiles, and also polypteriforms, crossopterygians (coelacanth), and dipnoans, are compared. The pterygoideus muscles probably developed independently and in parallel in gymnophions and amniotes from the profound pseudotemporalis muscle, which was present in their fishlike ancestors and was retained in caudate and anuran amphibians. The functional causes of the development of pterygoideus muscles in the majority of tetrapod groups and the absence of these muscles in Urodela and Anura are discussed. The anterior pterygoideus muscle of crocodiles is homologous to the pseudotemporalis (superficial) muscle of other reptiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号