首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
SYNOPSIS. Molecular sequence analysis is providing new insightsinto the study of metazoan relationships. The use of ribosomalRNA sequences is revising many of the metazoan phylogenies thathave been established traditionally with anatomical and embryologicaldata. Four new findings that seem to be well supported by moleculardata, both from the authors' laboratories and from others, aredescribed and discussed. First, the arthropods are members ofa deep primary clade within the protostomes and are not thesister taxa of either the annelids or the mollusks. Second,the lophophorate animals are clearly protostomes and are containedwithin a lophotrochozoan superclade including the mollusks,annelids, and many other phyla. Third, the arthropods togetherwith all other molting animals comprise a second monophyleticsuperclade within the protostomes, the ecdysozoa. Fourth, theplatyhelminthes are contained within the lophotrochozoan superclade.  相似文献   

2.
SUMMARY Insight into the origin and early evolution of the animal phyla requires an understanding of how animal groups are related to one another. Thus, we set out to explore animal phylogeny by analyzing with maximum parsimony 138 morphological characters from 40 metazoan groups, and 304 18S rDNA sequences, both separately and together. Both types of data agree that arthropods are not closely related to annelids: the former group with nematodes and other molting animals (Ecdysozoa), and the latter group with molluscs and other taxa with spiral cleavage. Furthermore, neither brachiopods nor chaetognaths group with deuterostomes; brachiopods are allied with the molluscs and annelids (Lophotrochozoa), whereas chaetognaths are allied with the ecdysozoans. The major discordance between the two types of data concerns the rooting of the bilaterians, and the bilaterian sister-taxon. Morphology suggests that the root is between deuterostomes and protostomes, with ctenophores the bilaterian sister-group, whereas 18S rDNA suggests that the root is within the Lophotrochozoa with acoel flatworms and gnathostomulids as basal bilaterians, and with cnidarians the bilaterian sister-group. We suggest that this basal position of acoels and gnathostomulids is artifactal because for 1000 replicate phylogenetic analyses with one random sequence as outgroup, the majority root with an acoel flatworm or gnathostomulid as the basal ingroup lineage. When these problematic taxa are eliminated from the matrix, the combined analysis suggests that the root lies between the deuterostomes and protostomes, and Ctenophora is the bilaterian sister-group. We suggest that because chaetognaths and lophophorates, taxa traditionally allied with deuterostomes, occupy basal positions within their respective protostomian clades, deuterostomy most likely represents a suite of characters plesiomorphic for bilaterians.  相似文献   

3.
SYNOPSIS. Molecular studies have revealed many new hypothesesof metazoan evolution in recent years. Previously, using morphologicalmethods, it was difficult to relate "minor" animal groups representingmicroscopic metazoans to larger, more well known groups suchas arthropods, molluscs, and annelids. Molecular studies suggestthat acanthocephalans evolved from rotifers, that priapulidsshare common ancestry with all other molting animals (Ecdysozoa),and that flatworms, gnathostomulids and rotifers form a sistergroup to the remaining non-molting protostomes (Lophotrochozoa),together forming Spiralia. The lophophorate phyla (phoronids,brachiopods and bryozoans) appear as protostomes, allied withannelids and molluscs rather than with deuterostomes. Thesefindings present a very different view of metazoan evolution,and clearly show that small and simple animals do not necessarilyrepresent ancestral or primitive taxa.  相似文献   

4.
The new animal phylogeny inferred from ribosomal genes some years ago has prompted a number of radical rearrangements of the traditional, morphology based metazoan tree. The two main bilaterian clades, Deuterostomia and Protostomia, find strong support, but the protostomes consist of two sister groups, Ecdysozoa and Lophotrochozoa, not seen in morphology based trees. Although widely accepted, not all recent molecular phylogenetic analyses have supported the tripartite structure of the new animal phylogeny. Furthermore, even if the small ribosomal subunit (SSU) based phylogeny is correct, there is a frustrating lack of resolution of relationships between the phyla that make up the three clades of this tree. To address this issue, we have assembled a dataset including a large number of aligned sequence positions as well as a broad sampling of metazoan phyla. Our dataset consists of sequence data from ribosomal and mitochondrial genes combined with new data from protein coding genes (5139 amino acid and 3524 nucleotide positions in total) from 37 representative taxa sampled across the Metazoa. Our data show strong support for the basic structure of the new animal phylogeny as well as for the Mandibulata including Myriapoda. We also provide some resolution within the Lophotrochozoa, where we confirm support for a monophyletic clade of Echiura, Sipuncula and Annelida and surprising evidence of a close relationship between Brachiopoda and Nemertea.  相似文献   

5.
Almost a decade ago, a new phylogeny of bilaterian animals was inferred from small-subunit ribosomal RNA (rRNA) that claimed the monophyly of two major groups of protostome animals: Ecdysozoa (e.g., arthropods, nematodes, onychophorans, and tardigrades) and Lophotrochozoa (e.g., annelids, molluscs, platyhelminths, brachiopods, and rotifers). However, it received little additional support. In fact, several multigene analyses strongly argued against this new phylogeny. These latter studies were based on a large amount of sequence data and therefore showed an apparently strong statistical support. Yet, they covered only a few taxa (those for which complete genomes were available), making systematic artifacts of tree reconstruction more probable. Here we expand this sparse taxonomic sampling and analyze a large data set (146 genes, 35,371 positions) from a diverse sample of animals (35 species). Our study demonstrates that the incongruences observed between rRNA and multigene analyses were indeed due to long-branch attraction artifacts, illustrating the enormous impact of systematic biases on phylogenomic studies. A refined analysis of our data set excluding the most biased genes provides strong support in favor of the new animal phylogeny and in addition suggests that urochordates are more closely related to vertebrates than are cephalochordates. These findings have important implications for the interpretation of morphological and genomic data.  相似文献   

6.
A relatively new clade, the Ecdysozoa [Aguinaldo et al., 1997. Nature 387, 489-493] was raised based on the 18S ribosomal DNA sequences that indicate a close relationship between the moulting phyla (Arthropoda, Tardigrada, Onychophora, Nematoda, Nematomorpha, Kinorhyncha, Lorificera and Priapula), from which the Annelida, with other phyla, are excluded.However, the authors here expressed puzzlement about this conclusion. In particular they stressed that: (a) ecdysis might not be an autapomorphy for the Ecdysozoa; (b) some Ecdysozoa phyla are unrelated from one another with regard to morphology and embryogeny; (c) the annelids have a body architecture that is more similar to arthropods than some of the Ecdysozoa; (d) the annelids are moulting animals; (e) some phyla excluded from the new clade (e.g. the gastrotrichs), probably carry out a gradual ecdysis by flaking similar to that of the polychaetes.The authors concluded that the clade Ecdysozoa appears to be phylogenetically unconvincing.  相似文献   

7.
A Brief Review of Metazoan Phylogeny and Future Prospects in Hox-Research   总被引:1,自引:0,他引:1  
Underlying any analysis on the evolution of development is aphylogenetic framework, whether explicitly stated or implied.As such, differing views on phylogenetic relationships leadto variable interpretations of how developmental mechanismshave changed through time. Over the past decade, many long-standinghypotheses about animal evolution have been questioned causingsubstantial changes in the assumed phylogenetic framework underlyingcomparative developmental studies. Current hypotheses aboutearly metazoan history suggest that three, not two, major lineagesof bilateral animals originated in the Precambrian: the Deuterostomes(e.g., seastars, acorn worms, and vertebrates), the Ecdysozoans(e.g., nematodes and arthropods), and the Lophotrochozoans (e.g.,annelids, mollusks, and lophophorates). Although informationin Hox-genes bears directly on our understanding of early metazoanevolution and the formation of body plans, research effort hasbeen focused primarily on two taxa, insects and vertebrates.By sampling a greater diversity of metazoan taxa and takingadvantage of biotechnological advances in genomics, we willnot only learn more about metazoan phylogeny, but will alsogain valuable insight as to the key evolutionary forces thatestablished and maintained metazoan bauplans.  相似文献   

8.
Since the first animal genomes were completely sequenced ten years ago, evolutionary biologists have attempted to use the encoded information to reconstruct different aspects of the earliest stages of animal evolution. One of the most important uses of genome sequences is to understand relationships between animal phyla. Despite the wealth of data available, ranging from primary sequence data to gene and genome structures, our lack of understanding of the modes of evolution of genomic characters means that using these data is fraught with potential difficulties, leading to errors in phylogeny reconstruction. Improved understanding of how different character types evolve, the use of this knowledge to develop more accurate models of evolution, and denser taxonomic sampling, are now minimizing the sources of error. The wealth of genomic data now being produced promises that a well-resolved tree of the animal phyla will be available in the near future.  相似文献   

9.
The origin of animal segmentation, the periodic repetition of anatomical structures along the anteroposterior axis, is a long-standing issue that has been recently revived by comparative developmental genetics. In particular, a similar extensive morphological segmentation (or metamerism) is commonly recognized in annelids and arthropods. Mostly based on this supposedly homologous segmentation, these phyla have been united for a long time into the clade Articulata. However, recent phylogenetic analysis dismissed the Articulata and thus challenged the segmentation homology hypothesis. Here, we report the expression patterns of genes orthologous to the arthropod segmentation genes engrailed and wingless in the annelid Platynereis dumerilii. In Platynereis, engrailed and wingless are expressed in continuous ectodermal stripes on either side of the segmental boundary before, during, and after its formation; this expression pattern suggests that these genes are involved in segment formation. The striking similarities of engrailed and wingless expressions in Platynereis and arthropods may be due to evolutionary convergence or common heritage. In agreement with similarities in segment ontogeny and morphological organization in arthropods and annelids, we interpret our results as molecular evidence of a segmented ancestor of protostomes.  相似文献   

10.
Annelids and arthropods have long been considered each other's closest relatives, as evidenced by similarities in their segmented body plans. An alternative view, more recently advocated by investigators who have examined partial 18S ribosomal RNA data, proposes that annelids, molluscs, and certain other minor phyla with trochophore larva stages share a more recent common ancestor with one another than any do with arthropods. The two hypotheses are mutually exclusive in explaining spiralian relationships. Cladistic analysis of morphological data does not reveal phylogentic relationships among major spiralian taxa but does suggest monophyly for both the annelids and molluscs. Distance and maximum-likelihood analyses of 18S rRNA gene sequences from major spiralian taxa suggest a sister relationship between annelids and molluscs and provide a clear resolution within the major groups of the spiralians. The parsimonious tree based on molecular data, however, indicates a sister relationship of the Annelida and Bivalvia, and an earlier divergence of the Gastropoda than the Annelida–Bivalvia clade. To test further hypotheses on the phylogenetic relationships among annelids, molluscs, and arthropods, and the ingroup relationships within the major spiralian taxa, we combine the molecular and morphological data sets and subject the combined data matrix to parsimony analysis. The resulting tree suggests that the molluscs and annelids form a monophyletic lineage and unites the molluscan taxa to a monophyletic group. Therefore, the result supports the Eutrochozoa hypothesis and the monophyly of molluscs, and indicates early acquisition of segmented body plans in arthropods. Received: 25 September 1995 / Accepted: 15 March 1996  相似文献   

11.
Two burgeoning research trends are helping to reconstruct the evolution of the Hox cluster with greater detail and clarity. First, Hox genes are being studied in a broader phylogenetic sampling of taxa: the past year has witnessed important new data from teleost fishes, onychophorans, myriapods, polychaetes, glossiphoniid leeches, ribbon worms, and sea anemones. Second, commonly accepted notions of animal relationships are being challenged by alternative phylogenetic hypotheses that are causing us to rethink the evolutionary relationships of important metazoan lineages, especially arthropods, annelids, nematodes, and platyhelminthes.  相似文献   

12.
Loesel, R. and Heuer, C.M. 2010. The mushroom bodies – prominent brain centres of arthropods and annelids with enigmatic evolutionary origin. —Acta Zoologica (Stockholm) 91 : 29–34 Mushroom bodies (MBs) are the most prominent and conspicuous neuropils in the brain of arthropods, onychophorans and vagile polychaete annelids but have not been described in any other animal group with complex brain architecture. Due to a number of unique neuroanatomical characters MBs can easily be identified and distinguished from other brain centres. However, their evolutionary origin and the question whether MBs are homologous structures is still under debate. This paper will briefly summarize the available morphological data and their implications with respect to the molecular evidence on early metazoan radiation. Unraveling the origin of MBs is an example of the challenges neurophylogenists will face in the future, especially so since it will signify a major step towards reconstructing early metazoan brain evolution.  相似文献   

13.
Sequence analysis of small-subunit ribosomal RNA (18S rRNA) has provided important new pieces for the great puzzle of metazoan phylogeny and has generated new perspectives on the Precambrian-Cambrian fossil record of the metazoan radiation. While the puzzle is far from resolved and the early results are plagued by difficulties in data analysis, intriguing insights have appeared. Early results suggest that molluscs and lophophorates are protostomes, and that deuterostomes may be derived from protostomes. More speculatively, annelids and molluscs may be derived from arthropods or an arthropod ancestor. The molecular evidence further strengthens paleontological arguments for an explosive metazoan radiation near the Vendian-Cambrian boundary, rather than a lengthy, but hidden, period of Precambrian diversification.  相似文献   

14.
Hox genes and the phylogeny of the arthropods   总被引:12,自引:0,他引:12  
The arthropods are the most speciose, and among the most morphologically diverse, of the animal phyla. Their evolution has been the subject of intense research for well over a century, yet the relationships among the four extant arthropod subphyla - chelicerates, crustaceans, hexapods, and myriapods - are still not fully resolved. Morphological taxonomies have often placed hexapods and myriapods together (the Atelocerata) [1, 2], but recent molecular studies have generally supported a hexapod/crustacean clade [2-9]. A cluster of regulatory genes, the Hox genes, control segment identity in arthropods, and comparisons of the sequences and functions of Hox genes can reveal evolutionary relationships [10]. We used Hox gene sequences from a range of arthropod taxa, including new data from a basal hexapod and a myriapod, to estimate a phylogeny of the arthropods. Our data support the hypothesis that insects and crustaceans form a single clade within the arthropods to the exclusion of myriapods. They also suggest that myriapods are more closely allied to the chelicerates than to this insect/crustacean clade.  相似文献   

15.

Background  

Rare genomic changes (RGCs) that are thought to comprise derived shared characters of individual clades are becoming an increasingly important class of markers in genome-wide phylogenetic studies. Recently, we proposed a new type of RGCs designated RGC_CAMs (after Conserved Amino acids-Multiple substitutions) that were inferred using genome-wide identification of amino acid replacements that were: i) located in unambiguously aligned regions of orthologous genes, ii) shared by two or more taxa in positions that contain a different, conserved amino acid in a much broader range of taxa, and iii) require two or three nucleotide substitutions. When applied to animal phylogeny, the RGC_CAM approach supported the coelomate clade that unites deuterostomes with arthropods as opposed to the ecdysozoan (molting animals) clade. However, a non-negligible level of homoplasy was detected.  相似文献   

16.
Phylogenomics of eukaryotes: impact of missing data on large alignments   总被引:17,自引:0,他引:17  
Resolving the relationships between Metazoa and other eukaryotic groups as well as between metazoan phyla is central to the understanding of the origin and evolution of animals. The current view is based on limited data sets, either a single gene with many species (e.g., ribosomal RNA) or many genes but with only a few species. Because a reliable phylogenetic inference simultaneously requires numerous genes and numerous species, we assembled a very large data set containing 129 orthologous proteins ( approximately 30,000 aligned amino acid positions) for 36 eukaryotic species. Included in the alignments are data from the choanoflagellate Monosiga ovata, obtained through the sequencing of about 1,000 cDNAs. We provide conclusive support for choanoflagellates as the closest relative of animals and for fungi as the second closest. The monophyly of Plantae and chromalveolates was recovered but without strong statistical support. Within animals, in contrast to the monophyly of Coelomata observed in several recent large-scale analyses, we recovered a paraphyletic Coelamata, with nematodes and platyhelminths nested within. To include a diverse sample of organisms, data from EST projects were used for several species, resulting in a large amount of missing data in our alignment (about 25%). By using different approaches, we verify that the inferred phylogeny is not sensitive to these missing data. Therefore, this large data set provides a reliable phylogenetic framework for studying eukaryotic and animal evolution and will be easily extendable when large amounts of sequence information become available from a broader taxonomic range.  相似文献   

17.
The phylogenetic position of thé platyhelminths within the metazoan tree is examined using two independent sets of molecular characters, the evolution of 18S ribosomal RNA sequences and the diversity of the genes belonging to the HOX cluster. Among the various hypotheses that have been considered by zoologists, a position of the platyhelminths within the protostomes, related to the phyla with typical spiral cleavage, appears to be favoured when taking into account all separate lines of evidence. It is in conflict with the traditional hypothesis of an early emergence at the base of the bilaterally symmetrical animals. This relatively late emergence is compatible with the old idea that flatworms are derived from a coelomate ancestor. New evidence from the sequences of Hox. genes suggests that the duplicated genes Ultrabithorax/abdominal-A constitute a genetic synapomorphy of the whole protostome clade.  相似文献   

18.
James R. Garey   《Zoologischer Anzeiger》2001,240(3-4):321-330
The hypothesis that molting protostomes such as nematodes and arthropods form a monophyletic group known as Ecdysozoa is directly opposed to Articulata, in which some segmented protostomes such as annelids and arthropods form a monophyletic taxon. Ultrastructural and cladistic studies have led to the widely accepted hypothesis that nematodes belong among the protostomes. While early molecular studies suggested that nematodes were basal triploblasts, more recent molecular evidence suggests that this was an artifact of ‘long branch attraction’ and 18S rRNA gene, total evidence and hox gene studies all support the placement of nematodes within Ecdysozoa. The branching pattern within Ecdysozoa has been difficult to elucidate, but it now appears that priapulids and kinorhynchs form the earliest branching clade, followed by nematodes + nematomorphs, and finally the panarthropods. This suggests that Cycloneuralia is paraphyletic and that arthropods are the most derived of the ecdysozoans.  相似文献   

19.
The new animal phylogeny disrupts the traditional taxon Articulata (uniting arthropods and annelids) and thus calls into question the homology of the body segments and appendages in the two groups. Recent work in the annelid Platynereis dumerilii has shown that although the set of genes involved in body segmentation is similar in the two groups, the body units of annelids correspond to arthropod parasegments not segments. This challenges traditional ideas about the homology of "segmental" organs in annelids and arthropods, including their appendages. Here I use the expression of engrailed, wingless and Distal-less in the arthropod Artemia franciscana to identify the parasegment boundary and the appendage primordia. I show that the early body organization including the appendage primordia is parasegmental and thus identical to the annelid organization and by deriving the different adult appendages from a common ground plan I suggest that annelid and arthropod appendages are homologous structures despite their different positions in the adult animals. This also has implications for the new animal phylogeny, because it suggests that Urprotostomia was not only parasegmented but also had parasegmental appendages similar to extant annelids, and that limb-less forms in the Protostomia are derived from limb-bearing forms.  相似文献   

20.
The long held view that annelids and arthropods are closely related (Articulata) has been challenged recently by phylogenetic analyses using molecular data. The outcome of these studies is a clade of moulting animals (Ecdysozoa) comprising arthropods and some taxa of the nemathelminth worms. Monophyly of the Ecdysozoa has not yet been shown convincingly on morphological evidence, but is strongly supported by molecular data. The implication of the Ecdysozoa hypothesis is that the type of segmentation found in annelids and arthropods must be either convergent or an ancestral feature of protostomes or even bilaterians. The present review discusses aspects of segmentation in annelids and arthropods at the genetic, cellular, morphogenetic and morphological levels. Based on numerous similarities not shared with other bilaterian taxa it is suggested that segmentation of annelids and arthropods is homologous and apomorphic for a monophyletic Articulata. However, the challenge provided by the molecular analyses should stimulate research programmes gaining more data such as on additional genes, cleavage patterns, molecular developmental biology, and the comparison of nervous systems at the level of single neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号