首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human IL-1 beta and TNF alpha production by normal and transformed monocytoid cells was studied using biological assays, cytokine specific ELISA and by immunocytochemical methods on a single cell level. Quiescent human blood monocytes and cultured in vitro transformed human monocytoid cell lines U-937, THP-1 and HL-60 did not contain IL-1 beta and TNF alpha in their cytoplasm. IL-1 beta synthesis and secretion was induced by LPS stimulation in nearly 90% monocytes, 15-20% U-937, 3-5% THP-1 and in no HL-60 cells. Normal human blood monocytes had a more rapid kinetics of IL-1 beta synthesis. IL-1 beta positive cells stained with antibodies to human IL-1 beta appeared at 1-2 hours after LPS application, while in monocytic cell lines only after 4-6 hours. Using immunoperoxidase staining of U-937 cells pulse labelled with 3H-thymidine, it was shown that proliferating cells did not synthetize IL-1 beta. Instead of IL-1 beta, TNF alpha could be induced by LPS in U-937 cells only after preliminary differentiation with PMA. Recombinant IL-1 beta induced a very low level of TNF alpha production in PMA-treated cells. Similarly recombinant TNF alpha alone induced IL-1 beta synthesis only in a few U-937 cells.  相似文献   

2.
The potassium ionophore nigericin induces cell death and promotes the maturation and release of IL-1beta in lipopolysaccharide (LPS)-primed monocytes and macrophages, the latter depending on caspase-1 activation by an unknown mechanism. Here, we investigate the pathway that triggers cell death and activates caspase-1. We show that without LPS priming, nigericin alone triggered caspase-1 activation and IL-18 generation in THP-1 monocytic cells. Simultaneously, nigericin induced caspase-1-independent necrotic cell death, which was blocked by the cathepsin B inhibitor CA-074-Me and other cathepsin inhibitors. Cathepsin B activation after nigericin treatment was determined biochemically and corroborated by rapid lysosomal leakage and translocation of cathepsin B to the cytoplasm. IL-18 maturation was prevented by both caspase-1 and cathepsin B inhibitors in THP-1 cells, primary mouse macrophages and human blood monocytes. Moreover, IL-18 generation was reduced in THP-1 cells stably transformed either with cystatin A (an endogenous cathepsin inhibitor) or antisense cathepsin B cDNA. Collectively, our study establishes a critical role for cathepsin B in nigericin-induced caspase-1-dependent IL-18 maturation and caspase-1-independent necrosis.  相似文献   

3.
4.
The effect of heat on IL-1 beta biosynthesis was investigated in both THP-1 cells, a myelomonocytic cell line which can be induced to make IL-1 alpha and beta, and human peripheral blood adherent monocytes (PBMC). Induction of THP-1 cells with LPS at 39 to 41 degrees C for 2 to 4 h resulted in the expected increased synthesis of the heat-shock proteins hsp 70 and hsp 90 but decreased synthesis of the IL-1 beta precursor protein, p35 (and its mRNA), compared with control cells at 37 degrees C. This appeared to be a direct effect on p35 synthesis rather than a block in LPS induction because heat also acted on preinduced cells. PBMC similarly incubated for 4 h with LPS required a temperature of 41 to 42 degrees C to induce hsp and show a decrease in p35 synthesis. Chemical inducers of the heat-shock response (heavy metals, sulphydryl reagents) were also effective inhibitors of IL-1 beta biosynthesis. A correlation was seen between the extent of IL-1 beta reduction and the level of hsp induction by chemical inducers in both THP-1 cells and PBMC which suggests that the two responses are linked. In addition, a gold salt currently used for therapy of chronic inflammation, auranofin, induced hsp and inhibited IL-1 beta biosynthesis, whereas a second salt, sodium aurothiomalate, did neither. These results support the hypothesis that elevated temperature is one of the physiologic signals for down-regulation of IL-1 beta biosynthesis through a mechanism related to the induction of hsp.  相似文献   

5.
The objectives of these studies were to study the effects of bacterial lipopolysaccharide (LPS) on interferon-gamma (IFN-gamma)-induced Fc receptor expression on human monocytes and to examine whether these effects were mediated through stimulation of interleukin 1 (IL-1) production. Fc receptor expression was determined by binding of monomeric monoclonal murine immunoglobulin (Ig)G2a and cytofluorographic analysis. IL-1 activity in monocyte supernatants and lysates was assayed by augmentation of mitogen-induced murine thymocyte proliferation. IFN-gamma induced the expression of Fc receptors on human monocytes that were specific for murine IgG2a. This induction was inhibited by the addition of LPS in amounts as low as 2 to 8 pg/ml. LPS inhibition of IFN-gamma-induced Fc receptor expression was paralleled by the appearance of IL-1 in monocyte lysates and supernatants. The addition of purified human or recombinant IL-1 beta at the initiation of culture similarly inhibited the expression of IFN-gamma-induced Fc receptors on the monocytes. LPS also inhibited Fc receptor expression on the human myelomonocytic cell line THP-1 after induction with IFN-gamma or phorbol myristate acetate alone or with both agents together. This inhibition also was paralleled by the production of IL-1 but the addition of exogenous IL-1 to the THP-1 cells had no effect on IFN-gamma-induced Fc receptor expression. Tumor necrosis factor (TNF) inhibited IFN-gamma-induced Fc receptor expression on human monocytes but was much less potent than comparable amounts of IL-1. TNF also did not inhibit Fc receptor expression on THP-1 cells. In fact, IL-1 or TNF led to an enhancement in IFN-gamma-induced Fc receptor expression on THP-1 cells. These results indicate that LPS can inhibit IFN-gamma-induced Fc receptor expression on human monocytes and that IL-1 and TNF may mediate these effects of LPS. Thus, an autocrine or paracrine role is suggested for these cytokines. The possibility exists that intracellular IL-1 resulting from LPS stimulation may be at least in part responsible for inhibition of Fc receptor expression.  相似文献   

6.
7.
Monocyte-endothelium interaction is key to many acute and chronic inflammatory diseases. We have investigated the factors regulating monocyte attachment to cytokine-activated human umbilical vein endothelial cells (HUVEC) and the modulatory effect of the polyunsaturated fatty acid (PUFA), conjugated linoleic acid (CLA) in this process. Both TNF-alpha and IL-1beta induced HUVEC platelet-activating factor (PAF) production and PAF was required for subsequent firm THP-1 monocyte adhesion since it was inhibited by both PAF receptor antagonists (BN-52021 or CV-6209) and a PAF synthesis inhibitor (sanguinarine). CLA inhibited the binding of both THP-1 and isolated human peripheral blood monocytes to HUVEC by up to 40% with the CLA t10,c12 isomer suppressing adhesion dose-dependently. Investigation into the mechanism involved demonstrated that with IL-1beta, VCAM-1 and ICAM-1 levels and pro-inflammatory cytokine expression were largely unaffected by CLA. Through the use of PAF receptor antagonists and PAF synthesis inhibitors, CLA was shown to inhibit cytokine-induced binding by suppressing PAF production. Direct assay of PAF levels confirmed this result. We conclude that endothelial-generated PAF plays a central role in cytokine-induced monocyte adherence to endothelium and that the anti-inflammatory action of PUFAs such as CLA in suppressing monocyte-endothelial interaction is mediated through attenuation of pro-inflammatory phospholipids such as PAF.  相似文献   

8.
9.
Interleukin 1 production by a human acute monocytic leukemia cell line   总被引:7,自引:0,他引:7  
Human interleukin 1 (IL-1) was produced under serum-free conditions by stimulating a human monocytic leukemia cell line (THP-1) with silica or lipopolysaccharide (LPS). The IL-1 from THP-1 cells has a molecular weight of 12,000-20,000, consistent with the low-molecular-weight form of IL-1 from human peripheral blood monocytes. Further characterization by isoelectrofocusing showed one major peak of activity at pI 7 for the THP-1 cell-derived IL-1. In contrast, the low-molecular-weight form of IL-1 from human monocytes has two major species, pI 5 and pI 7. This cloned THP-1 cell line produces levels of IL-1 activity comparable to those obtainable from peripheral blood monocytes. Thus THP-1 cells can serve as a valuable source of relatively homogeneous human IL-1 for further purification and molecular characterization of its role in regulating immune functions.  相似文献   

10.
ATP stimulation of cell surface P2X7 receptors results in cytolysis and cell death of macrophages. Activation of this receptor in bacterial lipopolysaccharide (LPS)-activated macrophages or monocytes also stimulates processing and release of the cytokine interleukin-1beta(IL-1beta) through activation of caspase-1. The cytokine interleukin 18 (IL-18) is also cleaved by caspase-1 and shares pro-inflammatory characteristics with IL-1beta. The objective of the present study was to test the hypothesis that IL-1beta, IL-18, and/or caspase-1 activation contribute directly to macrophage cell death induced by LPS and ATP. Macrophages were cultured from normal mice or those in which genes for the P2X7 receptor, IL-1beta, IL-1alpha, IL-18, or caspase-1 had been deleted. Our data confirm the importance of the P2X7 receptor in ATP-stimulated cell death and IL-1beta release from LPS-primed macrophages. We demonstrate that prolonged stimulation with ATP leads to cell death, which is partly dependent on LPS priming and caspase-1, but independent of cytokine processing and release. We also provide evidence that LPS priming of macrophages makes them highly susceptible to the toxic effects of brief exposure to ATP, which leads to rapid cell death by a mechanism that is dependent on caspase-1 but, again, independent of cytokine processing and release.  相似文献   

11.
12.
Differentiation and maturation of monocytes are accompanied by the expression of specific surface glycoproteins, the secretion of cytokines, and the capacity to respond to ligands. These changes may be influenced by interactions with hormones, soluble lymphocytic products, or direct contact with lymphocytes. We have studied two distinct pathways in the differentiation of a human monocytic cell line, THP-1: one being induced by IFN-gamma and the other by 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3). In THP-1 cells, IFN-gamma induces cell surface expression of HLA-DR and CD54 and production of IL-1 beta, TNF-alpha, and IL-6. In contrast, 1,25(OH)2D3 increases cell surface expression of CD11b and CD14, but fails to stimulate cytokine production. Direct contact of THP-1 with stimulated fixed T cells markedly induces IL-1 beta, TNF-alpha, and IL-6 production by THP-1. Production is higher when THP-1 have been previously exposed to 1,25(OH)2D3 as compared to prior exposure to IFN-gamma. mAb raised against certain relevant cell surface glycoproteins on THP-1 were tested for their ability to block the response of THP-1 to T cells. Antibodies to CD11a, CD11b, and CD11c, alone or in combination, only partially blocked IL-1 beta production by THP-1, whereas antibodies to CD54 and CD14 did not. Thus other unknown structures on the THP-1 cells may be involved in the induction of THP-1 cytokine production by T cell contact.  相似文献   

13.
Macrophages and their precursors, monocytes, are key cells involved in the innate immune response. Although both monocytes and macrophages produce caspase-1, the key enzyme responsible for pro-IL-1beta processing; macrophages are limited in their ability to activate the enzyme and release functional IL-1beta. In this context, because mutations in the pyrin gene (MEFV) cause the inflammatory disorder familial Mediterranean fever, pyrin is believed to regulate IL-1beta processing. To determine whether variations in pyrin expression explain the difference between monocytes and macrophages in IL-1beta processing and release, pyrin was studied in human monocytes and monocyte-derived macrophages. Although monocytes express pyrin mRNA and protein, which is readily inducible by endotoxin, monocyte-derived macrophages express significantly less pyrin mRNA and protein. Pyrin levels directly correlated with IL-1beta processing in monocytes and macrophages; therefore, we asked whether pyrin might promote IL-1beta processing and release. HEK293 cells were transfected with pyrin, caspase-1, apoptotic speck protein with a caspase recruitment domain, and IL-1beta. Pyrin induced IL-1beta processing and release in a dose-dependent manner. Conversely, pyrin small interference RNA suppressed pro-IL-1beta processing in both THP-1 cells and fresh human monocytes. In summary, both pyrin expression and IL-1beta processing and release are diminished upon the maturation of monocytes to macrophages. When pyrin is ectopically expressed or silenced, IL-1beta processing and release parallels the level of pyrin. In conclusion, in the context of endotoxin-induced activation of mononuclear phagocytes, pyrin augments IL-1beta processing and release.  相似文献   

14.
Primary human monocytes and the human monocytic cell line THP-1 were induced to express receptors for interleukin-1 alpha (IL-1 alpha) and IL-1 beta. Treatment of primary monocytes with dexamethasone resulted in a 10-fold increase in receptor number over untreated cells, to approximately 2,000 receptors/cell. Treatment of THP-1 cells with phorbol ester followed by prostaglandin E2 and dexamethasone resulted in the expression of approximately 30,000 receptors/cell. Competitive binding assays on THP-1 cells showed that both IL-1 alpha and IL-1 beta bind to the same receptor. The monocyte IL-1R is significantly smaller (63 kDa) than the T cell IL-1R (80 kDa) and is immunologically distinct. However, induction of monocytes and monocytic cell lines leads to the appearance of an abundant mRNA of approximately 5,000 bases which hybridizes to a cDNA probe from the T cell-type IL-1R. Sequence data obtained from a cDNA clone of this mRNA indicate that the message is identical to the T cell IL-1R mRNA throughout the coding region. A smaller mRNA, also homologous to the T cell IL-1R mRNA, accumulated in induced THP-1 cells and has a shorter 3'-untranslated region than the larger. Data are presented which suggest that neither form of this message encodes the 63-kDa IL-1R, but rather that this protein is the product of a separate nonhomologous mRNA.  相似文献   

15.
Nanogram quantities of the bacterial superantigen Staphylococcal Enterotoxin A (SEA) induced significant amounts of extracellular IL-1 alpha and IL-1 beta in human peripheral blood mononuclear cells. Induction of maximal IL-1 alpha and IL-1 beta levels by lipopolysaccharide (LPS) required microgram quantities. LPS induced detectable extracellular IL-1 content within 3-6 hr and maximal levels were detected already after 12 hr. Induction of IL-1 production by SEA showed a delayed release with peak values after 24-48 hr. IL-1 beta was the major species of IL-1 seen in both SEA- and LPS-stimulated culture supernatants. SEA was in general a relatively stronger inducer of extracellular IL-1 alpha than LPS. SEA-induced extracellular IL-1 production in human monocytes was entirely dependent on the presence of T cells, whereas addition of T cells to LPS-stimulated purified human monocytes only marginally enhanced the extracellular IL-1 production. The capacity to induce extracellular IL-1 production in monocytes in response to SEA was high in the CD4+ 45RO+ memory T cell subset, whereas CD4+ 45RA+ naive T cells and CD8+ T cells had lower IL-1-inducing capacity. The T cell help for IL-1 production could not be replaced by a panel of T cell-derived recombinant lymphokines added to SEA-stimulated monocytes, including IFN-gamma and TNF, indicating the participation of cell membrane-bound ligands or hitherto unidentified soluble mediators.  相似文献   

16.
The cytokines interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF-alpha) are released by mononuclear phagocytes in vitro after stimulation with mycobacteria and are considered to mediate pathophysiologic events, including granuloma formation and systemic symptoms. We demonstrated that the Mycobacterium tuberculosis cell wall component lipoarabinomannan (LAM) is a very potent inducer of IL-1 beta gene expression in human monocytes and investigated the mechanism of this effect. We localized the LAM-, lipopolysaccharide (LPS)-, and TNF-alpha-inducible promoter activity to a -131/+15 (positions -131 to +15) DNA fragment of the IL-1 beta gene by deletion analysis and chloramphenicol acetyltransferase assay. Within this DNA fragment, there were two novel 9-bp motifs (-90/-82 and -40/-32) with high homology to the nuclear factor-IL6 (NF-IL6) binding site. Site-directed mutagenesis demonstrated that the two NF-IL-6 motifs could be independently activated by LAM, LPS, or TNF-alpha and that they acted in an orientation-independent manner. DNA mobility shift assay revealed specific binding of nuclear protein(s) from LAM-, LPS-, or TNF-alpha-stimulated THP-1 cells to the NF-IL6 motifs. We conclude that the two NF-IL6 sites mediate induction of IL-1 beta in response to the stimuli LAM, LPS, and TNF-alpha.  相似文献   

17.
18.
Human Toll-like receptor (TLR) 4 and TLR2 receptors recognize LPS or lipoteichoic acid (LTA), respectively. Prolonged exposure of human macrophages/monocytes to bacterial LPS induces a state of adaptation/tolerance to subsequent LPS challenge. Inflammatory gene expressions such as IL-1beta and TNF-alpha are selectively repressed, while certain anti-inflammatory genes such as secretory IL-1R antagonist are still induced in LPS-adapted/tolerant cells. In this report, we demonstrate that LPS-tolerized human promonocytic THP-1 cells develop cross-tolerance and no longer respond to LTA-induced IL-1beta/TNF-alpha production, indicating that disruption of common intracellular signaling is responsible for the decreased IL-1beta/TNF-alpha production. We observe that down-regulation of IL-1R-associated kinase (IRAK) protein level and kinase activity closely correlates with the development of cross-tolerance. IRAK protein levels and kinase activities in LPS-tolerized cells remain low and hyporesponsive to subsequent LPS or LTA challenges. We also demonstrate that THP-1 cells with prolonged LTA treatment develop LTA tolerance and do not express IL-1beta/TNF-alpha upon further LTA challenge. Strikingly, cells tolerized with LTA are only refractory to subsequent LTA challenge and can still respond to LPS stimulation. Correspondingly, stimulation of TLR2 by LTA, although activating IRAK, does not cause IRAK degradation. IRAK from LTA-tolerized cells can be subsequently activated and degraded by further LPS challenge, but not LTA treatment. Our studies reveal that LTA-induced tolerance is distinct compared with that of LPS tolerance, and is likely due to disruption of unique TLR2 signaling components upstream of MyD88/IRAK.  相似文献   

19.
This study documents the influence of rIL-4, IFN-gamma, and IFN-alpha on the production of IgE-BF and the expression of lymphocyte receptor for IgE or CD23 Ag (Fc epsilon R II) by human mononuclear cells. IL-4 increases the secretion of IgE-binding factor (BF) by highly purified B lymphocytes, adherent cells, and U937 monoblastic cells. The effect of IL-4 on purified B cells is augmented by costimulating the cells with F(ab')2 anti-IgM. IFN-gamma, IL-2, IL-1-alpha, or IL-1 beta and the low m.w. B cell growth factor have no effect on IgE-BF production by purified B cells even when they are used in combination with anti-IgM. Stimulation of purified T cells with IL-4 or IL-4 plus PMA leads to the production of very small amounts of IgE-BF that might well be derived from the contaminating non-T cells. IFN-gamma increases IgE-BF synthesis by unfractionated PBMC, T cell-depleted PBMC, adherent cells, and U937 cells suggesting that it induces monocytes to release IgE-BF, IFN-gamma suppresses the IL-4-induced Fc epsilon R II expression and IgE-BF production by highly purified B cells but not by PBMC or their T cell-depleted fractions. IFN-alpha inhibits IgE-BF production by IFN-gamma-stimulated PBMC and by IL-4-stimulated cells suggesting that it exerts its effect on B cells and on monocytes. Moreover IFN-alpha suppresses the IL-4-induced expression of Fc epsilon R II on B cells. Both IFN-alpha and IFN-gamma suppress the synthesis of IgE by PBMC in response to IL-4. Taken collectively the results indicate that: 1) IL-4 induces IgE-BF production by both B cells and monocytes, 2) IFN-gamma stimulates IgE-BF synthesis by monocytes but suppresses its production by IL-4-stimulated B cells, and finally 3) IFN-alpha inhibits IgE-BF synthesis in response to either IFN-gamma or IL-4.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号