首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acid and stable isotope analyses have previously been used to investigate foraging patterns of fish, birds, marine mammals and most recently cephalopod species. To evaluate the application of these methods for dietary studies in squid, it is important to understand the degree to which fatty acid and stable isotope signatures of prey species are reflected in the squids' tissue. Four groups of Lolliguncula brevis were fed on prey species with distinctly different fatty acid and stable isotope profiles over 30 consecutive days. One group of squid were fed fish for fifteen days, followed by crustaceans for a further fifteen days. A second and third group were fed exclusively on fish or crustaceans for thirty days. And a fourth group was fed on a mixture of fish and crustaceans for thirty days. Analysis of squid tissue showed that, after 10 days of feeding, fatty acid profiles of squid tended to reflect those of their prey. Squid that fed on a single prey type, i.e. fish or crustacean, showed only minor modifications in fatty acid proportions after the initial change and fatty acid profiles were clearly distinguishable between the two feeding groups. Shifts in fatty acid proportions towards respective prey profiles could clearly be observed in squid the diet of which was swapped after 15 days. Clear differences could also be seen in fatty acid profiles of squid feeding on a mixed diet with trends towards either fish or crustacean fatty acid signatures. Stable isotope signatures of squid tissues clearly distinguished between animals feeding on different diets and supported findings from fatty acid analysis, thus indicating both methods to be viable tools in feeding studies on squid species.  相似文献   

2.
A recirculatory flume tank simulating a simplified stream environment was used to study the feeding behaviour of juvenile Atlantic salmon (Salmo salar L.), 5.1 to 9.4 cm in fork length (from tip of snout to fork of tail), on artificial particulate prey passively drifting in the water current. Changes in feeding behaviour at two different times of the year and when fish were presented with prey of different sizes are described and quantified. Responsiveness to food was greatly reduced in autumn as compared to summer. The maximum distances at which prey elicited a response decreased in autumn to 40% of the summer value, and the maximum distances which fish traversed in order to capture prey decreased by 80% over the same period. During the peak growing season, the response to a range of prey sizes from 0.013 to 0.102 × fish fork length was directly related to prey size and could be accounted for on the basis of visual theory alone. Capture distances were closely related to fixation distances. Maximum capture distance increased to a peak value for prey of between 0.025 and 0.069 × fork length, while larger prey were never captured and the smallest prey rarely evoked a response. Prey size selectivity also operated after capture, through rejection versus retention of the prey.  相似文献   

3.
Predators in nature include an array of prey types in their diet, and often select certain types over others. We examined (i) prey selection by sea stars (Asterias vulgaris) and rock crabs (Cancer irroratus) when offered two prey types, juvenile sea scallops (Placopecten magellanicus) and blue mussels (Mytilus edulis), and (ii) the effect of prey density on predation, prey selection, and component behaviours. We quantified predation rates, behavioural components (proportion of time spent searching for prey, encounter probabilities) and various prey characteristics (shell strength, energy content per prey, handling time per prey) to identify mechanisms underlying predation patterns and to assess the contribution of active and passive prey selection to observed selection of prey. Sea stars strongly selected mussels over scallops, resulting from both active and passive selection. Active selection was associated with the probability of attack upon encounter; it was higher on mussels than on scallops. The probability of capture upon attack, associated with passive selection, was higher for mussels than for scallops, since mussels can not swim to escape predators. Sea stars consumed few scallops when mussels were present, and so did not have a functional response on scallops (the target prey). Rock crabs exhibited prey switching: they selected mussels when scallop density was very low, did not select a certain prey type when scallop density was intermediate, and selected scallops when scallop density was high relative to mussel density. The interplay between encounter rate (associated with passive selection) and probability of consumption upon capture (associated with both active and passive selection) explained observed selection by crabs. Scallops were encountered by crabs relatively more often and/or mussels less often than expected from random movements of animals at all scallop densities. However, the probability of consumption varied with scallop density: it was lower for scallops than mussels at low and intermediate scallop densities, but tended to be higher for scallops than mussels at high scallop densities. When mussels were absent, crabs did not have a functional response on scallops, but rather were at the plateau of the response. When mussels were present with scallops at relatively low density, crabs exhibited a type II functional response on scallops. Our results have implications for the provision of protective refuges for species of interest (i.e., scallops) released onto the sea bed, such as in population enhancement operations and bottom aquaculture.  相似文献   

4.
Groups of common carp (Cyprinus carpio) were trained for 33 days to discriminate between two acoustic signals differing in frequency and temporal pattern. One signal (positive stimulus) was reinforced by food, while the other (negative stimulus) was not rewarded. When exposed to 3 positive and 3 negative stimuli per day (training Paradigm 1) the fish responded similarly to the two signals. When daily negative stimuli outnumbered positive stimuli (3 positive and 33 negative, training Paradigm 2) the fish responded similarly to the two signals for the first 2 weeks and then began to discriminate between them. Discriminatory response was statistically significant from Day 21 of training. After 33 days, training was switched from Paradigm 2 to Paradigm 1 and the fish maintained their discriminatory capability. The results are interpreted in terms of anticipatory frustration and risk management.  相似文献   

5.
黑脸琵鹭(Platalea minor)的食物主要由鱼类和虾类组成,对其觅食生境中潜在食物的分析有助于对该濒危物种的保护。福建兴化湾是我国大陆黑脸琵鹭最重要的越冬地之一,对湾内越冬黑脸琵鹭的观察发现,黑脸琵鹭白天在养殖塘休息,黄昏则飞到离养殖塘约8km处的滩涂觅食至黎明返回。在黑脸琵鹭觅食的滩涂共采集到42种鱼类和6种虾类。根据对体长、生活习性和数量状况的分析,认为其中的19种鱼类和6种虾类为黑脸琵鹭的潜在食物,以鲻科鱼类最为重要。建议对黑脸琵鹭的保护应重视其觅食滩涂生境中鱼类和虾类资源的保护。  相似文献   

6.
James J. Krupa  Andrew Sih 《Oecologia》1998,117(1-2):258-265
Many studies have experimentally addressed the effects of a particular predator species on prey behavior. In nature, however, prey frequently face multiple species of predators that often vary in their predatory mode and in their level of predation risk. Relatively few studies have considered prey responses under these complex conditions. In Kentucky, the stream-dwelling water strider (Aquariusremigis) coexists with many potentially dangerous predators, two of which are the green sunfish (Lepomiscyanellus) and the fishing spider (Dolomedesvittatus). Green sunfish occupy stream pools and attack water striders from below. In contrast, fishing spiders hunt along stream shorelines where they perch on overhanging vegetation or rocks and attack water striders near shore. We compared how A. remigis individuals respond to these two very different predators in pools with one or both predators. The presence of sunfish in pools had strong effects on male water strider behavior, including increased use of three types of refuge from sunfish (riffles, climbing out of the water, sitting on the water but at the edges of pools), decreased activity and a decreased number of aggressive males on the water. Spiders also influenced water strider behavior; male water striders avoided spiders by shifting away from the edges of pools. Comparisons of the effects of the two predator species showed that in general, antipredator responses by male water striders were stronger in pools with fish alone than in those with spiders alone. In the presence of both predators, male water strider behavior (microhabitat use and activity) was generally similar to behavior in the presence of fish alone. In contrast, female water striders showed no significant response to the presence of sunfish, and little response to the presence of spiders. This lack of response could be because females spent much of their time in refuges even in the absence of predators (apparently hiding from harassment by males). Both spiders and fish caused decreases in water strider mating activity. The presence of fish reduced both the number of matings per pool (mating frequency), and mean mating durations. Spiders induced a decrease in mean mating duration, but not in mating frequency. The largest reductions in mating activity occurred in pools with both predators present. Pools with either spiders or fish alone suffered 15–20% water strider mortality during our experiment (versus no mortality in predator-free pools). Extant theory suggests that when prey face conflicting microhabitat responses to two predators (as in this study), the predators should have facilitative effects on predation rates (i.e., prey that avoid one predator are often killed by the other and vice versa). Mortality rates in pools with both predators present, however, were not significantly different from that predicted by a null model of multiple predator effects. The lack of predator facilitation can be explained by the compensatory reductions in water strider activity and mating activity in the presence of both predators. Received: 26 August 1996 / Accepted: 12 June 1998  相似文献   

7.
Predator-prey interaction between sandy shore crab, Matuta lunaris (Forskål, 1775), and juvenile Japanese flounder, Paralichthys olivaceus (Temminck et Schlegel), was investigated under controlled laboratory conditions. Possibility of training and conditioning hatchery-reared flounder to avoid predators was also examined. Crabs took over 75% of their daily ration at night when they were given access to prey 24 h a day. Large (64.8±5.4 g)- and medium (30.68±3.33 g)-sized crabs ate ca. 5.5±1.45 and 3.9±1.99 individuals of flounder (TL=4.96±0.23 cm) a day, respectively. When flounder juveniles that have experienced predation pressure by crabs encountered predators again, they exhibited better survival compared to the naive fish. Flounder juveniles were also conditioned either using small and, thus, benign predators, or large crabs over fence. The conditioned fish with either method were better able to avoid capture by crabs than naive fish, revealing that learning process should play an important role in their predator avoidance. Anti-predator performance was also compared between starved and fed flounder juveniles. Fed fish were rarely eaten by predators after 3 h of exposure, whereas starved fish continued to be eaten. Our results suggest that stock-enhancement program of Japanese flounder can be improved by applying proper feeding protocol and conditioning to avoid predators prior to release. Present research supports the idea that behavioural and ecological consideration for the target species is indispensable for the success of stock enhancement.  相似文献   

8.
M. E. MOSER 《Ibis》1986,128(3):392-405
Patterns of handling time and profitability are examined for adult Grey Herons feeding on carp, eels and catfish. Handling times generally increased with prey size but were influenced markedly by the morphology and behaviour of the prey. Profitability was highest for carp (max. 0.9 g/s for 15–20 cm fish), lowest for catfish (max. 0.05 g/s) and intermediate for eels (max. 0.1 g/s). Nestlings were unable to ingest the sizes of fish most profitable for the adults to consume until aged 20 days; by the age of 30 days, they could consume the full size-range of prey taken by the adults. In order to feed their young chicks, adults must therefore either select smaller prey, or break their large prey into smaller pieces. The diet of nestling Grey Herons in the Camargue is examined for evidence to support or refute the former hypothesis.
Young nestlings (≤20 days) regurgitated smaller carp than old nestlings (> 20 days). Comparison of prey types in the diet of the two groups showed that small prey species occurred significantly more often in the diet of young chicks, while the converse was true for larger prey species. The occurrence of particular prey types in the diet only of young chicks suggests that adults may forage in more marginal, shallower water (where small prey are probably more abundant) to meet the requirements of their brood during the early part of the nestling phase. The second hypothesis, that the adults break down large prey into smaller pieces, was not examined, although evidence from other studies suggests that this does occur; both mechanisms may therefore be important.  相似文献   

9.
Area-concentrated search of predatory coccinellid adults, Coccinella septempunctata bruckii, is considered to be controlled by internal locomotory information, since the area-concentrated search is generated even if aphids are no longer present in the environment. To investigate what kind of cue elicits the switchover from extensive to area-concentrated search behaviour, the duration of area-concentrated search (giving-up time) was measured after each of the following five kinds of feeding stimuli was supplied: (a) contact with an aphid (Myzus persicae), (b) biting an aphid, (c) consumption of an aphid, (d) contact with an agar block of ca 2 × 2 × 2 mm, (e) consumption of an agar-block coated with a droplet of aphid body fluid. Switchover from extensive to area-concentrated search was observed as a response to all feeding stimuli. The cue to elicit the switchover is the contact with a prey rather than the consumption of it. The giving-up time is dependent on the intensity of feeding stimulus since giving-up time varied according to the type of feeding stimulus (d = a < b < e < c). The giving-up time was positively correlated with the duration of feeding on an aphid which represented the size of prey consumed. To test whether giving-up time is determined by the amount or by the size of prey consumed, it was measured after the ladybird beetle had fed first on a large then on a small aphid (Sequence A) and after it had fed first on a small then on a large aphid (Sequence B). Although the beetle consumed the same total amount of aphids in both sequences, the beetle showed the longer giving-up time in Sequence B than in Sequence A. Therefore, it can be concluded that giving-up time is determined by the size of prey most recently consumed rather than hunger level or prey capture rate.  相似文献   

10.
The introduction of predator species into new habitats is an increasingly common consequence of human activities, and the persistence of native prey species depends upon their response to these novel predators. In this study, we examined whether the Largespring mosquitofish, Gambusia geiseri exhibited antipredator behavior and/or an elevation of circulating stress hormones (cortisol) to visual and chemical cues from a native predator, a novel predator, or a non‐predatory control fish. Prey showed the most pronounced antipredator response to the native predator treatment, by moving away from the stimulus, while the prey showed no significant changes in their vertical or horizontal position in response to the novel or non‐predator treatments. We also found no significant difference in water‐borne cortisol release rates following any of the treatments. Our results suggest the prey did not recognize and exhibit antipredator behavior to the novel predator, and we infer that this predator species could be detrimental if it expands into the range of this prey species. Further, our study demonstrates prey may not respond to an invasive predator that is phylogenetically, behaviorally, and morphologically dissimilar from the prey species' native predators.  相似文献   

11.
Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator−prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.  相似文献   

12.
The functional response is the relationship between the feeding rate of an animal and its food density. It is reliant on two basic parameters; the volume searched for prey per unit time (searching rate) and the time taken to consume each prey item (handling time). As fish functional responses can be difficult to determine directly, it may be more feasible to measure their underlying behavioural parameters in controlled conditions and use these to predict the functional response. Here, we tested how accurately a Type II functional response model predicted the observed functional response of roach Rutilus rutilus, a visually foraging fish, and compared it with Type I functional response. Foraging experiments were performed by exposing fish in tank aquaria to a range of food densities, with their response captured using a two‐camera videography system. This system was validated and was able to accurately measure fish behaviour in the aquaria, and enabled estimates of fish reaction distance, swimming speed (from which searching rate was calculated) and handling time to be measured. The parameterised Type II functional response model accurately predicted the observed functional response and was superior to the Type I model. These outputs suggest it will be possible to accurately measure behavioural parameters in other animal species and use these to predict the functional response in situations where it cannot be observed directly.  相似文献   

13.
The sensory basis of group cohesion in the weak-electric fish Gnathonemus petersii was investigated in a circular tank with groups of four fish each, interacting through a wide-meshed plastic screen with intact or operated conspecifics, or with other stimulus objects. We confined these stimuli to one or two peripheral holding compartments. The response measures were obtained from the free swimming fish and included (1) the time the fish spent together as a group, (2) the time they spent in front of the holding compartments, (3) the circular distribution of the fish's positions, and (4) the mean nearest neighbour distances. Under empty compartment conditions, four different groups were tested, consisting of either (1) intact, electrically active fish, or (2) electrically ‘silent’ fish (with their electric organ surgically rendered inoperative), or (3) blind, or (4) ‘silent’ and blind animals. The loss of either sensory modality, vision or feedback from electric organ discharge, led to changes of comparable size, decreasing the time spent as a group and increasing the mean nearest neighbour distance. In fish lacking both modalities, group cohesion was further impaired. With stimuli present in one or both holding compartments, the strength of social attraction depended on the nature of the stimulus: the more intact stimulus conspecifics were present, the more densely did the fish group in front of the stimulus compartment. ‘Wired-in’ electric organ discharges (simulating waveform and intensity) and electrically ‘silent’ fish were equally attractive, but only half as attractive as intact fish. Blind free swimming fish aggregated with intact and also with ‘silent’ conspecifics. Under dim light conditions, group cohesion was predominantly, though not exclusively, affected by electrosensory feedback from the electric organ discharge and visual input. Mechanical and olfactory cues may also be involved.  相似文献   

14.
Feeding by marine fish larvae: developmental and functional responses   总被引:10,自引:0,他引:10  
Synopsis The relationship between prey consumption rate and prey concentration (functional response), and its change with growth (developmental response) were examined in the laboratory for three species of marine fish larvae: bay anchovy Anchoa mitchilli (Engraulidae), sea bream Archosargus rhomboidalis (Sparidae) and lined sole Achirus lineatus (Soleidae). The major objective was to determine relative predatory abilities of the larvae by fitting feeding rate data to developmental and functional response models. Feeding success, prey capture success, attack rates, handling times and search rates were estimated. Prey consumption rates and attack rates of bay anchovy usually were highest, but at the lowest prey level (50 per liter) first-feeding sea bream larvae had the highest consumption rate. Sea bream could consume prey at near-maximum rates at prey levels lower than those required by the other species. As larvae grew, time searching per attack decreased rapidly for all species, especially at low prey levels. Handling time also decreased, but most rapidly for bay anchovy. Search rates were highest for bay anchovy and lowest for lined sole. Bay anchovy had the best apparent predation ability, but when previous results on larval growth rates, survival rates and growth efficiencies were considered, sea bream larvae were the most efficient predators and the least likely of the three species to be limited by low prey levels.  相似文献   

15.
We investigated the diet, feeding strategy, size-related dietary shifts and prey preferences of South American Hoplias aff. malabaricus in an internationally recognized but poorly investigated Biosphere Reserve in southern Brazil. Fish were caught between April 2008 and March 2009 using a variety of fishing gear. The analysis of 113 individuals revealed a diet essentially composed of fish (16 species), particularly characid species (9). The diet became more diverse and contained larger fish prey with increasing predator size. Feeding strategy analysis revealed a clear specialization towards the consumption of fish. However, individuals did not prey upon particular prey species, instead opportunistically consuming many different fish species, which could be a strategy to avoid intraspecific competition. Characid species were the most important prey, followed by poecillids. A multi-gear sampling of the ichthyofauna revealed that these prey species were the most abundant (Characidae: 61.3%, Poeciliidae 18.8%) of the 14 fish families occurring at the study site, suggesting that the predator exploits the most abundant fish resources available rather than the rarer fish prey. These findings suggest that potential top-down controls exerted by H. aff. malabaricus in this system follow specific food web pathways that seem to be mediated by the abundance of prey resources.  相似文献   

16.
Interactions between predators and their multiple prey species can vary greatly among locations where they coexist. As a method to assess spatial variation in predation by intertidal dogwhelks on their dominant prey, immunoassays of dogwhelk gut contents from experimental populations and field collected individuals were evaluated using polyclonal antibodies raised separately to soluble proteins from Mytilus edulis L. mussels and Semibalanus balanoides (L.) barnacles. Both antisera produced strong reactions against their homologous antigens but no cross reactions between prey species. Experimental trials tested the critical hypothesis that prey species had equal detection intervals in dogwhelk guts. Two groups of 225 dogwhelks were starved for 14 days, provided with either mussels or barnacles for five days, and then sampled over 22 days. Independent immunoassays of dogwhelk gut contents against each antibody revealed a consistent, weak cross reaction between the anti-mussel antibody and dogwhelk gut tissues. After accounting for this cross reaction, the strength of immunoassays against both prey species declined exponentially and at similar rates. The proportions of dogwhelks that tested positive for their provided prey species declined linearly through time and were not significantly influenced by prey type. Prey were detectable throughout the sampled post-feeding period and were projected to have detection limits of 24.4 days (barnacles) and 26.5 days (mussels), demonstrating that immunoassay results are not biased by dissimilar prey detection intervals. Reactions against the antibody from the non-provided prey were time invariant and occurred at relatively low frequencies. Immunoassays of dogwhelks collected from five intertidal sites on Swans Island, Maine, USA revealed patterns similar to field observations, though immunoassays classified far fewer individuals as non-feeders and more as barnacle feeders than indicated by direct field observations. Unlike single observations, immunoassays also revealed the presence of both prey in dogwhelks from four sites, though most individuals tested positive for only a single prey type. Immunoassays facilitate concurrent collections of predation data from many individuals and will enable further local- to regional-scale assessments of dogwhelk predation at additional sites around the Gulf of Maine.  相似文献   

17.
Paddlefish use their electrosense to locate small water fleas (daphnia), their primary prey, in three-dimensional space. High sensitivity and a representation of object location are essential for this task. High sensitivity can be achieved by convergence of information from a large number of receptors and object location is usually represented in the nervous system by topographic maps. However the first electrosensory center in the brain, the dorsal octavolateral nucleus in the hindbrain, is neither topographically organized nor does it show a higher sensitivity than primary afferent fibers. Here, we investigated the response properties of electrosensory neurons in the dorsal octavolateral nucleus (DON), the lateral mesencephalic nucleus (LMN) and the tectum mesencephali (TM). LMN units are characterized by large receptive fields, which suggest a high degree of convergence. TM units have small receptive fields and are topographically arranged, at least in the rostro-caudal axis, the only dimension we could test. Well-defined receptive fields, however, could only be detected in the TM with a moving DC stimulus. The receptive fields of TM units, as determined by slowly scanning the rostrum and head with a 5 Hz stimulus, were very large and frequently two or more receptive fields were present. The receptive fields for LMN units were located in the anterior half of the rostrum whereas TM units had receptive fields predominantly on the head and at the base of the rostrum. A detailed analysis of the prey catching behavior revealed that it consists of two phases that coincide with the location of the receptive fields in LMN and TM, respectively. This suggests that LMN units are responsible for the initial orienting response that occurs when the prey is alongside the anterior first half of the rostrum. TM units, in contrast, had receptive fields at locations where the prey is located when the fish opens its mouth and attempts the final strike.  相似文献   

18.
Information about the welfare and husbandry of pet and laboratory fish is scarce although millions of fish are sold in pet shops and used in laboratory research every year. Inadequate housing conditions can cause behavioural problems also in fish since they are complex animals with sophisticated behaviour. In this study, we investigated the influence of environmental complexity on compartment preference and behaviour in zebrafish (Danio rerio) and checker barbs (Puntius oligolepis). For the preference test, large aquaria were divided by two semi-transparent walls of Plexiglas into an empty compartment, a structured compartment enriched with plants and clay pots, and a smaller compartment in-between, where food was provided. For observation, the empty and structured compartments were divided into six zones of similar size by defining three vertical layers and two horizontal areas (back vs. front area). Seven groups of six to nine zebrafish and seven groups of seven or eight checker barbs were observed on four days each (within a time period of ten days) to assess compartment use and activity, and to assess behavioural diversity and use of zones within compartments. Both zebrafish and checker barbs showed a significant preference for the structured compartment. Nevertheless, in neither species did behavioural diversity differ between the empty and structured compartment. Zebrafish used all zones in both compartments to the same extent. Checker barbs, however, used the structured compartment more evenly than the empty compartment, where they mainly used the lower and middle zones. These results suggest that zebrafish and checker barbs have a preference for complex environments. Furthermore, they indicate that the behavioural and ecological needs of fish may vary depending on species, and recommendations for husbandry should be specified at species level.  相似文献   

19.
The African butterfly fish Pantodon buchholzi localizes its prey by means of surface waves of the water. Pantodon also responds and orientates well to artificial, short lasting prey-like signals (clicks), produced by a single air-puff or by dipping a small rod once into the water. When stimulated with clicks, which contain many frequencies, Pantodon determines the source distance (test range 5–20 cm) very precisely, regardless of stimulus amplitude, amplitude modulation and frequency band width. However, when the signal is a sine wave at a single frequency (sf) or with upward frequency modulation (ufm), the distance determination is generally impaired, i.e. the distance covered by the fish is too small to reach the wave source. However, the fish can also be tricked into moving too far by presenting it with a sine wave signal which, at a source distance of only 7 cm has a frequency modulation equivalent to a click at 15 cm. In contrast to distance determination, the ability to estimate the target angle is independent of the kind of wave signal presented. The results are discussed with respect to possible mechanisms used for prey localization.  相似文献   

20.
We studied the recovery of juvenile fat snook (Centropomus parallelus) after subchronic exposure to different concentrations of copper. Healthy juveniles (1.98 g) were exposed to 25 or 50 μg Cu/L for 30 days (12 replicates with 5 fish in each one), and recovery was observed at 0, 4, 10, and 30 days after exposure (3 replicates with 5 fish in each one). Copper genotoxicity in exposed individuals was observed using a micronucleus assay, and recovery was not observed even 30 days post-exposure. Copper accumulation was observed in fish exposed to 25 or 50 μg/L of copper in the gills (14.4 and 34.4 μg/g, respectively) and muscle (5.7 and 5.5 μg/g, respectively), and a return to normal copper levels (6.0 μg/g for gills and 2.5 μg/g for muscle) was observed 4 and 30 days post-exposure in the gills and muscle tissues, respectively. Glutathione S-transferase (GST) was 80% inhibited in individuals exposed to copper and returned to normal levels for fish exposed to basal concentrations within 10 days. Although copper accumulation in tissues dispersed 30 days post-exposure, no recovery from genotoxicity was observed during this time. Thirty days was not enough to recover juvenile fat snook following subchronic exposure to copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号