首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of a fairly uncommon side chain 2-O-β-d-xylopyranosyl-α-l-arabinofuranosyl in arabinoxylans (AX) from eight different cereal by-products was investigated, using 1H NMR spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) after Shearzyme® (GH10 endo-1,4-β-d-xylanase) hydrolysis. This disaccharide side group was present in significant amounts in AX extracted from corn cobs and barley husks. For the first time, it was also detected in AX from oat spelts and rice husks, and in lesser amounts in wheat straw AX. Arabinoxylo-oligosaccharide (AXOS) containing the 2-O-β-d-Xylp-α-l-Araf side chain was purified from the oat spelt AX hydrolysate and the structure was fully analyzed using 1D and 2D NMR spectroscopy. The AXOS was identified as β-d-Xylp-(1→2)-α-l-Araf-(1→3)-β-d-Xylp-(1→4)-d-Xyl. To our knowledge, such a structure with 2-O-β-d-Xylp-α-l-Araf attached to the O-3 of the nonreducing end of xylobiose has not been described previously. New information on substitution of AX from various cereal by-products was obtained by combining NMR and enzyme-assisted HPAEC-PAD analysis.  相似文献   

2.
The koenigs-Knorr glycosylation of 4,6-O-ethylidene-1,2-O-isopropylidene-3-O-(2,3-O-isopropylidene-α-l-rhamnopyranosyl)-α-d-galactopyranose (3) by 4,6-di-O-acetyl-2,3-O-carbonyl-α-d-mannopyranosyl bromide (10), as well as Helferich glycosylations of 3 by tetra-O-acetyl-α-d-mannopyranosyl and -α-d-glucopyranosyl bromides, proceeded smoothly to give high yields of trisaccharide derivatives (12, 16, and 17). An efficient procedure for the transformation of 12, 16, and 17 into the α-deca-acetates of the respective trisaccharides has been developed. Zemplén de-acetylation then afforded the title trisaccharides in yields of 53, 52, and 62 %, respectively, from 3. A new route to 1,4,6-tri-O-acetyl-2,3-O-carbonyl-α-d-mannopyranose is suggested.  相似文献   

3.
The first total synthesis of 7-O-β-d-glucopyranosyl-4′-O-α-l-rhamnopyranosyl apigenin 1, which exhibits good anti-hepatitis B virus and anti-stroke activities, was accomplished in six steps and 20% overall yield from apigenin. Another synthetic route, in which the target was obtained in seven steps, was also developed to prove the utility of a hexanoyl ester-based orthogonal protection strategy. The hexanoyl protection strategy provided all the flavonoid intermediates with good solubility and reactivity, enabled efficient selective protection and glycosylation, and provided a practical and effective synthetic strategy for flavonoids, starting from commercially available flavone.  相似文献   

4.
5.
The Halide ion-catalysed reaction of benzyl exo-2,3-O-benzylidene-α-l-rhamnopyranoside with tetra-O-benzyl-α-d-galactopyranosyl bromide and hydrogenolysis of the exo-benzylidene group of the product 2 gave benzyl 3-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)-α-l-rhamnopyranoside (6). Compound 2 was converted into 4-O-α-d-galactopyranosyl-l-rhamnose. The reaction of 6 with tetra-O-acetyl-α-d-glucopyranosyl bromide and removal of the protecting groups from the product gave 4-O-α-d-galactopyranosyl-2-O-β-d-glucopyranosyl-l-rhamnose.  相似文献   

6.
The crystal structure of a novel component of the mannan biodegradation system, 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP), was determined to a 1.68-Å resolution. The structure of the enzyme revealed a unique homohexameric structure, which was formed by using two helices attached to the N-terminus and C-terminus as a tab for sticking between subunits. The structures of MGP complexes with genuine substrates, 4-O-β-d-mannosyl-d-glucose and phosphate, and the product d-mannose-1-phosphate were also determined. The complex structures revealed that the invariant residue Asp131, which is supposed to be the general acid/base, did not exist close to the glycosidic Glc-O4 atom, which should be protonated in the catalytic reaction. Also, no solvent molecule that might mediate a proton transfer from Asp131 was observed in the substrate complex structure, suggesting that the catalytic mechanism of MGP is different from those of known disaccharide phosphorylases.  相似文献   

7.
8.
2-O-α-d-Glucopyranosyl-l-ascorbic acid (AA-2G) laurate was synthesized from AA-2G and vinyl laurate with a protease from Bacillus subtilis in N,N-dimethylformamide (DMF) with low water content. Addition of water to DMF dramatically enhanced monoacyl AA-2G synthesis. Maximum synthetic activity was observed when 3% (v/v) water was added to the reaction medium. Under the optimal reaction conditions, 5-O-dodecanoyl-2-O-α-d-glucopyranosyl-l-ascorbic acid, 2-O-(6′-O-dodecanoyl-α-d-glucopyranosyl)-l-ascorbic acid, and 6-O-dodecanoyl-2-O-α-d-glucopyranosyl-l-ascorbic acid were synthesized in yields of 5.5%, 3.2%, and 20.4%, respectively.  相似文献   

9.
phenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-3-O-[4,6-O-(p-methoxybenzylidene)-β-d-alactopyranosyl]-α-d-galactopyranoside (3) was prepared from phenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-3-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-galactopyranoside by zemplén deacetylation, followed by reaction with p-methoxybenzaldehyde in the presence of anhydrous zinc chloride. The selective benzoylation of 3 gave the 3′-benzoate which, on condensation with 2,3,4-tri-O-benzyl-α- l-fucopyranosyl bromide under catalysis by halide ion, afforded a crystalline trisaccharide from which the title trisaccharide was obtained by debenzoylation followed by catalytic hydrogenolysis.  相似文献   

10.
Persubstituted derivatives of phenyl and ethyl 2-O-sulfonyl-1-thio-α-d-manno- and β-d-glucopyranosides were synthesized and reacted either with PhSNa or with MeSNa. The phenyl-1-thio compounds afforded the dithio-1,2-cis-axial/equatorial-α-d-glucopyranosides or dithio-1,2-cis-equatorial/axial-β-d-mannopyranosides by means of SN2 type of reactions. Starting from the ethyl-1-thio derivatives intramolecular 1,2-thio-migration took place predominantly. In the case of mannosides both nucleophilic reagents facilitate the formation of 1-SPh- or 1-SEt glycals by elimination. The formation of unsubstituted glycal could also be observed from the ethyl-1-thio derivatives, especially by using PhSNa as a nucleophile. The 1,2-dithio-glycosides are glycosyl donors affording 1,2-trans-2-thio-glycosides.  相似文献   

11.
Disaccharides composed of a β-d-psicofuranosyl unit were prepared by the glycosylation reaction of monosaccharide acceptors including three 2,3,4,6-tetra-O-protected hexopyranoses with a d-psicofuranosyl benzyl phthalate derivative (4). A β-d-psicofuranosidic bond was formed by the TMSOTf-promoted reaction with high selectivity. Removal of the O-protecting groups from the resulting α-d-hexopyranosyl β-d-psicofuranosides furnished the first chemical synthesis of α-d-gluco-, α-d-galacto-, and α-d-mannopyranosyl β-d-psicofuranosides. The common β-d-psicofuranosyl donor 4 was derived efficiently from d-psicose in five steps.  相似文献   

12.
Reaction of 1,2-O-cyclopentylidene-α-d-glucofuranurono-6,3-lactone (2) with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide (1) gave 1,2-O-cyclopentylidene- 5-O-(2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (3, 45%) and 1,2-O-cyclopentylidene-5-O-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (4, 38%). Reduction of 3 and 4 with lithium aluminium hydride, followed by removal of the cyclopentylidene group, afforded 5-O-α-(9) and -β-d-glucopyranosyl-d-glucofuranose (12), respectively. Base-catalysed isomerization of 9 yielded crystalline 5-O-α-d-glucopyranosyl-d-fructopyranose (leucrose, 53%).  相似文献   

13.
3- O-(2-Acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-galactopyranose (10, “Lacto-N-biose II”) was synthesized by treatment of benzyl 6-O-allyl-2,4-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)[2,1-d]-2-oxazoline (5), followed by selective O-deallylation, O-deacetylation, and catalytic hydrogenolysis. Condensation of 5 with benzyl 6-O-allyl-2-O-benzyl-α-d-galactopyranoside, followed by removal of the protecting groups, gave 10 and a new, branched trisaccharide, 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-galactopyranose (27).  相似文献   

14.
p-Nitrophenyl α-l-arabinofuranoside and β-d-xylopyranoside mono-O-ferulates were prepared by 4-O-acetylferuloylation of corresponding enzymatically prepared di-O-acetates followed by deacetylation. An alternative mild acylation catalysed by zinc oxide was tested on xylopyranoside derivatives. The chemoselective methanolysis of the acetyl groups using neutral catalyst dibutyltin oxide at reflux was used as deacetylation method. Under these conditions a significant feruloyl migration was observed mainly on p-nitrophenyl 3-O-feruloyl-β-d-xylopyranoside resulting in low yields of the positional isomers. Investigation of substrate and positional specificity of different types of feruloyl esterases on the presented compounds in enzyme-coupled assays was reported previously.  相似文献   

15.
Ethyl 6-O-acetyl-2,3,4-tribenzyl-1-thio-d-glucopyranoside, as a mixture of anomers, was employed for the stereoselective synthesis of the potassium salt of (2R)-2-O-α-d-glucopyranosyl-(1→6)-α-d-glucopyranosyl-2,3-dihydroxypropanoic acid (α-d-glucosyl-(1→6)-α-d-glucosyl-(1→2)-d-glyceric acid, GGG), a recently isolated compatible solute. The α-anomer was by far the major product of both glycosylation reactions using NIS/TfOH as activator.  相似文献   

16.
Hunter syndrome (mucopolysaccharidosis-II) is caused by deficiency of the lysosomal enzyme iduronate-2-sulfatase. The assay of this sulfatase requires the use of α-l-iduronate glycosides containing a sulfate at the 2-position. We report a simple, three-step procedure for the introduction of sulfate at the 2-position starting with the methyl ester of α-l-iduronate glycosides. The procedure involves protection of the 2- and 4-hydroxyl groups of the iduronate moiety as the dibutyl stannylene acetal, selective sulfation with sulfur trioxide-trimethylamine, and deprotection of the methyl ester to afford the desired 2-sulfate in 61% overall yield.  相似文献   

17.
β-d-Galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-glucose (LNB) and β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-galactose (GNB) decompose rapidly upon heating into d-galactose and mono-dehydrated derivatives of the corresponding 2-acetamido-2-deoxy-d-hexoses, including 2-acetamido-2,3-dideoxy-hex-2-enofuranoses and bicyclic 2-acetamido-3,6-anhydro-2-deoxy-hexofuranoses. The decomposition is conducted under neutral conditions where glycosyl linkages are generally believed to be stable. The half-lives of LNB and GNB were 8.1 min and 20 min, respectively, at 90 °C and pH 7.5. The pH dependency of decomposition rates suggests that the instabilities are an extension of the conditions for the peeling reaction, often observed with glycans of O-linked glycoproteins under alkaline conditions. Such decomposition under the neutral conditions is commonly observed with 3-O-linked reducing aldoses.  相似文献   

18.
Methods for the synthesis of 3-O-(α-d-mannopyranosyl)-d-mannose and 2-(4-aminophenyl)ethyl 3-O-(α-d-mannopyranosyl)-α-d-mannopyranoside have been investigated by a number of sequences. Glycosidations with 2,3-di-O-acetyl-4,6-di-O-benzyl-d-mannopyranosyl and 2-O-benzoyl-3,4,6-tri-O-benzyl-d-mannopyranosyl p-toluenesulfonates were found to give better yields than the Helferich modification, the use of a peracylated d-mannopyranosyl halide, or the use of triflyl leaving group. Only the α anomer was obtained. Factors influencing glycosidation reactions are discussed. A mercury(II) complex was used for selective 2-O-acylation of 4,6-di-O-benzyl-α-d-mannopyranosides. A disaccharide—protein conjugate was prepared by the isothiocyanate method.  相似文献   

19.
Maltitol, crystallised from aqueous solution, has m.p. 146.5–147°, [α]d + 106.5° (water), and is orthorhombic with the space group P212121 and Z = 4, and with cell dimensions a = 8.166(5), b = 12.721(9), and c = 13.629(6) Å. The molecule shows a fully extended conformation with no intramolecular hydrogen-bonds. All nine hydroxyl groups are involved in intermolecular hydrogen-bond networks and in bifurcated, finite chains. The d-glucopyranosyl moiety has the 4C1 conformation, and the conformation about the C-5–C-6 bond is gauche-gauche. The d-glucitol residue has the bent [ap, Psc, Psc (APP)] conformation. The empirical formula for the solubility in water is C = 119.1 + 1.204 T + 4.137 × 10?2 T2 ? 7.137 × 10?4 T3 + 7.978 × 10?6 T4. The thermal properties are as follows: ΔHf = 13.5 kcal.mol?1, and Q = ?5.57 kcal.mol?1.  相似文献   

20.
β-d-Galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-galactose (galacto-N-biose, GNB) is an important core structure in functional sugar chains such as T-antigen disaccharide and the core 1 sugar chain in mucin glycoproteins. We successfully developed a one-pot enzymatic production of GNB from sucrose and GalNAc by the concomitant action of four enzymes: sucrose phosphorylase, UDP-glucose-hexose 1-phosphate uridylyltransferase, UDP-glucose 4-epimerase, and galacto-N-biose/lacto-N-biose I phosphorylase in the presence of UDP-glucose and phosphate, by modifying the method of lacto-N-biose I production [Nishimoto, M.; Kitaoka, M., Biosci. Biotechnol. Biochem., 2007, 71, 2101-2104]. The reaction yield of GNB was 88% from GalNAc. GNB was isolated from the reaction mixture by crystallization after yeast treatment to obtain approximately 45 g of GNB in 95% purity from a 280-mL reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号