首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of hippocampal slices with Z-DEVD-FMK, a specific inhibitor of caspase-3, elicits a time dependent decrease in long-term potentiation (LTP). After 4 hours or later after the incubation with Z-DEVD-FMK the tetanization fails to induce LTP. However, Z-DEVD-FMK does not affect basal indices of synaptic plasticity and short-term plasticity (population spike amplitudes and paired pulse facilitation). The results are the first evidence for the involvement of caspase-3-mediated mechanisms in long-term potentiation phenomenon.  相似文献   

2.
The effect of repeated pentylentetrazole (PTZ) administration on the postnatal development of hippocampal electrophysiological indices has been studied. Contrary to adult rats, repeated PTZ injections did not intensify convulsive activity in rat pups (from postnatal day 14). We did not observe any between-group differences in population spike amplitudes and paired pulse facilitation (PPF) ratio at 70 ms interpulse interval during early period of postnatal development, PPF suppression at short interlulse interval (15 ms) only was significantly less in PTZ group as compared with saline-injected controls, but the effect of saline injections has developed in the same directio However PTZ resulted in the modification of developmental profile. Besides the change of paired-pulse inhibition (15 ms), in the slices of young rats (27-48 postnatal days) the input-output curve was specifically modified and the intensity-dependent increase in population spike amplitudes was less expressed than in the slices of young control rats repeatedly subjected to saline injection, while PPF ratio of both groups was significantly decreased in a similar way, as compared with passive controls. In addition, LTP magnitude in the slices of PTZ group was also suppressed. These modifications did not correlate with convulsive activity. A significant correlation with convulsive activity was found only for population spike amplitudes evoked by low, near-threshold stimuli.  相似文献   

3.
The action of a reactive oxygen intermediate, that is, hydrogen peroxide (H2O2) on modulation of synaptic transmission was examined in the hippocampal brain slice preparation. Microinjection of H2O2 into the apical dendritic region of the CA1 pyramidal cells produced no change in either the pattern or amplitude of paired pulse facilitation compared to saline injection (control). Long term potentiation (LTP), induced by high frequency stimulation of homosynaptic inputs, however, was blocked by microinjection of H2O2 into the dendritic tree. LTP was seen in only 2 out of 10 slices investigated when treated with H2O2 while LTP was seen in 4 out of 5 slices when saline injected. The results suggest that a reactive oxygen intermediate can selectively modify synaptic mechanisms in the hippocampus.  相似文献   

4.
Long-term potentiation (LTP) is a well-established experimental model used to investigate the synaptic basis of learning and memory. LTP at mossy fibre - CA3 synapses in the hippocampus is unusual because it is normally N-methyl-d-aspartate (NMDA) receptor-independent. Instead it seems that the trigger for mossy fibre LTP involves kainate receptors (KARs). Although it is generally accepted that pre-synaptic KARs play an essential role in frequency facilitation and LTP, their subunit composition remains a matter of significant controversy. We have reported previously that both frequency facilitation and LTP can be blocked by selective antagonism of GluK1 (formerly GluR5/Glu(K5))-containing KARs, but other groups have failed to reproduce this effect. Moreover, data from receptor knockout and mRNA expression studies argue against a major role of GluK1, supporting a more central role for GluK2 (formerly GluR6/Glu(K6)). A potential reason underlying the controversy in the pharmacological experiments may reside in differences in the preparations used. Here we show differences in pharmacological sensitivity of synaptic plasticity at mossy fibre - CA3 synapses depend critically on slice orientation. In transverse slices, LTP of fEPSPs was invariably resistant to GluK1-selective antagonists whereas in parasagittal slices LTP was consistently blocked by GluK1-selective antagonists. In addition, there were pronounced differences in the magnitude of frequency facilitation and the sensitivity to the mGlu2/3 receptor agonist DCG-IV. Using anterograde labelling of granule cells we show that slices of both orientations possess intact mossy fibres and both large and small presynaptic boutons. Transverse slices have denser fibre tracts but a smaller proportion of giant mossy fibre boutons. These results further demonstrate a considerable heterogeneity in the functional properties of the mossy fibre projection.  相似文献   

5.
Wnt signaling is involved in hippocampal development and synaptogenesis. Numerous recent studies have been focused on the role of Wnt ligands in the regulation of synaptic plasticity. Inhibitors and activators of canonical Wnt signaling were demonstrated to decrease or increase, respectively, in vitro long-term potentiation (LTP) maintenance in hippocampal slices (Chen et al. in J Biol Chem 281:11910–11916, 2006; Vargas et al. in J Neurosci 34:2191–2202, 2014, Vargas et al. in Exp Neurol 264:14–25, 2015). Using lentiviral approach to down- and up-regulate the canonical Wnt signaling, we explored whether Wnt/β-catenin signaling is critical for the in vivo LTP. Chronic suppression of Wnt signaling induced an impairment of in vivo LTP expression 14 days after lentiviral suspension injection, while overexpression of Wnt3 was associated with a transient enhancement of in vivo LTP magnitude. Both effects were related to the early phase LTP and did not affect LTP maintenance. A loss-of-function study demonstrated decreased initial paired pulse facilitation ratio, β-catenin, and phGSK-3β levels. A gain-of-function study revealed not only an increase in PSD-95, β-catenin, and Cyclin D1 protein levels, but also a reduced phGSK-3β level and enhanced GSK-3β kinase activity. These results suggest a presynaptic dysfunction predominantly underlying LTP impairment while postsynaptic modifications are primarily involved in transient LTP amplification. This study is the first demonstration of the involvement of Wnt/β-catenin signaling in synaptic plasticity regulation in an in vivo LTP model.  相似文献   

6.
Hippocampal slices taken from animals chronically or acutely treated with ethanol exhibit significant inhibition of long-term potentiation (LTP). This inhibition appears to be associated with impaired activity of N-methyl-D-aspartate (NMDA) receptors, perhaps via ethanol-induced increases in GABAergic synaptic transmission. Recently, a role for the octapeptide angiotensin II (AngII) in ethanol's inhibition of LTP has been reported. Complementary to these findings our laboratory has shown that the application of the hexapeptide metabolite of AngII, angiotensin IV (AngIV), significantly facilitated normal tetanic-induced LTP in the hippocampal slice. This facilitation is presumably by activation of the angiotensin receptor subtype, AT(4). The present study tested whether an AT(4) receptor agonist could overcome ethanol-induced suppression of LTP. The results indicate that Nle(1)-AngIV could offset ethanol-induced suppression of LTP in the CA(1) region of the hippocampus. Pretreatment with the specific AT(4) receptor antagonist Nle(1), Leual(3)-AngIV blocked this facilitation implicating the involvement of the AT(4) receptor subtype. These results suggest that an AT(4) receptor agonist is effective in overcoming ethanol's suppressing influence on LTP, and encourage further investigation of the cognitive enhancing properties of such compounds.  相似文献   

7.
Circadian regulation of hippocampal long-term potentiation   总被引:4,自引:0,他引:4  
The goal of this study is to investigate the possible circadian regulation of hippocampal excitability and long-term potentiation (LTP) measured by stimulating the Schaffer collaterals (SC) and recording the field excitatory postsynaptic potential (fEPSP) from the CA1 dendritic layer or the population spike (PS) from the soma in brain slices of C3H and C57 mice. These 2 strains of mice were of interest because the C3H mice secrete melatonin rhythmically while the C57 mice do not. The authors found that the magnitude of the enhancement of the PS was significantly greater in LTP recorded from night slices compared to day slices of both C3H and C57 mice. They also found significant diurnal variation in the decay of LTP measured with fEPSPs, with the decay slower during the night in both strains of mice. There was evidence for a diurnal rhythm in the input/output function of pyramidal neurons measured at the soma in C57 but not C3H mice. Furthermore, LTP in the PS, measured in slices prepared during the day but recorded during the night, had a profile remarkably similar to the night group. Finally, PS recordings were carried out in slices from C3H mice maintained in constant darkness prior to experimentation. Again, the authors found that the magnitude of the enhancement of the PS was significantly greater in LTP recorded from subjective night slices compared to subjective day slices. These results provide the 1st evidence that an endogenous circadian oscillator modulates synaptic plasticity in the hippocampus.  相似文献   

8.
Best known for their pivotal role in a form of programmed cell death called apoptosis, caspases may also function in more subtle physiological processes. Caspases are present in synapses and dendrites of neurons where they can be activated in response to glutamate receptor stimulation and calcium influx. Here we tested the hypothesis that caspase-1 plays a role in modulating long-term potentiation (LTP) at hippocampal synapses. We provide evidence that caspase-1 plays a role in regulating alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated calcium influx and synaptic plasticity in the hippocampus. LTP of excitatory postsynaptic potentials at CA1 synapses was significantly enhanced when hippocampal slices were treated with either a pan-caspase inhibitor or a selective inhibitor of caspase-1, but not by an inhibitor of caspase-6. Inhibition of caspase-1 significantly enhanced the AMPA current-mediated component of LTP without affecting the N-methyl-D-aspartate current-mediated component. Calcium responses to AMPA were enhanced in hippocampal neurons treated with a caspase-1 inhibitor suggesting that caspase-1 normally functions to reduce AMPA receptor-mediated calcium influx. These findings suggest that, by selectively reducing AMPA currents and calcium influx, caspase-1 functions as a negative regulator of LTP at hippocampal synapses.  相似文献   

9.
It is increasingly evident that matrix metalloproteinases (MMPs), a family of zinc containing extracellular endopeptidases, participate in processes supporting hippocampal synaptic plasticity. The purpose of this study was to further the understanding of MMPs involvement in hippocampal plasticity. Acute hippocampal slices, generated from 20- to 30-day-old male Sprague-Dawley rats, were subjected to various electrophysiologic stimulatory paradigms to produce either short-term or long-term modifications to synaptic efficacy. Slices exposed to broad-spectrum MMP inhibitor, FN-439, exhibited impairments in paired-pulse facilitation, theta-burst facilitation, and long-term depression. Additionally, we observed that MMP inhibition impaired both the induction and stability of long-term potentiation (LTP). Furthermore, evidence indicated that the effect of MMP inhibition on LTP maintenance is dependent upon integrin-directed adhesion, whereas the effects of MMP inhibition on LTP induction are independent of integrin-directed adhesion. Together, these data support a generalized role for MMPs in short-term and long-term hippocampal plasticity and indicate that MMPs are a necessary facet of integrin-mediated cell adhesion supporting LTP stabilization.  相似文献   

10.
Although much information about metabotropic glutamate receptors (mGluRs) and their role in normal and pathologic brain function has been accumulated during the last decades, the role of group III mGluRs is still scarcely documented. Here, we examined mGluR4 knockout mice for types of behavior and synaptic plasticity that depend on either the hippocampus or the prefrontal cortex (PFC). We found improved spatial short‐ and long‐term memory in the radial arm maze, which was accompanied by enhanced long‐term potentiation (LTP) in hippocampal CA1 region. In contrast, LTP in the PFC was unchanged when compared with wild‐type controls. Changes in paired‐pulse facilitation that became overt in the presence of the GABAA antagonist picrotoxin indicated a function of mGluR4 in maintaining the excitation/inhibition balance, which is of crucial importance for information processing in the brain and the deterioration of these processes in neuropsychological disorders such as autism, epilepsy and schizophrenia .  相似文献   

11.
12.
The characteristics of long-term potentiation (LTP) in Schaffer collaterals--CA1 system were compared in hippocampal slices from mice of control group and mice with pentylenetetrazol (PTZ) kindling, induced by daily i.p.-injection of 30 mg/kg of PTZ. The increase in LTP mean magnitude was found in the preparation from kindled mice. The enhancement of the paired-pulse potentiation was also shown in these slices. It is suggested that both the increase in LTP and paired-pulse potentiation are due to the depression of an inhibition in intrahippocampal synaptic systems.  相似文献   

13.
Seizures have profound impact on synaptic function and plasticity. While kainic acid is a popular method to induce seizures and to potentially affect synaptic plasticity, it can also produce physiological-like oscillations and trigger some forms of long-term potentiation (LTP). Here, we examine whether induction of LTP is altered in hippocampal slices prepared from rats with different sensitivity to develop status epilepticus (SE) by systemic injection of kainic acid. Rats were treated with multiple low doses of kainic acid (5 mg/kg; i.p.) to develop SE in a majority of animals (72–85% rats). A group of rats were resistant to develop SE (15–28%) after several accumulated doses. Animals were subsequently tested using chronic recordings and object recognition tasks before brain slices were prepared for histological studies and to examine basic features of hippocampal synaptic function and plasticity, including input/output curves, paired-pulse facilitation and theta-burst induced LTP. Consistent with previous reports in kindling and pilocapine models, LTP was reduced in rats that developed SE after kainic acid injection. These animals exhibited signs of hippocampal sclerosis and developed spontaneous seizures. In contrast, resistant rats did not become epileptic and had no signs of cell loss and mossy fiber sprouting. In slices from resistant rats, theta-burst stimulation induced LTP of higher magnitude when compared with control and epileptic rats. Variations on LTP magnitude correlate with animals’ performance in a hippocampal-dependent spatial memory task. Our results suggest dissociable long-term effects of treatment with kainic acid on synaptic function and plasticity depending on its epileptogenic efficiency.  相似文献   

14.
Normal aging is characterized with a decline in hippocampal memory functions that is associated with changes in long‐term potentiation (LTP) of the CA3‐to‐CA1 synapse. Age‐related deficit of the dopaminergic system may contribute to impairment of CA1 LTP. Here we assessed how the modulation of CA1 LTP by dopamine is affected by aging and how it is dependent on the Ca2+ source. In slices from adult mice, the initial slope of the field potential showed strong LTP, but in slices from aged mice LTP was impaired. Dopamine did not affect LTP in adult slices, but enhanced LTP in aged slices. The dopamine D1/D5 receptor (D1R/D5R) agonist SKF‐81297 did not affect LTP in adult but caused a relative small increase in LTP in aged slices; however, although there was no difference in dopamine D4 receptor (D4R) expression, the D4R agonist PD168077 increased LTP in aged slices to a magnitude similar to that in adult slices. The N‐Methyl‐D‐aspartate receptor antagonist D‐AP5 reduced LTP in adult slices, but not in aged slices. However, in the presence of D‐AP5, PD168077 completely blocked LTP in aged slices. The voltage‐dependent calcium channel (VDCC) blocker nifedipine reduced LTP in adult slices, but surprisingly enhanced LTP in aged slices. Furthermore, in the presence of nifedipine, PD168077 caused a strong enhancement of LTP in aged slices to a magnitude exceeding LTP in adult slices. Our results indicate that the full rescue of impaired LTP in aging by the selective D4R activation and that a large potentiation role on LTP by co‐application of D4R agonist and VDCC blocker may provide novel strategies for the intervention of cognitive decline of aging and age‐related diseases.  相似文献   

15.
Long-term potentiation in the thalamo-cortical input to the somatosensory cortex barrel field has been reported to be inducible in vitro only during a narrow critical period of the first postnatal week. Here we explored whether this is due to inability of adult synapses to express LTP or lack of appropriate conditions for LTP induction in slice preparations. We recorded thalamo-cortical field potentials (FPs) from the barrel field of chronically prepared adult rats. In the first series, several parameters of conditioning tetanization of thalamus (T) have been tried. Statistically significant LTP of 135-150% relative to the baseline was observed only in rare cases (3/18) so that the mean changes were not statistically significant. In the second series, five trains of 100 Hz stimulation of T were paired with a "reinforcing" stimulation of the lateral hypothalamus (LH). In most cases (9/13) thalamo-cortical FPs were potentiated. The mean post-tetanic amplitude was 238 +/- 42% (+/- SEM) relative to the baseline (n = 13). The potentiation persisted for > > 1 hr and typically even further increased when tested 24-48 hr later. LTP magnitude strongly correlated with the initial paired-pulse ratio (PPR, coefficient of correlation r = 0.98) so that LTP magnitude was larger (333 +/- 107, n = 6) in cases with PPR > 1.3. The mean PPR tended to decrease after LTP (from 2.05 to 1.65). Altogether the results suggest that LTP is inducible in the thalamo-cortical input to the barrel field of normal adult rats. The dependence of LTP magnitude upon the initial PPR suggests that inputs with low initial release probability undergo larger LTP. Together with the tendency to a decrease in the PPR this suggests an involvement of presynaptic mechanisms in the maintenance of neocortical LTP.  相似文献   

16.
1. The development of synaptic transmission and indicators of short- and long-term plasticity was studied by recording from areas CA1 and CA3 upon activation of monosy- naptic excitatory inputs in rat hippocampal brain slices obtained from Wistar rats of different ages.2. Although population field excitatory postsynaptic potentials (fEPSPS) are small in animals at postnatal day 10 (P10), both areas already exhibited short-term [posttetanic potentiation (PTP) and paired pulse potentiation (PPF)] and long-term [long-term potentiation (LTP)] plastic responses.3. The amplitudes of the fEPSP and LTP increased with age in both regions, but peaked at P30 in CA3 while they were still increasing at the oldest age studied (P60) in CA1. In CA3, but not CA1, LTP at P60 was less than at P30.4. PTP did not show clear alterations with age in either region. PPF decreased with age in CA1 but not CA3.  相似文献   

17.
The objective of this study is to determine the role of prior prolonged low frequency stimulation (900 pulses at 1 Hz) on the further induced long-term potentiation (LTP) and depression (LTD) of synaptic activity in the rat hippocampal CA1 area. Hippocampal slices and standard extracellular field potential recording techniques were employed. LTP and LTD were induced using stimulation at 5 Hz (900 pulses) paired with or without simultaneous application of 1 microM isoproterenol respectively, at either normal CA1 synapses or CA1 synapses that were pre-conditioned with prolonged low frequency stimulation at 1 Hz. LTD could be successfully induced upon 900 pulses of stimulation given at 5 Hz at normal synapses (82.1 +/- 2.9%; n = 5); it was, however, reduced to 96.5 +/- 4.7% (n = 6) at the preconditioned synapses. When paired with application of isoproterenol, 900 pulses of stimulation given at 5 Hz produced LTP (139.9 +/- 9.6%, n = 5) at normal synapses. The magnitude of LTP is decreased to (130 +/- 13.2%) (n = 6) at pre-conditioned synapses, though the difference is not significant. These results suggest that at a given CA1 synapses the expression of LTP and LTD is dependent on their history of use.  相似文献   

18.
Tsvetkov E  Shin RM  Bolshakov VY 《Neuron》2004,41(1):139-151
Long-term synaptic modifications in afferent inputs to the amygdala underlie fear conditioning in animals. Fear conditioning to a single sensory modality does not generalize to other cues, implying that synaptic modifications in fear conditioning pathways are input specific. The mechanisms of pathway specificity of long-term potentiation (LTP) are poorly understood. Here we show that inhibition of glutamate transporters leads to the loss of input specificity of LTP in the amygdala slices, as assessed by monitoring synaptic responses at two independent inputs converging on a single postsynaptic neuron. Diffusion of glutamate ("spillover") from stimulated synapses, paired with postsynaptic depolarization, is sufficient to induce LTP in the heterosynaptic pathway, whereas an enzymatic glutamate scavenger abolishes this effect. These results establish active glutamate uptake as a crucial mechanism maintaining the pathway specificity of LTP in the neural circuitry of fear conditioning.  相似文献   

19.
Activation of muscarinic acetylcholine receptors (mAChR) facilitates the induction of synaptic plasticity and enhances cognitive function. In the hippocampus, M(1) mAChR on CA1 pyramidal cells inhibit both small conductance Ca(2+)-activated KCa2 potassium channels and voltage-activated Kv7 potassium channels. Inhibition of KCa2 channels facilitates long-term potentiation (LTP) by enhancing Ca(2+)calcium influx through postsynaptic NMDA receptors (NMDAR). Inhibition of Kv7 channels is also reported to facilitate LTP but the mechanism of action is unclear. Here, we show that inhibition of Kv7 channels with XE-991 facilitated LTP induced by theta burst pairing at Schaffer collateral commissural synapses in rat hippocampal slices. Similarly, negating Kv7 channel conductance using dynamic clamp methodologies also facilitated LTP. Negation of Kv7 channels by XE-991 or dynamic clamp did not enhance synaptic NMDAR activation in response to theta burst synaptic stimulation. Instead, Kv7 channel inhibition increased the amplitude and duration of the after-depolarisation following a burst of action potentials. Furthermore, the effects of XE-991 were reversed by re-introducing a Kv7-like conductance with dynamic clamp. These data reveal that Kv7 channel inhibition promotes NMDAR opening during LTP induction by enhancing depolarisation during and after bursts of postsynaptic action potentials. Thus, during the induction of LTP M(1) mAChRs enhance NMDAR opening by two distinct mechanisms namely inhibition of KCa2 and Kv7 channels.  相似文献   

20.
Exposure to space radiation consisting of high-energy charged (56)Fe particles represents a significant health risk for astronauts. (56)Fe-particle radiation affects the synaptic plasticity of the hippocampus and alters its response to the experimental immunological stressor lipopolysaccharide (LPS). We previously showed in mice that 1 month after exposure to (56)Fe-particle radiation, the LPS-induced inhibition of hippocampal long-term potentiation (LTP) was significantly attenuated, resulting in seemingly normal LTP. In the current study, we investigated this phenomenon further at longer times postirradiation. We exposed mice to accelerated iron particles ((56)Fe; 600 MeV/nucleon; 1, 2, 4 Gy; brain only), and 1, 3, 6 or 12 months postirradiation we administered LPS. Four hours after the intraperitoneal LPS injection, we prepared hippocampal slices to measure synaptic excitability and plasticity between CA3-CA1 neurons. In unexposed mice, we confirmed that LPS inhibited LTP at all times. However, in mice exposed to 2 Gy, the LPS-induced LTP inhibition was attenuated and reversed to control values. Such reversal was evident at 1 and 3 months but not 6 and 12 months postirradiation. In addition, at 6 and 12 months postirradiation, we observed inhibition of population spike (PS) amplitudes at 4 Gy that correlated with decrements in dendritic potentials, suggesting synaptic damage. Our data show that (56)Fe-particle radiation affects the response of the hippocampus to an immunological stressor and that the alterations progress over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号