首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine the temporal changes in oxidative stress, mitogen-activated protein (MAP) kinases and mitochondrial apoptotic proteins, and their relationship to myocyte apoptosis in the remote noninfarcted myocardium after myocardial infarction (MI), rabbits were randomly assigned to either coronary artery ligation to produce MI or sham operation. The animals were sacrificed at 1, 4, 8, or 12 weeks after coronary artery occlusion. Sham rabbits were sacrificed at 12 weeks after surgery. MI rabbits exhibited progressive increases of left ventricular (LV) end-diastolic pressure and end-diastolic dimension, and progressive decreases of LV fractional shortening and dP/dt over 12 weeks. The LV remodeling with LV chamber dilation and LV systolic dysfunction was temporally associated with progressive increases of cardiac oxidative stress as evidenced by decreased myocardial reduced-to-oxidized-glutathione ratio and increased myocardial 8-hydroxydeoxyguanosine and myocyte apoptosis. The ERK and JNK activities were decreased while p38 MAP kinase activity was increased with age of MI. The extent of p38 MAP kinase activation correlated with Bcl-2 phosphorylation. Bcl-2 protein was decreased in both mitochondrial and cytosolic fractions with age of MI. Bax protein was increased in both mitochondrial and cytosolic fractions. Cytochrome c was reduced in mitochondrial fraction and increased in cytosolic fraction in a time-dependent manner after MI. Cleaved caspase 9 and caspase 3 proteins were time-dependently increased after MI. These data suggest that p38 MAP kinase activation is not only time-dependent after MI, but also correlates with oxidative stress, Bcl-2 phosphorylation, and myocyte apoptosis. These changes in the remote noninfarcted myocardium may contribute to LV remodeling and dysfunction after MI.  相似文献   

2.
Antioxidant vitamins reduce cardiac oxidative stress and cardiomyocyte apoptosis produced by exogenous norepinephrine (NE) and attenuate cardiac dysfunction in animals with pacing-induced congestive heart failure (CHF). This study was carried out to determine whether the mitogen-activated protein kinase (MAPK) signal transduction pathways are involved in oxidative stress-induced myocyte apoptosis. Rabbits with rapid pacing-induced CHF and sham operation were randomized to receive either a combination of antioxidant vitamins (beta-carotene, ascorbic acid, and alpha-tocopherol), alpha-tocopherol alone, or placebo for 8 wk. Compared with sham-operated animals, CHF animals exhibited increased oxidative stress as evidenced by decreased myocardial reduced-to-oxidized glutathione (GSH/GSSG) ratio (27 +/- 7 vs. 143 +/- 24, P < 0.05), myocyte apoptosis (77 +/- 18 vs. 17 +/- 4 apoptotic nuclei/10,000 cardiomyocytes, P < 0.05), increased total and phosphorylated c-Jun NH2-terminal protein kinase (p-JNK; 1.95 +/- 0.14 vs. 1.04 +/- 0.04 arbitrary units, P < 0.05) and phosphorylated p38 kinase (p-p38), and decreased phosphorylated extracellular signal-regulated kinase (p-ERK). Administration of antioxidant vitamins and alpha-tocopherol attenuated oxidative stress, myocyte apoptosis, and cardiac dysfunction, with reversal of the changes of total JNK, p-JNK, and p-ERK in CHF. Furthermore, because NE infusion produced changes of JNK, p-p38, and p-ERK similar to those in CHF, we conclude that NE may play an important role in the production of oxidative stress, MAPK activation, and myocyte apoptosis in CHF.  相似文献   

3.
The cytotoxicity of saturated fatty acids has been implicated in the pathophysiology of cardiovascular disease, though their effects on cardiac myocytes are incompletely understood. We examined the effects of palmitate and the mono-unsaturated fatty acid oleate on neonatal rat ventricular myocyte cell biology. Palmitate (0.5mM) increased oxidative stress, as well as activation of the stress-associated protein kinases (SAPK) p38, Erk1/2, and JNK, following 18h and induced apoptosis in approximately 20% of cells after 24h. Neither antioxidants nor SAPK inhibitors prevented palmitate-induced apoptosis. Low concentrations of oleate (0.1mM) completely inhibited palmitate-induced oxidative stress, SAPK activation, and apoptosis. Increasing mitochondrial uptake of palmitate with l-carnitine decreased apoptosis, while decreasing uptake with the carnitine palmitoyl transferase-1 inhibitor perhexiline nearly doubled palmitate-induced apoptosis. These results support a model for palmitate-induced apoptosis, activation of SAPKs, and protein oxidative stress in myocytes that involves cytosolic accumulation of saturated fatty acids.  相似文献   

4.
Increases in NADPH oxidase activity, oxidative stress, and myocyte apoptosis coexist in failing hearts. In cardiac myocytes in vitro inhibition of NADPH oxidase reduces apoptosis. In this study, we tested the hypothesis that NADPH oxidase inhibition reduces myocyte apoptosis and improves cardiac function in heart failure after myocardial infarction (MI). Rabbits with heart failure induced by MI and sham-operated animals were randomized to orally receive apocynin, an inhibitor of NADPH oxidase (15 mg per day) or placebo for 4 weeks. Left ventricular (LV) dimension and function were assessed by echocardiography and hemodynamics. Myocardial NADPH oxidase activity was measured by superoxide dismutase-inhibitable cytochrome c reduction assay, NADPH oxidase subunit p47phox expression by Western blot and immunofluorescence analysis, myocardial oxidative stress evaluated by 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (4-HNE) using immunohistochemistry, and myocyte apoptosis by TUNEL assay. MI rabbits exhibited LV dilatation and systolic dysfunction measured by LV fractional shortening and the maximal rate of LV pressure rise (dP/dt). These changes were associated with increases in NADPH oxidase activity, p47phox protein expression, 8-OHdG expression, 4-HNE expression, myocyte apoptosis, and Bax protein and a decrease in Bcl-2 protein. Apocynin reduced NADPH oxidase activity, p47phox protein, oxidative stress, myocyte apoptosis, and Bax protein, increased Bcl-2 protein, and ameliorated LV dilatation and dysfunction after MI. The results suggest that inhibition of NADPH oxidase may represent an attractive therapeutic approach to treat heart failure.  相似文献   

5.
The present study examines whether a subchronic probucol treatment of rats offers protection against ischemia-reperfusion (IR) injury in isolated perfused hearts. Sprague-Dawley rats were treated every second day per week with probucol (cumulative dose 120 mg/kg body mass, i.p.) for 4 weeks. In the probucol group, baseline myocardial antioxidant enzyme, glutathione peroxidase (GSHPx), activity was increased (p<0.05), whereas superoxide dismutase (SOD) and catalase (CAT) activities were not changed. Baseline oxidative stress, as indicated by the myocardial lipid peroxidation, was less (p<0.05) in the probucol group. Isolated hearts were subjected to 60 min global I and 20 min R. Recovery of the contractile function in globally ischemic hearts upon reperfusion was 36% in untreated group and 74% in the probucol group. After IR, GSHPx and CAT activities were significantly (p<0.05) higher in the probucol group compared with the control group, whereas SOD did not change. Lipid peroxidation owing to IR was significantly less in the probocol group. These data suggest that probucol treatment improves endogenous antioxidant reserve and protects against increased oxidative stress following IR injury.  相似文献   

6.
Oxidative stress plays an important role in mediating ventricular remodeling and dysfunction in heart failure (HF), but its mechanism of action has not been fully elucidated. In this study we determined whether a combination of antioxidant vitamins reduced myocyte apoptosis, beta-adrenergic receptor desensitization, and sarcoplasmic reticular (SR) Ca2+ ATPase downregulation in HF after myocardial infarction (MI) and whether these effects were associated with amelioration of left ventricular (LV) remodeling and dysfunction. Vitamins (vitamin C 300 mg and vitamin E 300 mg) were administered to rabbits 1 week after MI or sham operation for 11 weeks. The results showed that MI rabbits exhibited cardiac dilation and LV dysfunction measured by fractional shortening and the maximal rate of pressure rise (dP/dt), an index of contractility. These changes were associated with elevation of oxidative stress, decreases of mitochondrial Bcl-2 and cytochrome c proteins, increases of cytosolic Bax and cytochrome c proteins, caspase 9 and caspase 3 activities and myocyte apoptosis, and downregulation of beta-adrenergic receptor sensitivity and SR Ca2+ ATPase. Combined treatment with vitamins C and E diminished oxidative stress, increased mitochondrial Bcl-2 protein, decreased cytosolic Bax, prevented cytochrome c release from mitochondria to cytosol, reduced caspase 9 and caspase 3 activities and myocyte apoptosis, blocked beta-adrenergic receptor desensitization and SR Ca2+ ATPase downregulation, and attenuated LV dilation and dysfunction in HF after MI. The results suggest that antioxidant therapy may be beneficial in HF.  相似文献   

7.
Global activation of MAP kinases has been reported in both human and experimental heart failure. Chronic remodeling of the surviving ventricular wall after myocardial infarction (MI) involves both myocyte loss and fibrosis; we hypothesized that this cardiomyopathy involves differential shifts in pro‐ and anti‐apoptotic MAP kinase signaling in cardiac myocyte (CM) and non‐myocyte. Cardiomyopathy after coronary artery ligation in mice was characterized by echocardiography, ex vivo Langendorff preparation, histologic analysis and measurements of apoptosis. Phosphorylation (activation) of signaling molecules was analyzed by Western blot, ELISA and immunohistochemistry. Post‐MI remodeling involved dramatic changes in the phosphorylation of both stress‐activated MAP (SAP) kinase p38 as well as ERK, a known mediator of cell survival, but not of SAP kinase JNK or the anti‐apoptotic mediator of PI3K, Akt. Phosphorylation of p38 rose early after MI in the infarct, whereas a more gradual rise in the remote myocardium accompanied a rise in apoptosis in that region. In both areas, ERK phosphorylation was lowest early after MI and rose steadily thereafter, though infarct phosphorylation was consistently higher. Immunostaining of p‐ERK localized to fibrotic areas populated primarily by non‐myocytes, whereas staining of p38 phosphorylation was stronger in areas of progressive CM apoptosis. Relative segregation of CMs and non‐myocytes in different regions of the post‐MI myocardium revealed signaling patterns that imply cell type‐specific changes in pro‐ and anti‐apoptotic MAP kinase signaling. Prevention of myocyte loss and of LV remodeling after MI may therefore require cell type‐specific manipulation of p38 and ERK activation. J. Cell. Biochem. 109: 1185–1191, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
High-mobility group box 1 (HMGB1) is a nuclear protein that has been implicated in the myocardial inflammation and injury induced by ischemia-reperfusion (I/R). The purpose of the present study was to assess the role of HMGB1 in myocardial apoptosis induced by I/R. In vivo, myocardial I/R induced an increase in myocardial HMGB1 expression and apoptosis. Inhibition of HMGB1 (A-box) ameliorated the I/R-induced myocardial apoptosis. In vitro, isolated cardiac myocytes were challenged with anoxia-reoxygenation (A/R; in vitro correlate to I/R). A/R-challenged myocytes also generated HMGB1 and underwent apoptosis. Inhibition of HMGB1 attenuated the A/R-induced myocyte apoptosis. Exogenous HMGB1 had no effect on myocyte apoptosis. However, inhibition of HMGB1 attenuated myocyte TNF-α production after the A/R was challenged; surprisingly, HMGB1 itself did not induce myocyte TNF-α production. Exogenous TNF-α induced a moderate proapoptotic effect on the myocytes, an effect substantially potentiated by coadministration of HMGB1. It is generally accepted that apoptosis induced by TNF-α is regulated by the balance of activation of c-Jun NH(2)-terminal kinase (JNK) and NF-κB. Indeed, in the present study, TNF-α increased the phosphorylation status of JNK and p65, a subunit of NF-κB; HMGB1 greatly potentiated TNF-α-induced JNK phosphorylation. Furthermore, inhibition of JNK (SP-600125) prevented the myocyte apoptosis induced by a TNF-α/HMGB1 cocktail. Finally, A/R increased HMGB1 production in both wild-type and toll-like receptor 4-deficient myocytes; however, deficiency in toll-like receptor 4 diminished A/R-induced myocyte apoptosis, TNF-α, and JNK activation. Our results indicate that myocyte-derived HMGB1 and TNF-α work in concert to promote I/R-induced myocardial apoptosis through JNK activation.  相似文献   

9.
The mechanisms responsible for the decrements in exercise performance in chronic heart failure (CHF) remain poorly understood, but it has been suggested that sarcolemmal alterations could contribute to the early onset of muscular fatigue. Previously, our laboratory demonstrated that the maximal number of ouabain binding sites (B(max)) is reduced in the skeletal muscle of rats with CHF (Musch TI, Wolfram S, Hageman KS, and Pickar JG. J Appl Physiol 92: 2326-2334, 2002). These reductions may coincide with changes in the Na(+)-K(+)-ATPase isoform (alpha and beta) expression. In the present study, we tested the hypothesis that reductions in B(max) would coincide with alterations in the alpha- and beta-subunit expression of the sarcolemmal Na(+)-K(+)-ATPase of rats with CHF. Moreover, we tested the hypothesis that exercise training would increase B(max) along with producing significant changes in alpha- and beta-subunit expression. Rats underwent a sham operation (sham; n = 10) or a surgically induced myocardial infarction followed by random assignment to either a control (MI; n = 16) or exercise training group (MI-T; n = 16). The MI-T rats performed exercise training (ET) for 6-8 wk. Hemodynamic indexes demonstrated that MI and MI-T rats suffered from severe left ventricular dysfunction and congestive CHF. Maximal oxygen uptake (Vo(2 max)) and endurance capacity (run time to fatigue) were reduced in MI rats compared with sham. B(max) in the soleus and plantaris muscles and the expression of the alpha(2)-isoform of the Na(+)-K(+)-ATPase in the red portion of the gastrocnemius (gastrocnemius(red)) muscle were reduced in MI rats. After ET, Vo(2 max) and run time to fatigue were increased in the MI-T group of rats. This coincided with increases in soleus and plantaris B(max) and the expression of the alpha(2)-isoform in the gastrocnemius(red) muscle. In addition, the expression of the beta(2)-isoform of the gastrocnemius(red) muscle was increased in the MI-T rats compared with their sedentary counterparts. This study demonstrates that CHF-induced alterations in skeletal muscle Na(+)-K(+)-ATPase, including B(max) and isoform expression, can be partially reversed by ET.  相似文献   

10.
Although oxidative stress causes activation of c-Jun N-terminal kinase (JNK) and apoptosis in many cell types, how the JNK pathway is connected to the apoptosis pathway is unclear. The molecular mechanism of JNK-mediated apoptosis was investigated in adult rat cardiac myocytes in culture as a model system that is sensitive to oxidative stress. Oxidative stress caused JNK activation, cytochrome c release, and apoptosis without new protein synthesis. Oxidative stress-induced apoptosis was abrogated by dominant negative stress-activated protein kinase/extracellular signal-regulated kinase kinase-1 (SEK1)-mediated inhibition of the JNK pathway, whereas activation of the JNK pathway by constitutively active SEK1 was sufficient to cause apoptosis. Inhibition of caspase-9, an apical caspase in the mitochondrial apoptosis pathway, suppressed oxidative stress-induced apoptosis, whereas inhibition of caspase-8 had no effect, indicating that both the JNK pathway and the mitochondrial apoptosis machinery are central to oxidative stress-induced apoptosis. Both JNK and SEK1 localized on mitochondria where JNK was activated by oxidative stress. Furthermore, active JNK caused the release of apoptogenic factors such as cytochrome c from isolated mitochondria in a cell-free assay. These findings indicate that the JNK pathway is a direct activator of mitochondrial death machinery without other cellular components and provide a molecular linkage from oxidative stress to the mitochondrial apoptosis machinery.  相似文献   

11.
This study investigates the molecular mechanisms by which minocycline, a second generation tetracycline, prevents cardiac myocyte death induced by in utero cocaine exposure. Timed mated pregnant Sprague-Dawley (SD) rats received one of the following treatments twice daily from embryonic (E) day 15–21 (E15–E21): (i) intraperitoneal (IP) injections of saline (control); (ii) IP injections of cocaine (15 mg/kg BW); and (iii) IP injections of cocaine + oral administration of 25 mg/kg BW of minocycline. Pups were killed on postnatal day 15 (P15). Additional pregnant dams received twice daily IP injections of cocaine (from E15–E21) + oral administration of a relatively higher (37.5 mg/kg BW) dose of minocycline. Minocycline treatment continued from E15 until the pups were sacrificed on P15. In utero cocaine exposure resulted in an increase in oxidative stress and fetal cardiac myocyte apoptosis through activation of c-Jun-NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK)-mediated mitochondria-dependent apoptotic pathway. Continued minocycline treatment from E15 through P15 significantly prevented oxidative stress, kinase activation, perturbation of BAX/BCL-2 ratio, cytochrome c release, caspase activation, and attenuated fetal cardiac myocyte apoptosis after prenatal cocaine exposure. These results demonstrate in vivo cardioprotective effects of minocycline in preventing fetal cardiac myocyte death after prenatal cocaine exposure. Given its proven clinical safety and ability to cross the placental barrier and enter into the fetal circulation, minocycline may be an effective therapy for preventing cardiac consequences of in utero cocaine exposure.  相似文献   

12.
The aim of this study was to evaluate whether exercise training (ET) prevents or minimizes cardiac dysfunction and pathological ventricular remodeling in ovariectomized rats subjected to myocardial infarction (MI) and to examine the possible mechanisms involved in this process. Ovariectomized Wistar rats were subjected to either MI or fictitious surgery (Sham) and randomly divided into the following groups: Control, OVX+SHAMSED, OVX+SHAMET, OVX+MISED and OVX+MIET. ET was performed on a motorized treadmill (5x/wk, 60 min/day, 8 weeks). Cardiac function was assessed by ventricular catheterization and Dihydroethidium fluorescence (DHE) was evaluated to analyze cardiac oxidative stress. Histological analyses were made to assess collagen deposition, myocyte hypertrophy and infarct size. Western Blotting was performed to analyze the protein expression of catalase and SOD-2, as well as Gp91phox and AT1 receptor (AT1R). MI-trained rats had significantly increased in +dP/dt and decreased left ventricular end-diastolic pressure compared with MI-sedentary rats. Moreover, oxidative stress and collagen deposition was reduced, as was myocyte hypertrophy. These effects occurred in parallel with a reduction in both AT1R and Gp91phox expression and an increase in catalase expression. SOD-2 expression was not altered. These results indicate that ET improves the functional cardiac parameters associated with attenuation of cardiac remodeling in ovariectomized rats subjected to MI. The mechanism seems to be related to a reduction in the expression of both the AT1 receptor and Gp91phox as well as an increase in the antioxidant enzyme catalase, which contributes to a reduction in oxidative stress. Therefore, ET may be an important therapeutic target for the prevention of heart failure in postmenopausal women affected by MI.  相似文献   

13.

Background

Interleukin-33 (IL-33) is a new member of the IL-1 cytokine family. The objectives of present study are to assess whether IL-33 can protect cardiomyocytes from anoxia/reoxygenation (A/R)-induced injury and the mechanism involved in the protection.

Methods

Cardiomyocytes derived from either wild type or JNK1−/− mice were challenged with an A/R with or without IL-33. Myocyte apoptosis was assessed by measuring caspase 3 activity, fragmented DNA and TUNEL staining. In addition, cardiomyocyte oxidative stress was assessed by measuring DHR123 oxidation; PKCβII and JNK phosphorylation were assessed with Western blot.

Results

Challenge of cardiomyocytes with an A/R resulted in cardiomyocyte oxidative stress, PKCβII and JNK phosphorylation, and myocyte apoptosis. Treatment of the cardiomyocytes with IL-33 attenuated the A/R-induced myocyte oxidative stress, prevented PKCβII and JNK phosphorylation and attenuated the A/R-induced myocyte apoptosis. The protective effect of the IL-33 did not show in cardiac myocytes with siRNA specific to PKCβII or myocytes deficient in JNK1. Inhibition of PKCβII prevented the A/R-induced JNK phosphorylation, but inhibition of JNK1 showed no effect on A/R-induced PKCβII phosphorylation.

Conclusions

Our results indicate that IL-33 prevents the A/R-induced myocyte apoptosis through inhibition of PKCβ/JNK pathway.  相似文献   

14.
In this study, we evaluated whether blocking myeloid differentiation factor-88 (MyD88) could decrease cardiac myocyte apoptosis following pressure overload. Adenovirus expressing dominant negative MyD88 (Ad5-dnMyD88) or Ad5-green fluorescent protein (GFP) (Ad5-GFP) was transfected into rat hearts (n = 8/group) immediately followed by aortic banding for 3 wk. One group of rats (n = 8) was subjected to aortic banding for 3 wk without transfection. Sham surgical operation (n = 8) served as control. The ratios of heart weight to body weight (HW/BW) and heart weight to tibia length (HW/TL) were calculated. Cardiomyocyte size was examined by FITC-labeled wheat germ agglutinin staining of membranes. Cardiac myocyte apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, and myocardial interstitial fibrosis was examined by Masson's Trichrome staining. Aortic banding significantly increased the HW/BW by 41.0% (0.44 +/- 0.013 vs. 0.31 +/- 0.008), HW/TL by 47.2% (42.7 +/- 1.30 vs. 29.0 +/- 0.69), cardiac myocyte size by 49.6%, and cardiac myocyte apoptosis by 11.5%, and myocardial fibrosis and decreased cardiac function compared with sham controls. Transfection of Ad5-dnMyD88 significantly reduced the HW/BW by 18.2% (0.36 +/- 0.006 vs. 0.44 +/- 0.013) and HW/TL by 22.3% (33.2 +/- 0.95 vs. 42.7 +/- 1.30) and decreased cardiomyocyte size by 56.8%, cardiac myocyte apoptosis by 76.2%, as well as fibrosis, and improved cardiac function compared with aortic-banded group. Our results suggest that MyD88 is an important component in the Toll-like receptor-4-mediated nuclear factor-kappaB activation pathway that contributes to the development of cardiac hypertrophy. Blockade of MyD88 significantly reduced cardiac hypertrophy, cardiac myocyte apoptosis, and improved cardiac function in vivo.  相似文献   

15.
The current study investigated the phosphorylation of mitogen-activated protein kinases (MAPKs) as well as pro- and anti-apoptotic proteins in adriamycin (ADR)-induced cardiomyopathy (AIC) and heart failure in rats. Modulatory effects of antioxidant probucol on the activation of MAPKs were also examined. Male rats were administered with ADR (15 mg/kg body wt ip, over 2 wk) with and without probucol (120 mg/kg body wt for 4 wk ip). Hearts from these animals were studied at 1- to 24-h as well as at 3-wk posttreatment durations. In the 3-wk group, ADR depressed cardiac function, increased left ventricular end-diastolic pressure (LVEDP), and caused dyspnea and mortality. These changes were prevented by probucol. Phosphorylation of extracellular signal-regulated kinase (ERK)1/2, in the early stage of AIC, showed a biphasic response, with a maximum increase to 513% seen at 4 h, followed by a decrease to 66.8% at 3 wk after the last injection of ADR. Phosphorylation of p38 and c-Jun NH(2)-terminal kinases (JNKs) showed a steady increase through 2, 4, and 24 h and 3 wk (116% to 148%). In gene microarray analysis at 3 wk (heart failure stage), mRNA expression for both ERK1/2 and p38 kinases was decreased, whereas JNK mRNA was undetectable. Probucol completely prevented these MAPK changes. Activation of caspase-3 as well as the increase in the ratio of Bax to Bcl-xl were seen at early time points (1-24 h) as well as in the heart failure stage (3 wk). It is suggested that a transient increase in ERK1/2 at a shorter interval indicate an early adaptive response, and failure of this response corresponded with heart failure. In contrast, a gradual and persistent increase in p38 and JNK MAPKs as well as in caspase-3 and the Bax-to-Bcl-xl ratio may contribute in the initiation of apoptosis and progression of heart failure. Because probucol modulated changes in cellular signaling pathways and cardiac function, it is likely that oxidative stress plays a key role in AIC and heart failure.  相似文献   

16.
Ataxia telangiectasia mutated kinase (ATM) is a cell cycle checkpoint protein activated in response to DNA damage. We recently reported that ATM plays a protective role in myocardial remodeling following β-adrenergic receptor stimulation. Here we investigated the role of ATM in cardiac remodeling using myocardial infarction (MI) as a model. Methods and Results: Left ventricular (LV) structure, function, apoptosis, fibrosis, and protein levels of apoptosis- and fibrosis-related proteins were examined in wild-type (WT) and ATM heterozygous knockout (hKO) mice 7 days post-MI. Infarct sizes were similar in both MI groups. However, infarct thickness was higher in hKO-MI group. Two dimensional M-mode echocardiography revealed decreased percent fractional shortening (%FS) and ejection fraction (EF) in both MI groups when compared to their respective sham groups. However, the decrease in %FS and EF was significantly greater in WT-MI vs hKO-MI. LV end systolic and diastolic diameters were greater in WT-MI vs hKO-MI. Fibrosis, apoptosis, and α-smooth muscle actin staining was significantly higher in hKO-MI vs WT-MI. MMP-2 protein levels and activity were increased to a similar extent in the infarct regions of both groups. MMP-9 protein levels were increased in the non-infarct region of WT-MI vs WT-sham. MMP-9 protein levels and activity were significantly lower in the infarct region of WT vs hKO. TIMP-2 protein levels similarly increased in both MI groups, whereas TIMP-4 protein levels were significantly lower in the infarct region of hKO group. Phosphorylation of p53 protein was higher, while protein levels of manganese superoxide dismutase were significantly lower in the infarct region of hKO vs WT. In vitro, inhibition of ATM using KU-55933 increased oxidative stress and apoptosis in cardiac myocytes.  相似文献   

17.
In mouse cerebellar granule neurons (CGNs) the marine neurotoxin domoic acid (DomA) induces neuronal cell death, either by apoptosis or by necrosis, depending on its concentration, with apoptotic damage predominating in response to low concentrations (100 nM). DomA-induced apoptosis is due to selective activation of AMPA/kainate receptors, and is mediated by DomA-induced oxidative stress, leading to mitochondrial dysfunction and activation of caspase-3. The p38 MAP kinase and the c-Jun NH2-terminal protein kinase (JNK) have been shown to be preferentially activated by oxidative stress. Here we report that DomA increases p38 MAP kinase and JNK phosphorylation, and that this effect is more pronounced in CGNs from Gclm (-/-) mice, which lack the modifier subunit of glutamate-cysteine ligase, have very low glutathione (GSH) levels, and are more sensitive to DomA-induced apoptosis than CGNs from wild-type mice. The increased phosphorylation of JNK and p38 kinase was paralleled by a decreased phosphorylation of Erk 1/2. The AMPA/kainate receptor antagonist NBQX, but not the NMDA receptor antagonist MK-801, prevents DomA-induced activation of p38 and JNK kinases. Several antioxidants (GSH ethyl ester, catalase and phenylbutylnitrone) also prevent DomA-induced phosphorylation of JNK and p38 MAP kinases. Inhibitors of p38 (SB203580) and of JNK (SP600125) antagonize DomA-induced apoptosis. These results indicate the importance of oxidative stress-activated JNK and p38 MAP kinase pathways in DomA-induced apoptosis in CGNs.  相似文献   

18.
Oxidative stress activates various signal transduction pathways, including Jun N-terminal kinase (JNK) and its substrates, that induce apoptosis. We reported here the role of angiopoietin-1 (Ang1), which is a prosurvival factor in endothelial cells, during endothelial cell damage induced by oxidative stress. Hydrogen peroxide (H2O2) increased apoptosis of endothelial cells through JNK activation, whereas Ang1 inhibited H2O2-induced apoptosis and concomitant JNK phosphorylation. The inhibition of H2O2-induced JNK phosphorylation was reversed by inhibitors of phosphatidylinositol (PI) 3-kinase and dominant-negative Akt, and constitutively active-Akt attenuated JNK phosphorylation without Ang1. These data suggested that Ang1-dependent Akt phosphorylation through PI 3-kinase leads to the inhibition of JNK phosphorylation. H2O2-induced phosphorylation of SAPK/Erk kinase (SEK1) at Thr261, which is an upstream regulator of JNK, was also attenuated by Ang1-dependent activation of the PI 3-kinase/Akt pathway. In addition, Ang1 induced SEK1 phosphorylation at Ser80, suggesting the existence of an additional signal transduction pathway through which Ang1 attenuates JNK phosphorylation. These results demonstrated that Ang1 attenuates H2O2-induced SEK1/JNK phosphorylation through the PI 3-kinase/Akt pathway and inhibits the apoptosis of endothelial cells to oxidative stress.  相似文献   

19.
20.
Tumor necrosis factor α (TNF-α) receptor-associated factor 2 (TRAF2) regulates activation of the c-Jun N-terminal kinase (JNK)/c-Jun and the inhibitor of κB kinase (IKK)/nuclear factor κB (NF-κB) signaling cascades in response to TNF-α stimulation. Gene knockout studies have revealed that TRAF2 inhibits TNF-α-induced cell death but promotes oxidative stress-induced apoptosis. Here we report that TNF-α and oxidative stress both induce TRAF2 phosphorylation at serines 11 and 55 and that this dual phosphorylation promotes the prolonged phase of IKK activation while inhibiting the prolonged phase of JNK activation. Prolonged IKK activation trigged by TNF-α plays an essential role in efficient expression of a subset of NF-κB target genes but has no substantial role in TNF-α-induced cell death. On the other hand, TRAF2 phosphorylation in response to oxidative stress significantly promotes cell survival by inducing prolonged IKK activation and by inhibiting the prolonged phase of JNK activation. Notably, stable expression of phospho-null mutant TRAF2 in cancer cells leads to an increase in the basal and inducible JNK activation and B-cell lymphoma 2 (Bcl-2) phosphorylation. In addition, exposure of cells expressing phospho-null mutant TRAF2 to sublethal oxidative stress results in a rapid degradation of Bcl-2 and cellular inhibitor of apoptosis 1 as well as significantly increased cell death. These results suggest that TRAF2 phosphorylation is essential for cell survival under conditions of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号