首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The packing of α-helices and β-sheets in six αβ proteins (e.g. flavodoxin) has been analysed. The results provide the basis for a computer algorithm to predict the tertiary structure of an αβ protein from its amino acid sequence and actual assignment of secondary structure.The packing of an individual α-helix against a β-sheet generally involves two adjacent ± 4 rows of non-polar residues on the α-helix at the positions i, i + 4, i + 8, i + 1, i + 5, i + 9. The pattern of interacting β-sheet residues results from the twisted nature of the sheet surface and the attendant rotation of the side-chains. At a more detailed level, four of the α-helical residues (i + 1, i + 4, i + 5 and i + 8) form a diamond that surrounds one particular β-sheet residue, generally isoleucine, leucine or valine. In general, the α-helix sits 10 Å above the sheet and lies parallel to the strand direction.The prediction follows a combinational approach. First, a list of possible β-sheet structures (106 to 1014) is constructed by the generation of all β-sheet topologies and β-strand alignments. This list is reduced by constraints on topology and the location of non-polar residues to mediate the sheet/helix packing, and then rank-ordered on the extent of hydrogen bonding. This algorithm was uniformly applied to 16 αβ domains in 13 proteins. For every structure, one member of the reduced list was close to the crystal structure; the root-mean-square deviation between equivalenced Cα atoms averaged 5.6 Å for 100 residues. For the αβ proteins with pure parallel β-sheets, the total number of structures comparable to or better than the native in terms of hydrogen bonds was between 1 and 148. For proteins with mixed β-sheets, the worst case is glyceraldehyde-3-phosphate dehydrogenase, where as many as 3800 structures would have to be sampled. The evolutionary significance of these results as well as the potential use of a combinatorial approach to the protein folding problem are discussed.  相似文献   

2.
The pectate lyases, PelC and PelE, have an unusual folding motif, known as a parallel β-helix, in which the polypeptide chain is coiled into a larger helix composed of three parallel β-sheets connected by loops having variable lengths and conformations. Since the regular secondary structure consists almost entirely of parallel β-sheets these proteins provide a unique opportunity to study the effect of parallel β-helical structure on circular dichroism (CD). We report here the CD spectra of PelC and PelE in the presence and absence of Ca2+, derive the parallel β-helical components of the spectra, and compare these results with previous CD studies of parallel β-sheet structure. The shape and intensity of the parallel β-sheet spectrum is distinctive and may be useful in identifying other proteins that contain the parallel β-helical folding motif. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The human immunodeficiency virus (HIV) gp41 fusion domain plays a critical role in membrane fusion during viral entry. A thorough understanding of the relationship between the structure and the activity of the fusion domain in different lipid environments helps to formulate mechanistic models on how it might function in mediating membrane fusion. The secondary structure of the fusion domain in small liposomes composed of different lipid mixtures was investigated by circular dichroism spectroscopy. The fusion domain formed an α-helix in membranes containing less than 30?mol% cholesterol and formed β-sheet secondary structure in membranes containing ≥30?mol% cholesterol. EPR spectra of spin-labeled fusion domains also indicated different conformations in membranes with and without cholesterol. Power saturation EPR data were further used to determine the orientation and depth of α-helical fusion domains in lipid bilayers. Fusion and membrane perturbation activities of the gp41 fusion domain were measured by lipid mixing and contents leakage. The fusion domain fused membranes in both its helical form and its β-sheet form. High cholesterol, which induced β-sheets, promoted fusion; however, acidic lipids, which promoted relatively deep membrane insertion as an α-helix, also induced fusion. The results indicate that the structure of the HIV gp41 fusion domain is plastic and depends critically on the lipid environment. Provided that their membrane insertion is deep, α-helical and β-sheet conformations contribute to membrane fusion.  相似文献   

4.
5.
Abstract

We performed molecular dynamics simulations for various oligomers with different β-sheet conformations consisting of α-Synuclein 71–82 residues using an all atom force field and explicit water model. Tetramers of antiparallel β-sheet are shown to be stable, whereas parallel sheets are highly unstable due to the repulsive interactions between bulky and polar side chains as well as the weaker backbone hydrogen bonds. We also investigated the stabilities of double antiparallel β-sheets stacked with asymmetric and symmetric geometries. Our results show that this 12 amino acid residue peptide can form stable β-sheet conformers at 320K and higher temperatures. The backbone hydrogen bonds in β-sheet and the steric packing between hydrophobic side chains between β-sheets are shown to give conformational stabilities.  相似文献   

6.
The solid state secondary structure of myoglobin, RNase A, concanavalin A (Con A), poly(L -lysine), and two linear heterooligomeric peptides were examined by both far-uv CD spectroscopy1 and by ir spectroscopy. The proteins associated from water solution on glass and mica surfaces into noncrystalline, amorphous films, as judged by transmission electron microscopy of carbon-platinum replicas of surface and cross-fractured layer. The association into the solid state induced insignificant changes in the amide CD spectra of all α-helical myoglobin, decreased the molar ellipticity of the α/β RNase A, and increased the molar ellipticity of all-β Con A with no change in the positions of the bands' maxima. High-temperature exposure of the films induced permanent changes in the conformation of all proteins, resulting in less α-helix and more β-sheet structure. The results suggest that the protein α-helices are less stable in films and that the secondary structure may rearrange into β-sheets at high temperature. Two heterooligomeric peptides and poly (L -lysine), all in solution at neutral pH with “random coil” conformation, formed films with variable degrees of their secondary structure in β-sheets or β-turns. The result corresponded to the protein-derived Chou-Fasman amino acid propensities, and depended on both temperature and solvent used. The ir and CD spectra correlations of the peptides in the solid state indicate that the CD spectrum of a “random” structure in films differs from random coil in solution. Formic acid treatment transformed the secondary structure of the protein and peptide films into a stable α-helix or β-sheet conformations. The results indicate that the proteins aggregate into a noncrystalline, glass-like state with preserved secondary structure. The solid state secondary structure may undergo further irreversible transformations induced by heat or solvent. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
In order to investigate the role of each amino acid residue in determining the secondary structure of the transmembrane segment of membrane proteins in a lipid bilayer, we made a conformational analysis by CD for lipid-soluble homooligopeptides, benzyloxycarbonyl-(Z-) Aaan-OEt (n = 5-7), composed of Ala, Leu, Val, and Phe, in three media of trifluoroethanol, sodium dodecyl sulfaie micelle, and phospholipid liposomes. The lipid-peptide interaction was also studied through the observation of bilayer phase transition by differential scanning cahrimetry (DSC). The CD studies showed that peptides except for Phe oligomers are present as a mainly random structure in trifluoroethanol, as a mixture of α-helix, β-sheet, β-turn, and /or random in micelles above the critical micellization concentration and preferably as an extended structure of α-helical or β-structure in dipalmitoyl-D,L -α-phosphatidylcholine (DPPC) liposomes of gel state. That the β-structure content of Val oligomers in lipid bilayers is much higher than that in micelles and the oligopeptides of Leu (n = 7) and Ala (n = 6) can take an α-helical structure with one to two turns in lipid bilayers despite their short chain lengths indicates that lipid bilayers can stabilize the extended structure of both α-helical and β-structures of the peptides. The DSC study for bilayer phase transition of DPPC / peptide mixtures showed that the Leu oligomer virtually affects neither the temperature nor the enthalpy of the transition, while Val and Ala oligomers slightly reduce the transition enthalpy without altering the transition temperature. In contrast, the Phe oligomer affects the phase transition in much more complicated manner. The decreasing tendency of the transition enthalpy was more pronounced for the Ala oligomer as compared with the Leu and Val oligomers, which means that the isopropyl group of the side chain has a less perturbing effect on the lipid acyl chain than the methyl group of Ala. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Abstract

Atomistic molecular dynamics simulations have been performed on the peptide amphiphiles (PAs) with four amyloid beta peptide fragments as head groups. The stable structures were monitored by the root mean square deviation with respect to the energy minimised initial structures. Random coil and β-sheet structures with hydrogen bonds along and perpendicular to the long axis of the nanofibre were obtained due to the different nature of the head groups. Influences of pH and capping ends on the nanofibre structures were investigated through variation of the protonation states of the ionic amino acids in the peptides. The peptides with opposite charges on both sides were found to have the fewest β-sheet structures, and the charges on the outer terminal tended to destruct the β-sheets while those at the inner side did not. The isolated charge in the centre of peptides was found to be able to promote the formation of regular β-sheets, while multiple charged residues could not support ordered β-sheet structures. When charge neutralisation occurred between adjacent residues, regular β-sheet laminates might also occur for systems with charges at the outer terminal. With the increase of β-sheet structures formed, the original twisted structures found for random coil structures of the PAs could be diminished by the hydrogen bonds.  相似文献   

9.
A new representation is proposed of short and long-range handedness in protein structures, by signed distance maps. This representation, based on the co-ordinates of the Cα atoms of proteins, does not require the assignment of specific regular structures. The short-range handedness along the chain in α-helical, β-strand and turn segments is shown, as well as the handedness between two strands of β-sheet structures and for crossover connections. Results are given for a βαβαβ folding unit of flavodoxin, a βαβ unit of subtilisin, which contains a left-handed crossover connection, and the domain 1 of bovine β-trypsin.  相似文献   

10.
Poly-β-benzyl-L -aspartate (poly[Asp(OBzl)]) forms either a lefthanded α-helix, β-sheet, ω-helix, or random coil under appropriate conditions. In this paper the Raman spectra of the above poly[Asp(OBzl)] conformations are compared. The Raman active amide I line shifts from 1663 cm?1 to 1679 cm?1 upon thermal conversion of poly[Asp(OBzl)] from the α-helical to β-sheet conformation while an intense line appearing at 890 cm?1 in the spectrum of the α-helix decreases in intensity. The 890 cm?1 line also displays weak intensity when the polymer is dissolved in chloroform–dichloroacetic acid solution and therefore is converted to the random coil. This line probably arises from a skeletal vibration and is expected to be conformationally sensitive. Similar behavior in the intensity of skeletal vibrations is discussed for other polypeptides undergoing conformational transitions. The Raman spectra of two cross-β-sheet copolypeptides, poly(Ala-Gly) and poly(Ser-Gly), are examined. These sequential polypeptides are model compounds for the crystalline regions of Bombyx mori silk fibroin which forms an extensive β-sheet structure. The amide I, III, and skeletal vibrations appeared in the Raman spectra of these polypeptides at the frequencies and intensities associated with β-sheet homopolypeptides. Since the sequential copolypeptides are intermediate in complexity between the homopolypeptides and the proteins, these results indicate that Raman structure–frequency correlations obtained from homopolypeptide studies can now be applied to protein spectra with greater confidence. The perturbation scheme developed by Krimm and Abe for explaining the frequency splitting of the amide I vibrations in β-sheet polyglycine is applied to poly(L -valine), poly-(Ala-Gly), poly(Ser-Gly), and poly[Asp(OBzl)]. The value of the “unperturbed” frequency, V0, for poly[Asp(OBzl)] was significantly greater than the corresponding values for the other polypeptides. A structural origin for this difference may be displacement of adjacent hydrogen-bonded chains relative to the standard β-sheet conformation.  相似文献   

11.
A statistical analysis of known structures is made for an assessment of the utility of short-range energy considerations. For each type of amino acid, the potentials governing (1) the torsions and bond angle changes of virtual Cα-Cα bonds and (2) the coupling between torsion and bond angle changes are derived. These contribute approximately −2 RT per residue to the stability of native proteins, approximately half of which is due to coupling effects. The torsional potentials for the α-helical states of different residues are verified to be strongly correlated with the free-energy change measurements made upon single-site mutations at solvent-exposed regions. Likewise, a satisfactory correlation is shown between the β-sheet potentials of different amino acids and the scales from free-energy measurements, despite the role of tertiary context in stabilizing β-sheets. Furthermore, there is excellent agreement between our residue-specific potentials for α-helical state and other thermodynamic based scales. Threading experiments performed by using an inverse folding protocol show that 50 of 62 test structures correctly recognize their native sequence on the basis of short-range potentials. The performance is improved to 55, upon simultaneous consideration of short-range potentials and the nonbonded interaction potentials between sequentially distant residues. Interactions between near residues along the primary structure, i.e., the local or short-range interactions, are known to be insufficient, alone, for understanding the tertiary structural preferences of proteins alone. Yet, knowledge of short-range conformational potentials permits rationalizing the secondary structure propensities and aids in the discrimination between correct and incorrect tertiary folds. Proteins 29:292–308, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
A statistical analysis was performed to determine to what extent an amino acid determines the identity of its neighbors and to what extent this is determined by the structural environment. Log-linear analysis was used to discriminate chance occurrence from statistically meaningful correlations. The classification of structures was arbitrary, but was also tested for significance. A list of statistically significant interaction types was selected and then ranked according to apparent importance for applications such as protein design. This showed that, in general, nonlocal, through-space interactions were more important than those between residues near in the protein sequence. The highest ranked nonlocal interactions involved residues in β-sheet structures. Of the local interactions, those between residues i and i + 2 were the most important in both α-helices and β-strands. Some surprisingly strong correlations were discovered within β-sheets between residues and sites sequentially near to their bridging partners. The results have a clear bearing on protein engineering studies, but also have implications for the construction of knowledge-based force fields. Proteins 32:175–189, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
β-Hairpins are widespread in proteins, and it is possible to find them both within β-sheets and separately. In this work, a comparative analysis of amino acid sequences of β-strands within strongly twisted β-hairpins from different structural protein subclasses has been conducted. Strongly twisted and coiled β-hairpin generates in the space a right double helix out of β-strands that are connected by a loop region (connections). The frequencies of amino acid residues on the internal (concave) and external (convex) surfaces of strongly twisted β-hairpins have been determined (220 β-hairpins from nonhomologous proteins were studied). The concave surface of these β-hairpins is mainly generated by hydrophobic residues, while the convex surface by hydrophilic residues; accordingly, the alternation of hydrophobic internal and hydrophilic external residues is observed in their amino acid sequences. Amino acid residues of glycine and alanine (especially in places of the largest twisting of the strands) were anomalously frequently found in internal positions of strongly twisted and coiled β-hairpins. It was established that internal positions never contain the proline residues, while external positions in the twisting region contain them in a relatively large amount. It was demonstrated that at least one amino acid residue in αL- or ε-conformation is required for generation of relatively short (up to 7 amino acid residues) connection. As a rule, these positions are occupied by glycines. Thus, not only the alternation of hydrophobic and hydrophilic amino acid residues, but also the presence of one or two glycine residues in the connection region and the excess of glycines and alanines in the places of the largest strand twisting on the concave surface, as well as the presence of prolines on the convex surface, are required to generate a strongly twisted and coiled β-hairpin.  相似文献   

14.
The effect of an aqueous/organic interface on the folding and aggregation of amphipathic peptides is examined by applying discontinuous molecular dynamics (DMD) simulations combined with an intermediate resolution protein model, PRIME20, to a peptide/interface system. The systems contain 48 (KLLK)4 peptides in random coil or α-helical conformations interacting with both strong and weak interfaces. In the absence of an interface, most of the oligomers form helical bundles, a small fraction of which convert to β-sheets when the temperature is above the folding transition. Adding a weak interface decreases oligomer formation above the folding temperature and increases it below. Little monolayer formation is observed at the weak interface; instead reversible adsorption increases the local peptide concentration near the interface, promoting helical bundle formation in the aqueous phase below the folding temperature and β-sheet formation above the folding temperature. Introducing a strong interface leads to irreversible adsorption, promoting formation of helical monolayers below the folding temperature and mixed β-sheet/amorphous monolayers above the folding temperature. The (KLLK)4 peptide is more likely to adsorb to the interface when it is in an α-helical conformation, as opposed to a random coil, because of its larger hydrophobic moment.  相似文献   

15.
BackgroundSome cationic and amphiphilic α-helical segments of proteins adsorb to prokaryotic membranes when synthesized as individual polypeptide sequences, resulting in broad and potent antimicrobial activity. However, amphiphilicity, a determinant physicochemical property for peptide-membrane interactions, can also be observed in some β-sheets.MethodsThe software Kamal was used to scan the human reference proteome for short (7–11 amino acid residues) cationic and amphiphilic protein segments with the characteristic periodicity of β-sheets. Some of the uncovered peptides were chemically synthesized, and antimicrobial assays were conducted. Biophysical techniques were used to probe the molecular interaction of one peptide with phospholipid vesicles, lipopolysaccharides (LPS) and the bacterium Escherichia coli.ResultsThousands of compatible segments were found in human proteins, five were synthesized, and three presented antimicrobial activity in the micromolar range. Hs10, a nonapeptide fragment of the Complement C3 protein, could inhibit only the growth of tested Gram-negative microorganisms, presenting also little cytotoxicity to human fibroblasts. Hs10 interacted with LPS while transitioning from an unstructured segment to a β-sheet and increased the hydrodynamic radius of LPS particles. This peptide also promoted morphological alterations in E. coli cells. Conclusions: Data presented herein introduce yet another molecular template to probe proteins in search for encrypted membrane-active segments and demonstrates that, using this approach, short peptides with low cytotoxicity and high selectivity to prokaryotic cells might be obtained.General SignificanceThis work widens the biotechnological potential of the human proteome as a source of antimicrobial peptides with application in human health.  相似文献   

16.
Poly-L -lysine exists as an α-helix at high pH and a random coil at neutral pH. When the α-helix is heated above 27°C, the macromolecule undergoes a conformational transition to a β-sheet. In this study, the stability of the secondary structure of poly-L -lysine in solutions subjected to shear flow, at temperatures below the α-helix to β-sheet transition temperature, were examined using Raman spectroscopy and CD. Solutions initially in the α-helical state showed time-dependent increases in viscosity with shearing, rising as much as an order of magnitude. Visual observation and turbidity measurements showed the formation of a gel-like phase under flow. Laser Raman measurements demonstrated the presence of small amounts of β-sheet structure evidenced by the amide I band at 1666 cm−1. CD measurements indicated that solutions of predominantly α-helical conformation at 20°C transformed into 85% α-helix and 15% β-sheet after being sheared for 20 min. However, on continued shearing the content of β-sheet conformation decreased. The observed phenomena were explained in terms of a “zipping-up” molecular model based on flow enhanced hydrophobic interactions similar to that observed in gel-forming flexible polymers. © 1998 John Wiley & Sons, Inc. Biopoly 45: 239–246, 1998  相似文献   

17.
Although spider silk has been studied for a number of years the structures of the proteins involved have yet to be definitely determined. X-ray diffraction and solid-state nuclear magnetic resonance (NMR) were used to study major ampullate (dragline) silk from Nephila clavipes. The silk was studied in its natural state, in the supercontacted state and in the restretched state following supercontraction. The natural silk structure is dominated by β-sheets aligned parallel to the fiber axis. Supercontraction is characterized by randomizing of the orientation of the β-sheet. When the fiber is restretched alignment is regained. However, the same reorientation was observed for wetting of minor ampullate silk which does not supercontract. Thus, the reorientation of β-sheets alone cannot explain the supercontraction in dragline silk. Cocoon silk showed very little β-sheet orientation in the natural state and there were no changes upon wetting. NMR and X-ray diffraction data are consistent with the β-sheets arising from the poly-alanine sequences known to be present in the proteins of major ampullate silk as has been proposed previously. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
The relative proportions of α-helix, β-sheet, and unordered form in β-lactoglobulin A and B were examined in solutions of urea, guanidine, and sodium dodecyl sulfate (SDS). In the curve-fitting method of circular dichroism (CD) spectra, the reference spectra of the corresponding structures determined by Chen et al. (1974) were modified essentially according to the secondary structure of β-lactoglobulin B predicted by Creamer et al. (1983), i.e., that the protein has 17% α-helix and 41% β-sheet. The two variants showed no appreciable difference in structural changes. The reduction of disulfide bridges in the proteins increased β-sheet up to 48% but did not affect the α-helical proportion. The α-helical proportions of nonreduced β-lactoglobulin A and B were not affected below 2 M guanidine or below 3 M urea, but those of the reduced proteins began to decrease in much lower concentrations of these denaturants. By contrast, the α-helical proportions of the nonreduced and reduced proteins increased to 40–44% in SDS. The β-sheet proportions of both nonreduced and reduced proteins, which remained unaffected even in 6 M guanidine and 9 M urea, decreased to 24–25% in SDS.  相似文献   

19.
Conformational transitions of calmodulin as studied by vacuum-uv CD   总被引:1,自引:0,他引:1  
CD measurements were made for calmodulin and its calcium (Ca2+) complexes at different ionic strengths and Ca2+ concentrations. Calmodulin at an ionic strength of 0.00M and in the absence of Ca2+ exists as an α-helical protein with a negligible amount of β-sheet. An increase in ionic strength, whether or not Ca2+ is present, increases α-helix at the expense of “other” (coil) structure. The changes in β-sheet and β-turns are insignificant. Binding of Ca2+ at low ionic strength occurs in stages with at least one folding intermediate before attaining the final stable state. Binding of Ca2+ at an ionic strength of 0.165M causes only a slight increase in α-helix, so that the secondary structure of the protein depends on ionic strength and is insensitive to the nature of the cation (i.e., Ca2+). Thus, the activation of calmodulin by Ca2+ must be due to a structural reorientation rather than to a major secondary structural alteration. The CD estimation of secondary structure with 4 mol Ca2+/calmodulin (61% α-helix, 2% antiparallel β-sheet, 2% parallel β-sheet, 21% β-turns, and 14% other) is in excellent agreement with the x-ray results.  相似文献   

20.
Physarum polycephalum hemagglutinin I (HA1) is a 104-residue protein that is secreted to extracellular space. The crystal structure of HA1 has a β-sandwich fold found among lectin structures, such as legume lectins and galectins. Interestingly, the β-sandwich of HA1 lacks a jelly roll motif and is essentially composed of two simple up-and-down β-sheets. This up-and-down β-sheet motif is well conserved in other legume lectin-like proteins derived from animals, plants, bacteria, and viruses. It is more noteworthy that the up-and-down β-sheet motif includes many residues that make contact with the target carbohydrates. Our NMR data demonstrate that HA1 lacking a jelly roll motif also binds to its target glycopeptide. Taken together, these data show that the up-and-down β-sheet motif provides a fundamental scaffold for the binding of legume lectin-like proteins to the target carbohydrates, and the structure of HA1 suggests a minimal carbohydrate recognition domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号