首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-acetyl-5-methoxytryptamine (melatonin) is an endogenous indoleamine produced by all vertebrate organisms. Its production in the pineal gland has been extensively investigated but other organs also synthesize this important amine. Melatonin's functions in organisms are diverse. The actions considered in the current review relate to its ability to function in the reduction of oxidative stress, i.e., molecular damage produced by reactive oxygen and reactive nitrogen species. Numerous publications have now shown that not only is melatonin itself an efficient scavenger of free radicals and related reactants, but so are its by-products cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and others. These derivatives are produced sequentially when each functions in the capacity of a free radical scavenger. These successive reactions are referred to as the antioxidant cascade of melatonin. That melatonin has this function within cells has been observed in studies employing time lapse conventional, confocal and multiphoton fluorescent microscopy coupled with the use of appropriate mitochondrial-targeted fluorescent probes. The benefits of melatonin and its metabolites have been described in the brain where they are found to be protective in models of Parkinson's disease, Alzheimer's disease and spinal cord injury. The reader is reminded, however, that data not covered in this review has documented beneficial actions of these amines in every organ where they have been tested. The outlook for the use of melatonin in clinical trials looks encouraging given its low toxicity and high efficacy.  相似文献   

2.
Brain temperature is an important variable in determining the outcome of cerebral ischemia; increases in core temperature escalate neural damage whereas decreases in core temperature reduce damage. Fever induction often occurs in patients prior to or as a direct or indirect result of the ischemic insult, with a worsened stroke outcome, compared with non-febrile ischemic patients. Most importantly, post-ischemic hypothermia reduces long term neural damage and associated behavioral deficits in animals studied for up to a year after the ischemic insult. This review discusses the importance of monitoring the brain temperature of stroke patients and implemention of therapeutic thermoregulatory strategies to reduce the temperature of ischemic patients.  相似文献   

3.
褪黑素(melatonin,MT)具有强效抗氧化作用,在肠、肝脏、心脏、脑等器官的缺血再灌注损伤实验中具有清除自由基、保护线粒体、抗细胞凋亡等保护性作用。本文综合褪黑素应用于缺血再灌注损伤的动物实验的近几年相关文献,总结并分析褪黑素在缺血再灌注损伤动物实验中的保护作用及其相关机制。  相似文献   

4.
In the present study, the effect of melatonin on oxidative DNA damage induced by kainic acid (KA) treatment was investigated. 8-hydroxy-deoxyguanosine (8-OH-dG) is a main product of oxidatively damaged DNA and was used as the endpoint in these studies. The levels of 8-OH-dG were found to be elevated in the hippocampus and frontal cortex of rats treated with KA. These elevated levels were significantly reduced in animals that were co-treated with melatonin. Thus, there was no difference in 8-OH-dG levels in the brain of control rats compared to those treated with KA (10 mg/kg) plus melatonin (10 mg/kg). The levels of 8-OH-dG also increased in the liver of rats treated with KA. This rise in oxidatively damaged DNA was also prevented by melatonin administration. Melatonin's ability to reduce KA-induced increases in neural and hepatic 8-OH-dG levels presumably relates to its direct free radical scavenging ability and possibly to other antioxidative actions of melatonin.  相似文献   

5.
1. Free radical-dependent lipid peroxidation processes have long been thought to contribute to brain damage following stroke or cerebral ischemia/reperfusion.2. The preponderance of evidence for this belief has been derived indirectly, through diminution of tissue injury indices (e.g., brain infarct volume) facilitated by application of free radical scavenger substances.3. Direct, unequivocal evidence for lipid peroxidation in terms of classical assays (detection of conjugated diene absorbance or thiobarbituric acid-reactive substances) is considerably less common, and its validity can be questioned.4. Correlations of treatment-induced diminishment of brain injury indices with reductions in lipid peroxidation level are rarer still.5. Reasons underlying the disparity between the belief that lipid peroxidation contributes to ischemic brain injury and direct evidence for this contribution (at least acutely) are proposed, along with evidence that new methods are being developed which should provide the basis for obtaining a definitive answer.  相似文献   

6.
7.
Stroke is the third leading cause of death as dementia is a main symptom of Alzheimer's disease. One of the important mechanisms in the pathogeny of stroke is free radical production during the reperfusion period, therefore the effects of a type of natural antioxidant, i.e. Crataegus flavonoids (CF), on brain ischemic insults were investigated in Mongolian gerbil stroke model. Results showed that pretreatment of the animals with CF decreased reactive oxygen species (ROS) production, thiobarbituric acid reactive substances content, and nitrite/nitrate concentration in brain homogenate, increased the brain homogenate-associated antioxidant level in a dose-dependent manner. CF pretreatment increased the amount of biologically available NO by scavenging of superoxide anion produced during reperfusion. At same time, in the process of ischemia/reperfusion brain damage, the content of nitrite/nitrate (the end product of NO) increased, and of NO detected by ESR decreased. Oral pretreatment with CF decreased the nitrite/nitrate content in the brain homogenate and increased the biologically available NO concentration in a dose-dependent manner. The increasing effect of antioxidant on NO might be due to its scavenging effect on superoxide anion, which could react with NO into peroxynitrite. iNOS was implied in delayed neuron death after brain ischemic damage and it was found that pretreatment with CF could decrease the protein level of tumor necrosis factor (TNF)-alpha and nuclear factor-kappa B (NF-kappaB), and increase the mRNA level of NOS estimated by western blotting and RT-PCR. More neurons survived and fewer cells suffered apoptosis in the hippocampal CA1 region of CF treated animal brain. These results suggest that oral administration of this antioxidant increases the antioxidant level in the brain and protects the brain against delayed cell death caused by ischemia/reperfusion injury.  相似文献   

8.
This brief resume summarizes the evidence which shows that melatonin is a significant free radical scavenger and antioxidant at both physiological and pharmacological concentrations in vivo. Surgical removal of the pineal gland, a procedure which lowers endogenous melatonin levels in the blood, exaggerates molecular damage due to free radicals during an oxidative challenge. Likewise, providing supplemental melatonin during periods of massive free radical production greatly lowers the resulting tissue damage and dysfunction. In the current review, these findings are considered in terms of neurodegenerative diseases, cancer, ischemia/reperfusion injury and aging. Besides being a highly effective direct free radical scavenger and indirect antioxidant, melatonin has several features that make it of clinical interest. Thus, melatonin is readily absorbed when it is administered via any route, it crosses all morphophysiological barriers, e.g., blood-brain barrier and placenta, with ease, it seems to enter all parts of every cell where it prevents oxidative damage, it preserves mitochondrial function, and it has low toxicity. While blood melatonin levels are normally low, tissue levels of the indoleamine can be considerably higher and at some sites, e.g., in bone marrow cells and bile, melatonin concentrations exceed those in the blood by several orders of magnitude. What constitutes a physiological level of melatonin must be redefined in terms of the bodily fluid, tissue and subcellular compartment being examined.  相似文献   

9.
Administration of vascular endothelial growth factor (VEGF) has been shown to increase cerebral blood flow and reduce neurological damage after experimental ischemic brain injury. The purpose of this study was to examine the optimal dose and time window for the neuroprotective effect of VEGF when administrated after focal ischemia/reperfusion injury in rabbits. Focal cerebral ischemia/reperfusion was induced by the middle cerebral artery occlusion (MCAO) method. In a dose response experiment, low (1.25 ng/μL), middle (2.5 ng/μL) and high (5.0 ng/μL) doses of VEGF were administered 2h after MCAO by the route of perifocal region. The VEGF at a dose of middle (2.5 ng/μL) displayed excellent effects on neuroprotective efficacy for focal cerebral ischemia/reperfusion injury. In another experiment, 2.5 ng/μL VEGF was administered at times varying from 2 to 8h after MCAO. Infarct volume, water content and neurological deficits were significantly reduced when VEGF was given at 2 and 3h after injury. The protective effect was less when the same dose was given at the later times. Thus, the present findings indicated that VEGF reduced ischemic neuronal danger with a therapeutic time window within the first 3h of transient MCAO and may be useful in the treatment of acute ischemic stroke in humans.  相似文献   

10.
Stroke is a life-threatening disease with major cause of mortality and morbidity worldwide. The neuronal damage following cerebral ischemia is a serious risk to stroke patients. Oxidative stress and apoptotic damage play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. The objective of this study was to test the hypothesis that administration of edaravone (Edv) maintains antioxidant status in brain, improves the cholinergic dysfunction and suppresses the progression of apoptosis response in rat. To test this hypothesis, male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) of 2 h followed by reperfusion for 22 h. Edv was administered (10 mg/kg bwt) intraperitoneally 30 min before the onset of ischemia and 1 h after reperfusion. After reperfusion, rats were tested for neurobehavioral activities and were sacrificed for the infarct volume, estimation of oxidative damage markers. Edv treatment significantly reduced ischemic lesion volume, improved neurological deficits, contended oxidative loads, and suppressed apoptotic damage. In conclusion, treatment with Edv ameliorated the neurological and histological outcomes with elevated endogenous anti-oxidants status as well as reduced induction of apoptotic responses in MCA occluded rat. We theorized that Edv is among the pharmacological agents that reduce free radicals and its associated cholinergic dysfunction and apoptotic damage and have been found to limit the extent of brain damage following stroke.  相似文献   

11.
Ischemic brain injury is among the most common and devastating conditions compromising proper brain function and often leads to persisting functional deficits in the affected patients. Despite intensive research efforts, there is still no effective treatment option available that reduces neuronal injury and protects neurons in the ischemic areas from delayed secondary death. Research in this area typically involves the use of elaborate and problematic animal models. Entorhino-hippocampal organotypic slice cultures challenged with oxygen and glucose deprivation (OGD) are established in vitro models which mimic cerebral ischemia. The novel aspect of this study is that changes of the brain blood vessels are studied in addition to neuronal changes and the reaction of both the neuronal compartment and the vascular compartment can be compared and correlated. The methods presented in this protocol substantially broaden the potential applications of the organotypic slice culture approach. The induction of OGD or hypoxia alone can be applied by rather simple means in organotypic slice cultures and leads to reliable and reproducible damage in the neural tissue. This is in stark contrast to the complicated and problematic animal experiments inducing stroke and ischemia in vivo. By broadening the analysis to include the study of the reaction of the vasculature could provide new ways on how to preserve and restore brain functions. The slice culture approach presented here might develop into an attractive and important tool for the study of ischemic brain injury and might be useful for testing potential therapeutic measures aimed at neuroprotection.  相似文献   

12.
13.
Melatonin has many protective effects against ischemic stroke, but the underlying neuroprotective mechanisms are not fully understood. Our aim was to explore the relationship between melatonin's neuroprotective effects and activation of the MT2 melatonin receptor in a murine ischemic-stroke model. Male ICR mice were subjected to a transient middle cerebral ischemic/reperfusional injury, and melatonin (5 and 10 mg/kg, ip) was administrated once daily starting 2 h after ischemia. More than 80% of the mice died within 5 days after stroke without treatment. Melatonin treatment significantly improved the survival rates and neural functioning with modestly prolonged life span of the stroke mice by preserving blood-brain barrier (BBB) integrity via a reduction in the enormous amount of stroke-induced free radical production and significant gp91(phox) cell infiltration. These protective effects of melatonin were reversed by pretreatment with MT2 melatonin receptor antagonists (4-phenyl-2-propionamidotetralin (4P-PDOT) and luzindole). Moreover, treatment with melatonin after stroke dramatically enhanced endogenous neurogenesis (doublecortin positive) and cell proliferation (ki67 positive) in the peri-infarct regions. Most ki67-positive cells were nestin-positive and NG2-positive neural stem/progenitor cells that coexpressed two neurodevelopmental proteins (adam11 and adamts20) and the MT2 melatonin receptor. RT-PCR revealed that the gene expression levels of doublecortin, ki67, adamts20, and adam11 are markedly reduced by stroke, but are restored by melatonin treatment; furthermore, pretreatment with 4P-PDOT and luzindole antagonized melatonin's restorative effect. Our results support the hypothesis that melatonin is able to protect mice against stroke by activating MT2 melatonin receptors, which reduces oxidative/inflammatory stress. This results in the preservation of BBB integrity and enhances endogenous neurogenesis by upregulating neurodevelopmental gene/protein expression.  相似文献   

14.
Endogenously produced metabolites of ground state oxygen are highly reactive and destructive to intracellular and extracellular molecules. The resulting damage, referred to as oxidative stress, leads to molecular and cellular dysfunction. The destruction of essential macromolecules by oxygen-based reactants is the basis of some diseases and is believed to be involved in the processes of aging. Free radical scavengers and antioxidants neutralize and/or metabolically remove reactive species from cells before they carry out their destructive activities. Melatonin is a highly ubiquitous direct free radical scavenger and indirect antioxidant. This brief report summarizes the interactions of melatonin with reactive species and identifies the resulting products. The paper also defines the melatonin antioxidant cascade wherein not only melatonin but at least one of the products, i.e., N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, formed as a result of melatonin scavenging hydrogen peroxide is also a potent scavenger. The review summarizes the data which shows that melatonin is not only a pharmacologically useful free radical scavenger but that it functions in this capacity at physiological concentrations as well. Finally, this report identifies high oxidative stress situations in humans where melatonin has proven effective in reducing the severity of the disease state. In the last decade there have been hundreds of publications documenting melatonin's protective actions against a vast array of conditions, e.g., ischemia/reperfusion injury, toxin exposure, lipopolysaccharide exposure, etc., where free radical damage is a component of the condition.  相似文献   

15.
巩凤超  钟华  毕胜 《生物磁学》2012,(31):6185-6187,6150
再灌注损伤是由多种原因引起的复杂的病理生理过程,而级联的炎症反应是导致脑细胞损伤的重要病理环节。脑缺血再灌注后,浸润的炎性细胞产生的大量炎性介质,在再灌注损伤中占有重要地位。肿瘤坏死因子α(TNF-α)是一种具有广泛生物学功能的细胞因子,参与机体免疫应答和炎症反应TNF-α是细胞间粘附分子-1(ICAM-1)表达的强诱导剂,抑制细胞粘附分子(ICAM-1)表达可显著减低再灌注时白细胞粘附活化,减少损伤脑面积起保护作用。粒细胞集落刺激因子(G-CSF)能通过STAT途径减少缺血区肿瘤坏死因子-α等的释放,引起人们对其在脑缺血-再灌注损伤中的作用的极大关注。  相似文献   

16.
Iodine is an elemental nutrient that is essential for mammals. Here we provide evidence for an acute therapeutic role for iodine in ischemia reperfusion injury. Infusion of the reduced form, iodide, but not the oxidized form iodate, reduces heart damage by as much as 75% when delivered intravenously following temporary loss of blood flow but prior to reperfusion of the heart in a mouse model of acute myocardial infarction. Normal thyroid function may be required because loss of thyroid activity abrogates the iodide benefit. Given the high degree of protection and the high degree of safety, iodide should be explored further as a therapy for reperfusion injury.  相似文献   

17.
A substantial body of evidence suggests that nicotine adversely affects cerebral blood flow and the blood-brain barrier and is a risk factor for stroke. The present study investigated the effect of nicotine on cerebrovascular endothelium under basal and ischemia/reperfusion injury under in vivo condition. Nicotine (2 mg/kg sc) was administered to mice over 14 days, which resulted in plasma nicotine levels of ~100 ng/ml, reflecting plasma concentrations in average to heavy smokers. An analysis of the phenotype of isolated brain microvessels after nicotine exposure indicated higher expression of inflammatory mediators, cytokines (IL-1β, TNF-α, and IL-18), chemokines (CCL2 and CX(3)CL1), and adhesion molecules (ICAM-1, VCAM-1, and P-selectins), and this was accompanied by enhanced leukocyte infiltration into brain during ischemia/reperfusion (P < 0.01). Nicotine had a profound effect on ischemia/reperfusion injury; i.e., increased brain infarct size (P < 0.01), worse neurological deficits, and a higher mortality rate. These experiments illuminate, for the first time, how nicotine regulates brain endothelial cell phenotype and postischemic inflammatory response at the brain-vascular interface.  相似文献   

18.
A novel free radical scavenger, 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), is used for the treatment of acute ischemic stroke and is protective in several animal models of organ injury. We tested whether edaravone is protective against acute liver warm ischemia/reperfusion injury in the rat by acting as a radical scavenger. When edaravone was administered prior to ischemia and at the time of initiation of the reperfusion, liver injury was markedly reduced. Production of oxidants in the liver in this model was assessed in vivo by spin-trapping/electron spin resonance (ESR) spectroscopy. Ischemia/reperfusion caused an increase in free radical adducts rapidly, an effect markedly blocked by edaravone. Furthermore, edaravone treatment blunted ischemia/reperfusion-induced elevation in pro-inflammatory cytokines, infiltration of leukocytes and lipid peroxidation in the liver. These results demonstrate that edaravone is an effective blocker of free radicals in vivo in the liver after ischemia/reperfusion, leading to prevention of organ injury by limiting the deleterious effects of free radicals.  相似文献   

19.
A novel free radical scavenger, 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), is used for the treatment of acute ischemic stroke and is protective in several animal models of organ injury. We tested whether edaravone is protective against acute liver warm ischemia/reperfusion injury in the rat by acting as a radical scavenger. When edaravone was administered prior to ischemia and at the time of initiation of the reperfusion, liver injury was markedly reduced. Production of oxidants in the liver in this model was assessed in vivo by spin-trapping/electron spin resonance (ESR) spectroscopy. Ischemia/reperfusion caused an increase in free radical adducts rapidly, an effect markedly blocked by edaravone. Furthermore, edaravone treatment blunted ischemia/reperfusion-induced elevation in pro-inflammatory cytokines, infiltration of leukocytes and lipid peroxidation in the liver. These results demonstrate that edaravone is an effective blocker of free radicals in vivo in the liver after ischemia/reperfusion, leading to prevention of organ injury by limiting the deleterious effects of free radicals.  相似文献   

20.
Preexisting hyperglycemia is associated with enhanced reperfusion injury in the postischemic rat brain. The goal of this study was to evaluate whether the hyperglycemic exacerbation of brain injury is associated with enhanced generation of hydroxyl radicals in rats subjected to middle cerebral artery occlusion (2 h), followed by reperfusion (2 h). Magnetic resonance images revealed the exacerbation of focal brain injury in hyperglycemic rats. The salicylate trapping method was used in conjunction with microdialysis to continuously estimate hydroxyl radical production by measurement of the stable adducts 2,3- and 2,5-dihydroxybenzoic acid (DHBA) during ischemia/reperfusion. In normoglycemic rats, from a mean baseline level of 130 nmol/l, 2,3-DHBA levels surged to peak levels of 194 nmol/l 45 min into ischemia and to 197 nmol/l 15–30 min into the reperfusion period, returning to baseline by 2 h into reperfusion. A similar temporal profile was observed in hyperglycemic rats, except that absolute 2,3-DHBA levels were higher (165 nmol/l at baseline, 317 nmol/l peak during ischemia, 333 nmol/l peak during reperfusion), and levels remained significantly high (p < .05) throughout the reperfusion period. These results suggest that hydroxyl radical is an important contributor to the exacerbation of neuronal and cerebrovascular injury after focal ischemia/reperfusion in hyperglycemic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号