首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Subtilisin from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 is a member of the subtilisin family. T. kodakaraensis subtilisin in a proform (T. kodakaraensis pro-subtilisin), as well as its propeptide (T. kodakaraensis propeptide) and mature domain (T. kodakaraensis mat-subtilisin), were independently overproduced in E. coli, purified, and biochemically characterized. T. kodakaraensis pro-subtilisin was inactive in the absence of Ca2+ but was activated upon autoprocessing and degradation of propeptide in the presence of Ca2+ at 80 degrees C. This maturation process was completed within 30 min at 80 degrees C but was bound at an intermediate stage, in which the propeptide is autoprocessed from the mature domain (T. kodakaraensis mat-subtilisin*) but forms an inactive complex with T. kodakaraensis mat-subtilisin*, at lower temperatures. At 80 degrees C, approximately 30% of T. kodakaraensis pro-subtilisin was autoprocessed into T. kodakaraensis propeptide and T. kodakaraensis mat-subtilisin*, and the other 70% was completely degraded to small fragments. Likewise, T. kodakaraensis mat-subtilisin was inactive in the absence of Ca2+ but was activated upon incubation with Ca2+ at 80 degrees C. The kinetic parameters and stability of the resultant activated protein were nearly identical to those of T. kodakaraensis mat-subtilisin*, indicating that T. kodakaraensis mat-subtilisin does not require T. kodakaraensis propeptide for folding. However, only approximately 5% of T. kodakaraensis mat-subtilisin was converted to an active form, and the other part was completely degraded to small fragments. T. kodakaraensis propeptide was shown to be a potent inhibitor of T. kodakaraensis mat-subtilisin* and noncompetitively inhibited its activity with a Ki of 25 +/- 3.0 nM at 20 degrees C. T. kodakaraensis propeptide may be required to prevent the degradation of the T. kodakaraensis mat-subtilisin molecules that are activated later by those that are activated earlier.  相似文献   

4.
5.
We prepared stable homogeneous suspensions with layered double hydroxide (LDH) nanoparticles for in vitro gene delivery tests. The viability of HEK 293T cells in the presence of LDH nanoparticles at different concentrations was investigated. This revealed 50% cell viability at 500 microg/mL of LDH nanoparticles that is much higher than 50-100 microg/mL used for the delivery tests. The supercoiled pEF-eGFP plasmid (ca. 6100 base pairs) was mixed with LDH nanoparticle suspensions for anion exchange at a weight ratio of DNA/LDH between 1:25 and 1:100. In vitro experiments show that GFP expression in HEK 293T cells starts in the first day, reaches the maximum levels by the second day and continues in the third day. The GFP expression generally increases with the increase in DNA loading in DNA-LDH nanohybrids. However, the delivery efficiency with LDH nanoparticles as the agent is low. For example, the relative efficiency is 7%-15% of that of the commercial agent FuGENE 6. Three to 6% of total cells expressed GFP in an amount detectable by the FACS cytometry 2 days after transfection at 1 microg/mL of plasmid DNA with 25 microg/mL of LDH nanomaterial. The lower delivery efficiency could be attributed to the aggregation of LDH nanoparticles caused by the long-chain plasmid DNA.  相似文献   

6.
We established a novel cell-free protein synthesis system derived from Trichoplusia ni (HighFive) insect cells by a simple extraction method. Luciferase and beta-galactosidase were synthesized in this system with active forms. We analyzed and optimized (1) the preparation method of the insect cell extract, (2) the concentration of the reaction components, and (3) the 5'-untranslated region (5'-UTR) of mRNA. The extract was prepared by freeze-thawing insect cells suspended in the extraction buffer. This preparation method was a simple and superior method compared with the conventional method using a Dounce homogenizer. Furthermore, protein synthesis efficiency was improved by the addition of 20% (v/v) glycerol to the extraction buffer. Concentrations of the reaction components were optimized to increase protein synthesis efficiency. Moreover, mRNAs containing 5'-UTRs derived from baculovirus polyhedrin genes showed high protein synthesis activity. Especially, the leader composition of the Ectropis obliqua nucleopolyhedrovirus polyhedrin gene showed the highest enhancement activity among the six 5'-UTRs tested. As a result, in a batch reaction approximately 71 microg of luciferase was synthesized per milliliter of reaction volume at 25 degrees C for 6 h. Moreover, this method for the establishment of a cell-free system was applied also to Spodoptera frugiperda 21 (Sf21) insect cells. After optimizing the concentrations of the reaction components and the 5'-UTR of mRNA, approximately 45 microg/mL of luciferase was synthesized in an Sf21 cell-free system at 25 degrees C for 3 h. These productivities were sufficient to perform gene expression analyses. Thus, these cell-free systems may be a useful tool for simple synthesis in post-genomic studies as a novel protein production method.  相似文献   

7.
The gene encoding subtilisin-like protease T. kodakaraensis subtilisin was cloned from a hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. T. kodakaraensis subtilisin is a member of the subtilisin family and composed of 422 amino acid residues with a molecular weight of 43,783. It consists of a putative presequence, prosequence, and catalytic domain. Like bacterial subtilisins, T. kodakaraensis subtilisin was overproduced in Escherichia coli in a form with a putative prosequence in inclusion bodies, solubilized in the presence of 8 M urea, and refolded and converted to an active molecule. However, unlike bacterial subtilisins, in which the prosequence was removed from the catalytic domain by autoprocessing upon refolding, T. kodakaraensis subtilisin was refolded in a form with a putative prosequence. This refolded protein of recombinant T. kodakaraensis subtilisin which is composed of 398 amino acid residues (Gly(-82) to Gly(316)), was purified to give a single band on a sodium dodecyl sulfate (SDS)-polyacrylamide gel and characterized for biochemical and enzymatic properties. The good agreement of the molecular weights estimated by SDS-polyacrylamide gel electrophoresis (44,000) and gel filtration (40,000) suggests that T. kodakaraensis subtilisin exists in a monomeric form. T. kodakaraensis subtilisin hydrolyzed the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide only in the presence of the Ca(2+) ion with an optimal pH and temperature of pH 9.5 and 80 degrees C. Like bacterial subtilisins, it showed a broad substrate specificity, with a preference for aromatic or large nonpolar P1 substrate residues. However, it was much more stable than bacterial subtilisins against heat inactivation and lost activity with half-lives of >60 min at 80 degrees C, 20 min at 90 degrees C, and 7 min at 100 degrees C.  相似文献   

8.
Methionine sulfoxide reductase (Msr) catalyzes the thioredoxin-dependent reduction and repair of methionine sulfoxide (MetO). Although Msr genes are not present in most hyperthermophile genomes, an Msr homolog encoding an MsrA-MsrB fusion protein (MsrAB(Tk)) was present on the genome of the hyperthermophilic archaeon Thermococcus kodakaraensis. Recombinant proteins corresponding to MsrAB(Tk) and the individual domains (MsrA(Tk) and MsrB(Tk)) were produced, purified, and biochemically examined. MsrA(Tk) and MsrB(Tk) displayed strict substrate selectivity for Met-S-O and Met-R-O, respectively. MsrAB(Tk), and in particular the MsrB domain of this protein, displayed an intriguing behavior for an enzyme from a hyperthermophile. While MsrAB(Tk) was relatively stable at temperatures up to 80 degrees C (with a half-life of approximately 30 min at 80 degrees C), a 75% decrease in activity was observed after 2.5 min at 85 degrees C, the optimal growth temperature of this archaeon. Moreover, maximal levels of MsrB activity of MsrAB(Tk) were observed at the strikingly low temperature of 30 degrees C, which also was observed for MsrB(Tk). Consistent with the low-temperature-specific biochemical properties of MsrAB(Tk), the presence of the protein was greater in T. kodakaraensis cells grown at suboptimal temperatures (60 to 70 degrees C) and could not be detected at 80 to 90 degrees C. We found that the amount of intracellular MsrAB(Tk) protein increased with exposure to higher dissolved oxygen levels, but only at suboptimal growth temperatures. While measuring background rates of the Msr enzyme reactions, we observed significant levels of MetO reduction at high temperatures without enzyme. The occurrence of nonenzymatic MetO reduction at high temperatures may explain the specific absence of Msr homologs in most hyperthermophiles. Together with the fact that the presence of Msr in T. kodakaraensis is exceptional among the hyperthermophiles, the enzyme may represent a novel strategy for this organism to deal with low-temperature environments in which the dissolved oxygen concentrations increase.  相似文献   

9.
Shuttle vectors that replicate stably and express selectable phenotypes in both Thermococcus kodakaraensis and Escherichia coli have been constructed. Plasmid pTN1 from Thermococcus nautilis was ligated to the commercial vector pCR2.1-TOPO, and selectable markers were added so that T. kodakaraensis transformants could be selected by DeltatrpE complementation and/or mevinolin resistance. Based on Western blot measurements, shuttle vector expression of RpoL-HA, a hemagglutinin (HA) epitope-tagged subunit of T. kodakaraensis RNA polymerase (RNAP), was approximately 8-fold higher than chromosome expression. An idealized ribosome binding sequence (5'-AGGTGG) was incorporated for RpoL-HA expression, and changes to this sequence reduced expression. Changing the translation initiation codon from AUG to GUG did not reduce RpoL-HA expression, but replacing AUG with UUG dramatically reduced RpoL-HA synthesis. When functioning as translation initiation codons, AUG, GUG, and UUG all directed the incorporation of methionine as the N-terminal residue of RpoL-HA synthesized in T. kodakaraensis. Affinity purification confirmed that an HA- plus six-histidine-tagged RpoL subunit (RpoL-HA-his(6)) synthesized ectopically from a shuttle vector was assembled in vivo into RNAP holoenzymes that were active and could be purified directly from T. kodakaraensis cell lysates by Ni(2+) binding and imidazole elution.  相似文献   

10.
Enhancing multiple disulfide bonded protein folding in a cell-free system   总被引:6,自引:0,他引:6  
A recombinant plasminogen activator (PA) protein with nine disulfide bonds was expressed in our cell-free protein synthesis system. Due to the unstable and reducing environment in the initial E. coli-based cell-free system, disulfide bonds could not be formed efficiently. By treating the cell extract with iodoacetamide and utilizing a mixture of oxidized and reduced glutathione, a stabilized redox potential was optimized. Addition of DsbC, replacing polyethylene glycol with spermidine and putrescine to create a more natural environment, adding Skp, an E. coli periplasmic chaperone, and expressing PA at 30 degrees C increased the solubility of the protein product as well as the yield of active PA. Taken together, the modifications enabled the production of more than 60 microg/mL of bioactive PA in a simple 3-h batch reaction.  相似文献   

11.
The model iron-sulfur (Fe-S) protein ferredoxin (Fd) from Synechocystis sp. PCC 6803 has been simultaneously produced and matured in a cell-free production system. After 6 h of incubation at 37 degrees C, Fd accumulated to >450 microg/mL. Essentially all was soluble, and 85% was active. Production and maturation of the protein in the cell-free system were found to be dependent in a coupled manner on the concentration of the supplemented iron and sulfur sources, ferrous ammonium sulfate and cysteine, respectively. The recombinant expression of ISC helper proteins during cell extract preparation did not increase cell-free Fd accumulation or activity, although the efficiency of iron and cysteine utilization increased. Fd maturation was independent of protein production rate, and proceeded at a constant rate throughout the period of active translation. In addition, incubation of denatured apo Fd with cell-free reaction components resulted in recovery of Fd activity, supporting the interpretation that maturation mechanisms did not act co-translationally. Incubation at 28 degrees C increased total and active protein accumulation, but decreased the ratio of active to total Fd produced. In summary, the high product yields and folding efficiency make the cell-free system described here an attractive platform for the study of Fe-S protein production and maturation. The system enables both small-volume, high throughput investigations as well as larger scale production. To our knowledge, this is the first demonstration of directed, high-yield production and maturation of an Fe-S protein in a cell-free system.  相似文献   

12.
The use of cell‐free systems to produce recombinant proteins has grown rapidly over the past decade. In particular, cell‐free protein synthesis (CFPS) systems based on mammalian cells provide alternative methods for the production of many proteins, including those that contain disulfide bonds, glycosylation, and complex structures such as monoclonal antibodies. In the present study, we show robust production of turbo green fluorescent protein (tGFP) and streptokinase in a cell‐free system using instrumented mini‐bioreactors for highly reproducible protein production. We achieved recombinant protein production (~600 μg/ml of tGFP and 500 μg/ml streptokinase) in 2.5 hr of expression time, comparable to previously reported yields for cell‐free protein expression. Also, we demonstrate the use of two different affinity tags for product capture and compare those to a tag‐free self‐cleaving intein capture technology. The intein purification method provided a product recovery of 86%, compared with 52% for conventionally tagged proteins, while resulting in a 30% increase in total units of activity of purified recombinant streptokinase compared with conventionally tagged proteins. These promising beneficial features combined with the intein technology makes feasible the development of dose‐level production of therapeutic proteins at the point‐of‐care.  相似文献   

13.
The HeLa cell-vaccinia virus expression system was evaluated for the production of recombinant proteins (enhanced green fluorescent protein (EGFP) and HIV envelope coat protein, gp120) using microcarriers in 1.5 L perfused bioreactor cultures. Perfusion was achieved by use of an alternating tangential flow device (ATF), increasing the length of the exponential phase by 50 h compared to batch culture and increasing the maximum cell density from 1.5x10(6) to 4.4x10(6) cell/mL. A seed train expansion method using cells harvested from microcarrier culture and reseeding onto fresh carriers was developed. EGFP was first used as a model protein to study process parameters affecting protein yield, specifically dissolved oxygen (DO) and temperature during the production phase. The highest level of EGFP, 12+/-1.5 microg/10(6) infected cells, was obtained at 50% DO and 31 degrees C. These setpoints were then used to produce glycoprotein, gp120, which was purified and deglycosylated, revealing a significant amount of N-linked glycosylation. Also, biological activity was assayed, resulting in an ID50 of 3.1 microg/mL, which is comparable to previous reports.  相似文献   

14.
We have identified an NiFe-hydrogenase exclusively localized in the cytoplasm of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 (T. kodakaraensis hydrogenase). A gene cluster encoding T. kodakaraensis hydrogenase was composed of four open reading frames (hyhBGSL(Tk)), where the hyhS(Tk) and hyhL(Tk) gene products corresponded to the small and the large subunits of NiFe-hydrogenase, respectively. A putative open reading frame for hydrogenase-specific maturation endopeptidase (hybD(Tk)) was found downstream of the cluster. Polyclonal antibodies raised against recombinant HyhL(Tk) were used for immunoaffinity purification of T. kodakaraensis hydrogenase, leading to a 259-fold concentration of hydrogenase activity. The purified T. kodakaraensis hydrogenase was composed of four subunits (beta, gamma, delta, and alpha), corresponding to the products of hyhBGSL(Tk), respectively. Each alphabetagammadelta unit contained 0.8 mol of Ni, 22.3 mol of Fe, 21.1 mol of acid-labile sulfide, and 1.01 mol of flavin adenine dinucleotide. The optimal temperature for the T. kodakaraensis hydrogenase was 95 degrees C for H(2) uptake and 90 degrees C for H(2) production with methyl viologen as the electron carrier. We found that NADP(+) and NADPH promoted high levels of uptake and evolution of H(2), respectively, suggesting that the molecule is the electron carrier for the T. kodakaraensis hydrogenase.  相似文献   

15.
Escherichia coli alkaline phosphatase (AP) and human lysozyme (h-LYZ), which contain two and four disulfide bonds, respectively, were expressed in a cell-free protein synthesis system constructed from Spodoptera frugiperda 21 (Sf21) cells. AP was expressed in a soluble and active form using the insect cell-free system under non-reducing conditions, and h-LYZ was expressed in a soluble and active form under non-reducing conditions after addition of reduced glutathione (GSH), oxidized glutathione (GSSG), and protein disulfide isomerase (PDI). The in vitro synthesized proteins were purified by means of a Strep-tag attached to their C termini. Approximately 41 microg AP and 30 microg h-LYZ were obtained from 1 mL each of the reaction mixture. The efficiency of protein synthesis approached that measured under reducing conditions. Analysis of the disulfide bond arrangements by MALDI-TOF MS showed that disulfide linkages identical to those observed in the wild-type proteins were formed.  相似文献   

16.
Growths of Escherichia coli strain A19 were investigated in a 5-L fermentor at 37 and 42 degrees C either in Pratt's medium (a standard medium for cell-free protein synthesis using its S30 extract) or in a casamino acids supplemented Pratt's medium (aa-enriched medium). Specific growth rates in Pratt's medium at 37 and 42 degrees C were 0.77 and 0.46 h(-1), respectively, whereas those in the aa-enriched medium at 37 and 42 degrees C were 0.87 and 1.49 h(-1), respectively. The extent of cell-free chloramphenicol acetyltransferase (CAT) synthesis was compared at 37 degrees C incubation (from a plasmid pK7-CAT) for S30 extracts prepared from the cells cultured in the aa-enriched medium at 37 or 42 degrees C. A 40% increase in CAT synthesis occurred when the 42 degrees C/S30 extract was used as compared with 37 degrees C/S30 extract. CAT and both the light and heavy chains (Lc and Hc) of the Fab fragment of an antibody 6D9 were synthesized at 37 degrees C in the cell-free synthesis in the presence of [(14)C]Leu. Their reaction mixtures were subjected to SDS-PAGE autoradiographic analysis. It was found that most of the synthesized proteins were in the soluble fraction when 42 degrees C/S30 extract was used, suggesting that the 42 degrees C/S30 extract contained greater amounts of various protein folding factors. A dialysis membrane minibioreactor with a reaction volume ca. 0.5 mL was handmade by the authors. The advantages of the minibioreactor are a simple configuration, a low manufacturing cost, and the capability of the dialysis membrane replacement. Increased CAT synthesis was also observed for continuous exchange cell-free (CECF) protein synthesis at 37 degrees C when the 42 degrees C/S30 extract was used in the minibioreactor. Some plausible reasons to give higher protein synthesis activity of the 42 degrees C/S30 extract are discussed.  相似文献   

17.
We previously clarified that the chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 produces diacetylchitobiose (GlcNAc(2)) as an end product from chitin. Here we sought to identify enzymes in T. kodakaraensis that were involved in the further degradation of GlcNAc(2). Through a search of the T. kodakaraensis genome, one candidate gene identified as a putative beta-glycosyl hydrolase was found in the near vicinity of the chitinase gene. The primary structure of the candidate protein was homologous to the beta-galactosidases in family 35 of glycosyl hydrolases at the N-terminal region, whereas the central region was homologous to beta-galactosidases in family 42. The purified protein from recombinant Escherichia coli clearly showed an exo-beta-D-glucosaminidase (GlcNase) activity but not beta-galactosidase activity. This GlcNase (GlmA(Tk)), a homodimer of 90-kDa subunits, exhibited highest activity toward reduced chitobiose at pH 6.0 and 80 degrees C and specifically cleaved the nonreducing terminal glycosidic bond of chitooligosaccharides. The GlcNase activity was also detected in T. kodakaraensis cells, and the expression of GlmA(Tk) was induced by GlcNAc(2) and chitin, strongly suggesting that GlmA(Tk) is involved in chitin catabolism in T. kodakaraensis. These results suggest that T. kodakaraensis, unlike other organisms, possesses a novel chitinolytic pathway where GlcNAc(2) from chitin is first deacetylated and successively hydrolyzed to glucosamine. This is the first report that reveals the primary structure of GlcNase not only from an archaeon but also from any organism.  相似文献   

18.
Human interleukin-2 (hIL-2) production in Escherichia coli and insect cell/baculovirus expression systems can be inefficient. Here we investigated secreted production of hIL-2 fused with green fluorescent protein (GFP) as a versatile fusion partner in optimized stably transfected insect Drosophila melanogaster S2 cells. This nonlytic S2 insect cell expression system employs a plasmid vector and allows for secretion of functional human proteins. We report that, following stable transfection and induction, S2 cells secreted hIL-2 as a fusion protein (approximately 2.3 microg/mL yield), with a secretion efficiency of approximately 90%. Regression analysis indicated a single linear relationship existed between GFP fluorescence and hIL-2 mass in both whole cell and secreted medium samples, indicating that in vivo monitoring and quantification of target foreign protein expression and even secretion is possible using this system. The simple comparative measurement of GFP fluorescence also allowed monitoring of secretion efficiency during periods of high GFP/hIL-2 expression.  相似文献   

19.
A novel metal chelator comprising a 4-(naphthalen-1-yl)pyridine and 2-aminoethanethiol was synthesized. This showed inhibitory activity against human protein farnesyltransferase with IC(50) 1.9 microM, induced morphological change in K-ras-NRK cells at 0.5 microg/mL and showed growth inhibition of K-ras-NRK cells with IC(50) 0.32 microg/mL.  相似文献   

20.
We have constructed three plasmid vectors for the expression of green fluorescent protein (GFP) fusion proteins using the following motif: (His)(6)-GFP-EK-X, where X represents chloramphenicol acetyl-transferase (CAT), human interleukin-2 (hIL-2), and organophosphorous hydrolase (OPH), respectively, (His)(6) represents a histidine affinity ligand for purification, and EK represents an enterokinase cleavage site for recovering the protein-of-interest from the fusion. The CAT and OPH fusion products ( approximately 63 kDa GFP/CAT and approximately 70 kDa GFP/OPH) were expressed at 4.85 microg/mL (19.9 microg/mg-total protein) and 1.42 microg/mL (4.2 microg/mg-total protein) in the cell lysis supernatant, and, in both cases, enzymatic activity was retained while coupled to GFP. In the case of hIL-2 fusion ( approximately 52 kDa), however, the GFP fluorescence was significantly reduced and most of the fusion was retained in the cell pellet. Linear relationships between GFP fluorescence and CAT or OPH concentration, and with enzymatic activity of CAT or OPH, indicated, for the first time, that in vivo noninvasive quantification of proteins-of-interest, was made possible by simple measurement of GFP fluorescence intensity. The utility of GFP as a reporter was not realized without disadvantages however, in particular, an incremental metabolic cost of GFP was found. This could be offset by many benefits foreseen in expression and purification efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号