首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of substituting residues Gln114 by Glu and Glu117 by Gln, both situated in the vicinity of the guanine-nucleotide-binding pocket, were investigated in the isolated N-terminal domain (G domain) of elongation factor Tu with respect to the binding of the substrate GDP/GTP, GTPase activity and stability. The major change in the interaction with the guanine nucleotides is a lower affinity for GTP and a reduced GTPase activity when Gln114 is substituted by Glu. This mutation also abolishes most of the selective effects on the GTPase activity induced by the different monovalent cations. Substitution of Glu117 by Gln does not affect the interaction with the guanine nucleotides or the GTPase activity of the G domain in an essential way, but it reduces the stability towards denaturation of the G-domain.GDP complex. Our results therefore suggest, that Gln114 is involved in keeping a functional conformation of the guanine-nucleotide-binding pocket, whereas Glu117 participates in the regulation of the overall conformation of the G domain. Neither of these two residues appears to play a role in the actual GTPase mechanism.  相似文献   

2.
Recent studies have demonstrated that bacteria possess an essential protein translocation system similar to mammalian signal recognition particle (SRP). Here we have identified the Ffh, a homologue of the mammalian SRP54 subunit from S. pneumoniae. Ffh is a 58-kDa protein with three distinct domains: an N-terminal hydrophilic domain (N-domain), a G-domain containing GTP/GDP binding motifs, and a C-terminal methionine-rich domain (M-domain). The full-length Ffh and a truncated protein containing N and G domains (Ffh-NG) were overexpressed in E. coli and purified to homogeneity. The full-length Ffh has an intrinsic GTPase activity with k(cat) of 0.144 min(-1), and the K(m) for GTP is 10.9 microM. It is able to bind to 4.5S RNA specifically as demonstrated by gel retardation assay. The truncated Ffh-NG has approximately the same intrinsic GTPase activity to the full-length Ffh, but is unable to bind to 4.5S RNA, indicating that the NG domain is sufficient for supporting intrinsic GTP hydrolysis, and that the M domain is required for RNA binding. The interaction of S. pneumoniae Ffh with its receptor, FtsY, resulted in a 20-fold stimulation in GTP hydrolysis. The stimulation was further demonstrated to be independent of the 4.5S RNA. In addition, a similar GTPase stimulation is also observed between Ffh-NG and FtsY, suggesting that the NG domain is sufficient and the M domain is not required for GTPase stimulation between Ffh and FtsY.  相似文献   

3.
The large GTPase dynamin has an important membrane scission function in receptor‐mediated endocytosis and other cellular processes. Self‐assembly on phosphoinositide‐containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin‐homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes activation. Here, we describe studies of dynamin PH domain mutations found in centronuclear myopathy (CNM) that increase dynamin's GTPase activity without altering phosphoinositide binding. CNM mutations in the PH domain C‐terminal α‐helix appear to cause conformational changes in dynamin that alter control of the GTP hydrolysis cycle. These mutations either ‘sensitize’ dynamin to lipid stimulation or elevate basal GTPase rates by promoting self‐assembly and thus rendering dynamin no longer lipid responsive. We also describe a low‐resolution structure of dimeric dynamin from small‐angle X‐ray scattering that reveals conformational changes induced by CNM mutations, and defines requirements for domain rearrangement upon dynamin self‐assembly at membrane surfaces. Our data suggest that changes in the PH domain may couple lipid binding to dynamin GTPase activation at sites of vesicle invagination.  相似文献   

4.
Pleckstrin homology (PH) domains may act as membrane localization modules through specific interactions with phosphoinositide phospholipids. These interactions could represent responses to second messengers, with scope for regulation by soluble inositol polyphosphates. A biosensor-based assay was used here to probe interactions between PH domains and unilamellar liposomes containing different phospholipids and to demonstrate specificity for distinct phosphoinositides. The dynamin PH domain specifically interacted with liposomes containing phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] and, more weakly, with liposomes containing phosphatidylinositol-4-phosphate [PI(4)P]. This correlates with phosphoinositide activation of the dynamin GTPase. The functional GTPase of a dynamin mutant lacking the PH domain, however, cannot be activated by PI(4,5)P2. The phosphoinositide-PH domain interaction can be abolished selectively by point mutations in the putative binding pocket predicted by molecular modelling and NMR spectroscopy. In contrast, the Bruton's tyrosine kinase (Btk)PH domain specifically bound liposomes containing phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3]: an interaction requiring Arg28, a residue found to be mutated in some X-linked agammaglobulinaemia patients. A rational explanation for these different specificities is proposed through modelling of candidate binding pockets and is supported by NMR spectroscopy.  相似文献   

5.
Dynamin is a 100-kDa GTPase that assembles into multimeric spirals at the necks of budding clathrin-coated vesicles. We describe three different intramolecular binding interactions that may account for the process of dynamin self-assembly. The first binding interaction is the dimerization of a 100-amino acid segment in the C-terminal half of dynamin. We call this segment the assembly domain, because it appears to be critical for multimerization. The second binding interaction occurs between the assembly domain and the N-terminal GTPase domain. The strength of this interaction is controlled by the nucleotide-bound state of the GTPase domain, as shown with mutations in GTP binding motifs and in vitro binding experiments. The third binding interaction occurs between the assembly domain and a segment that we call the middle domain. This is the segment between the N-terminal GTPase domain and the pleckstrin homology domain. The three different binding interactions suggest a model in which dynamin molecules first dimerize. The dimers are then linked into a chain by a second binding reaction. The third binding interaction might connect adjacent rungs of the spiral.  相似文献   

6.
Era is a highly conserved GTPase essential for bacterial growth. The N-terminal part of Era contains a conserved GTPase domain, whereas the C-terminal part of the protein contains an RNA- and membrane-binding domain, the KH domain. To investigate whether the binding of Era to 16S rRNA and membrane requires its GTPase activity and whether the GTPase domain is essential for these activities, the N- and C-terminal parts of the Streptococcus pneumoniae Era - Era-N (amino acids 1-185) and Era-C (amino acids 141-299), respectively - were expressed and purified. Era-C, which had completely lost GTPase activity, bound to the cytoplasmic membrane and 16S rRNA. In contrast, Era-N, which retained GTPase activity, failed to bind to RNA or membrane. These results therefore indicate that the binding of Era to RNA and membrane does not require the GTPase activity of the protein and that the RNA-binding domain is an independent, functional domain. The physiological effects of the overexpression of Era-C were assessed. The Escherichia coli cells overexpressing Era and Era-N exhibited the same growth rate as wild-type E. coli cells. In contrast, the E. coli cells overexpressing Era-C exhibited a reduced growth rate, indicating that the overexpression of Era-C inhibits cell growth. Furthermore, overexpression of era-N and era-C resulted in morphological changes. Finally, purified Era and Era-C were able to bind to poly(U) RNA, and the binding of Era to poly(U) RNA was significantly inhibited by liposome, as the amount of Era bound to the RNA decreased proportionally with the increase of liposome in the assay. Therefore, this study provides the first biochemical evidence that both binding sites are overlapping. Together, these results indicate that the RNA- and membrane-binding domain of Era is a separate, functional entity and does not require the GTPase activity or the GTPase domain of the protein for activity.  相似文献   

7.
Rat cerebellar granule cells differentiated in culture were fed [1-(3)H]sphingosine, allowing the metabolic radiolabelling of all cell sphingolipids and phosphatidylethanolamine. A detergent-insoluble sphingolipid-enriched membrane fraction, containing about 60% of cell sphingolipids, but only trace amounts of phosphatidylethanolamine, was prepared from [1-(3)H]sphingosine-fed cells by sucrose gradient centrifugation. This fraction was enriched in the Src family protein tyrosine kinases c-Src, Lyn and Fyn and in the GPI-anchored neuronal adhesion molecule TAG-1. The cell lysate and the sphingolipid-enriched membrane fraction were subjected to immunoprecipitation with anti-GD3 ganglioside monoclonal antibody R24, under experimental conditions designed to preserve the integrity of the domain. The radioactive lipid composition of the immunoprecipitates obtained from the cell lysate and from the sphingolipid-enriched fraction were very similar, and closely resembled the sphingolipid composition of the whole sphingolipid-enriched membrane fraction. In fact, the immunoprecipitates contained, together with GD3 ganglioside, all cell glycosphingolipids and sphingomyelin, whereas they did not contain phosphatidylethanolamine. Moreover, cholesterol and phosphatidylcholine were detected in the immunoprecipitates by qualitative TLC analysis followed by colourimetric visualization. c-Src, Lyn, Fyn and TAG-1 were associated with the anti-GD3 antibody immunoprecipitate. These proteins were not detected in the immunoprecipitates obtained under experimental conditions different from those designed to preserve the integrity of the domain. These data suggest that a membrane domain containing cholesterol, phosphatidylcholine, sphingolipids and proteins can be separated from the total cell membranes by anti-GD3 antibody immunoprecipitation, and that the association of c-Src, Fyn, Lyn, and TAG-1 with the sphingolipid-enriched domain is mediated by the interaction with a complex lipid environment, rather than by specific interactions with a single sphingolipid species.  相似文献   

8.
Activation of Raf-1 kinase is preceded by a translocation of Raf-1 to the plasma membrane in response to external stimuli. The membrane localization of Raf-1 is facilitated through its interaction with activated Ras and with membrane phospholipids. Previous evidence suggests that the interaction of Raf-1 with Ras is mediated by two distinct domains within the N-terminal region of Raf-1 comprising amino acid residues 51-131 and residues 139-184, the latter of which codes for a zinc containing cysteine-rich domain. The cysteine-rich domain of Raf-1 is also reported to associate with other proteins, such as 14-3-3, and for selectively binding acidic phospholipids, particularly phosphatidylserine (PS). In the present study, we have investigated the consequences of progressive deletions and point mutations within the cysteine-rich domain of Raf-1 on its ability to bind PS. A reduced interaction with PS was observed in vitro for all deletion mutants of Raf-1 expressed either as full-length proteins or as fragments containing the isolated cysteine-rich domain. In particular, the cluster of basic amino acids R143, K144, and K148 appeared to be critical for interaction with PS, since substitution of all three residues to alanine resulted in a protein that failed to interact with liposomes enriched for PS. Expression of Raf-1 in vivo, containing point mutations in the cysteine-rich domain resulted in a truncated polypeptide that lacked both the Ras and PS binding sites and could no longer translocate to the plasma membrane upon serum stimulation. These results indicate that the basic residues 143, 144 and 148 in the anterior half of Raf-1 cysteine-rich domain play a role in the association with the lipid bilayer and possibly in protein stability, therefore they might contribute to Raf-1 localization and subsequent activation.  相似文献   

9.
SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling   总被引:1,自引:0,他引:1  
Amino acids stimulate cell growth and suppress autophagy through activation of mTORC1. The activation of mTORC1 by amino acids is mediated by Rag guanosine triphosphatase (GTPase) heterodimers on the lysosome. The molecular mechanism by which amino acids regulate the Rag GTPase heterodimers remains to be elucidated. Here, we identify SH3 domain-binding protein 4 (SH3BP4) as a binding protein and a negative regulator of Rag GTPase complex. SH3BP4 binds to the inactive Rag GTPase complex through its Src homology 3 (SH3) domain under conditions of amino acid starvation and inhibits the formation of active Rag GTPase complex. As a consequence, the binding abrogates the interaction of mTORC1 with Rag GTPase complex and the recruitment of mTORC1 to the lysosome, thus inhibiting amino acid-induced mTORC1 activation and cell growth and promoting autophagy. These results demonstrate that SH3BP4 is a negative regulator of the Rag GTPase complex and amino acid-dependent mTORC1 signaling.  相似文献   

10.
Aquaporins (AQPs) are a family of ubiquitous membrane channels that conduct water across cell membranes. AQPs form homotetramers containing four functional and independent water pores. Aquaporin-0 (AQP0) is expressed in the eye lens, where its water permeability is regulated by calmodulin (CaM). Here we use a combination of biochemical methods and NMR spectroscopy to probe the interaction between AQP0 and CaM. We show that CaM binds the AQP0 C-terminal domain in a calcium-dependent manner. We demonstrate that only two CaM molecules bind a single AQP0 tetramer in a noncanonical fashion, suggesting a form of cooperativity between AQP0 monomers. Based on these results, we derive a structural model of the AQP0/CaM complex, which suggests CaM may be inhibitory to channel permeability by capping the vestibules of two monomers within the AQP0 tetramer. Finally, phosphorylation within AQP0's CaM binding domain inhibits the AQP0/CaM interaction, suggesting a temporal regulatory mechanism for complex formation.  相似文献   

11.
Mitochondrial division requires coordinated interactions among Fis1p, Mdv1p, and the Dnm1p GTPase, which assemble into fission complexes on the outer mitochondrial membrane. The integral outer membrane protein Fis1p contains a cytoplasmic domain consisting of a tetratricopeptide repeat (TPR)-like fold and a short NH(2)-terminal helix. Although it is known that the cytoplasmic domain is necessary for assembly of Mdv1p and Dnm1p into fission complexes, the molecular details of this assembly are not clear. In this study, we provide new evidence that the Fis1p-Mdv1p interaction is direct. Furthermore, we show that conditional mutations in the Fis1p TPR-like domain cause fission complex assembly defects that are suppressed by mutations in the Mdv1p-predicted coiled coil. We also define separable functions for the Fis1p NH(2)-terminal arm and TPR-like fold. These studies suggest that the concave binding surface of the Fis1p TPR-like fold interacts with Mdv1p during mitochondrial fission and that Mdv1p facilitates Dnm1p recruitment into functional fission complexes.  相似文献   

12.
The guanine nucleotide binding regulatory proteins (G proteins) play essential roles in a wide variety of physiological processes, such as vision, hormone responses, olfaction, immune response, and development. The heterotrimeric G proteins consist of alpha-, beta-, and gamma-subunits and act as molecular switches to relay information from transmembrane receptors to intracellular effectors. The switch mechanism is a function of the inherent GTPase activity of the alpha-subunit. The alpha-subunit is comprised of two domains, the GTPase domain and the Helical domain. The GTPase domain performs all of the known alpha-subunit functions while little is know about the role of the Helical domain. To gain a better understanding of alpha-subunit function, we performed a screen for loss-of-function mutations, using the G alpha2-subunit of Dictyostelium. G alpha2 is essential for the developmental life cycle of Dictyostelium. It is known that the loss of G alpha2 function results in a failure of cells to enter the developmental phase, producing a visibly abnormal phenotype. This allows the easy identification of amino acids essential to G alpha2 function. A library of random point mutations in the g alpha2 cDNA was constructed using low fidelity polymerase chain reaction (PCR). The library was then expressed in a g alpha2 null cell line and screened for loss-of-function mutations. Mutations were identified in isolated clones by sequencing the g alpha2 insert. To date, sixteen single amino acids changes have been identified in G alpha2 which result in loss-of-function. Of particular interest are seven mutations found in the Helical domain of the alpha-subunit. These loss-of-function mutations in the alpha-subunit Helical domain may provide important insight into its function.  相似文献   

13.
Voltage dependant calcium channels (VDCC) play a critical role in coupling electrical excitability to important physiological events such as secretion by neuronal and endocrine cells. Rem2, a GTPase restricted to neuroendocrine cell types, regulates VDCC activity by a mechanism that involves interaction with the VDCC beta subunit (Ca(V)beta). Mapping studies reveal that Rem2 binds to the guanylate kinase domain (GK) of the Ca(V)beta subunit that also contains the high affinity binding site for the pore forming and voltage sensing VDCC alpha subunit (Ca(V)alpha) interaction domain (AID). Moreover, fine mapping indicates that Rem2 binds to the GK domain in a region distinct from the AID interaction site, and competitive inhibition studies reveal that Rem2 does not disrupt Ca(V)alpha - Ca(V)beta binding. Instead, the Ca(V)beta subunit appears to serve a scaffolding function, simultaneously binding both Rem2 and AID. Previous studies have found that in addition to Ca(V)beta binding, Rem2 must be localized to the plasma membrane to inhibit VDCC function. Plasma membrane localization requires the C-terminus of Rem2 and binding studies indicate that this domain directs phosphorylated phosphatidylinositide (PIP) lipids association. Plasma membrane localization may provide a unique point of regulation since the ability of Rem2 to bind PIP lipids is inhibited by the phosphoserine dependant binding of 14-3-3 proteins. Thus, in addition to Ca(V)beta binding, VDCC blockade by Rem2 is likely to be controlled by both the localized concentration of membrane PIP lipids and direct 14-3-3 binding to the Rem2 C-terminus.  相似文献   

14.
The low density lipoprotein (LDL) receptor plays a major role in maintaining human plasma cholesterol levels and mutations in the gene cause familial hypercholesterolemia. The LDL receptor (LDLR) pathway has been well characterized, but little is known of proteins involved in its complex intracellular sorting and trafficking. Sorting nexin 17 (SNX17) has recently been implicated in LDLR intracellular trafficking. We show here that endogenous SNX17 is highly expressed in several cell types and is localized partially in early endosomes. We found that the PX domain of SNX17 is required for its endosomal localization but does not interact directly with the LDL receptor. A novel domain containing a FERM-like domain of SNX17 is needed for its interaction with the LDL receptor. Mutations in the NPXY motif of the LDL-receptor cytoplasmic tail that disrupt internalization also disrupt its interaction with SNX17, whereas mutations elsewhere had little effect. When transiently overexpressed in Chinese hamster ovary cells, SNX17 localized to large vesicular structures and disrupted normal trafficking of the LDL receptor in a PX domain-dependent manner. These results suggest that SNX17 plays a role in the cellular trafficking of the LDL receptor through interaction with the NPVY motif in its cytoplasmic domain and interaction of the PX domain with subcellular membrane compartments.  相似文献   

15.
MnmE and GidA are involved in the modification of wobble uridine to carboxymethylaminomethyl uridine in certain tRNAs. Malfunctioning of the human orthologs has been implicated in mitochondrial diseases. MnmE is a conserved G protein activated by dimerization. Here, we show that complex formation between MnmE and GidA involves large conformational changes that induce G-domain dimerization of MmnE and that GidA co-stimulates GTP hydrolysis on MnmE. Starting from a structural model of the complex, we identify interface mutations disrupting complex formation or communication. Although GidA does not directly contact the G-domains, conformational changes in MnmE, induced by G-domain dimerization in the triphosphate state, regulate the affinity for GidA. We developed a tRNA modification assay and demonstrate for the first time in vitro that the MnmE/GidA complex catalyzes incorporation of glycine into tRNA. An intact MnmE/GidA complex rather than their sequential action is crucial for in vitro modification. Since only GTP, but not GDP or non-hydrolyzable GTP analogs, drives the MnmE/GidA-catalyzed modification reaction, we conclude that GTP hydrolysis is essential for activity. We finally show that an active GTPase, an intact MnmE/GidA communication, and dimerization of G-domains are necessary for in vivo functioning since mutations disrupting either result in a respiratory deficient phenotype in yeast.  相似文献   

16.
Saccharomyces cerevisiae Cdc42p functions as a GTPase molecular switch, activating multiple signaling pathways required to regulate cell cycle progression and the actin cytoskeleton. Regulatory proteins control its GTP binding and hydrolysis and its subcellular localization, ensuring that Cdc42p is appropriately activated and localized at sites of polarized growth during the cell cycle. One of these, the Rdi1p guanine nucleotide dissociation inhibitor, negatively regulates Cdc42p by extracting it from cellular membranes. In this study, the technique of bimolecular fluorescence complementation (BiFC) was used to study the dynamic in vivo interactions between Cdc42p and Rdi1p. The BiFC data indicated that Cdc42p and Rdi1p interacted in the cytoplasm and around the periphery of the cell at the plasma membrane and that this interaction was enhanced at sites of polarized cell growth during the cell cycle, i.e., incipient bud sites, tips and sides of small- and medium-sized buds, and the mother-bud neck region. In addition, a ring-like structure containing the Cdc42p-Rdi1p complex transiently appeared following release from G1-phase cell cycle arrest. A homology model of the Cdc42p-Rdi1p complex was used to introduce mutations that were predicted to affect complex formation. These mutations resulted in altered BiFC interactions, restricting the complex exclusively to either the plasma membrane or the cytoplasm. Data from these studies have facilitated the temporal and spatial modeling of Rdi1p-dependent extraction of Cdc42p from the plasma membrane during the cell cycle.  相似文献   

17.
The prototypical DOCK protein, DOCK180, is an evolutionarily conserved Rac regulator and is indispensable during processes such as cell migration and myoblast fusion. The biological activity of DOCK180 is tightly linked to its binding partner ELMO. We previously reported that autoinhibited ELMO proteins regulate signaling from this pathway. One mechanism to activate the ELMO-DOCK180 complex appears to be the recruitment of this complex to the membrane via the Ras-binding domain (RBD) of ELMO. In the present study, we aimed to identify novel ELMO-interacting proteins to further define the molecular events capable of controlling ELMO recruitment to the membrane. To do so, we performed two independent interaction screens: one specifically interrogated an active GTPase library while the other probed a brain cDNA library. Both methods converged on Arl4A, an Arf-related GTPase, as a specific ELMO interactor. Biochemically, Arl4A is constitutively GTP-loaded, and our binding assays confirm that both wild-type and constitutively active forms of the GTPase associate with ELMO. Mechanistically, we report that Arl4A binds the ELMO RBD and acts as a membrane localization signal for ELMO. In addition, we report that membrane targeting of ELMO via Arl4A promotes cytoskeletal reorganization including membrane ruffling and stress fiber disassembly via an ELMO-DOCK1800-Rac signaling pathway. We conclude that ELMO is capable of interacting with GTPases from Rho and Arf families, leading to the conclusion that ELMO contains a versatile RBD. Furthermore, via binding of an Arf family GTPase, the ELMO-DOCK180 is uniquely positioned at the membrane to activate Rac signaling and remodel the actin cytoskeleton.  相似文献   

18.
The structure of Ras protein: a model for a universal molecular switch.   总被引:26,自引:0,他引:26  
X-ray crystallography has revealed the molecular architecture of the cellular and oncogenic forms of p21Ha-ras, the protein encoded by the human Ha-ras gene, in both its active (GTP-bound) and in its inactive (GDP-bound) forms. From comparison of these two structures, a mechanism is suggested for the GTPase hydrolysis reaction that triggers the conformational change necessary for signal transduction. The structures have also allowed identification of the structural consequences of point mutations and the way in which they interfere with the intrinsic GTPase activity of p21ras. The p21ras structure is similar to that of the G-domain of elongation factor Tu (EF-Tu) from Escherichia coli, suggesting that p21ras can serve as a good model for other guanine nucleotide binding proteins.  相似文献   

19.
Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cell types (cardiac and skeletal). Autosomal dominant limb girdle muscular dystrophy (LGMD-1C) in humans is due to mutations within the caveolin-3 gene: (i) a 9-base pair microdeletion that removes three amino acids within the caveolin scaffolding domain (DeltaTFT) or (ii) a missense mutation within the membrane spanning domain (P --> L). The molecular mechanisms by which these two mutations cause muscular dystrophy remain unknown. Here, we investigate the phenotypic behavior of these caveolin-3 mutations using heterologous expression. Wild type caveolin-3 or caveolin-3 mutants were transiently expressed in NIH 3T3 cells. LGMD-1C mutants of caveolin-3 (DeltaTFT or P --> L) were primarily retained at the level of a perinuclear compartment that we identified as the Golgi complex in double-labeling experiments, while wild type caveolin-3 was efficiently targeted to the plasma membrane. In accordance with these observations, caveolin-3 mutants formed oligomers of a much larger size than wild type caveolin-3 and were excluded from caveolae-enriched membrane fractions as seen by sucrose density gradient centrifugation. In addition, these caveolin-3 mutants were expressed at significantly lower levels and had a dramatically shortened half-life of approximately 45-60 min. However, caveolin-3 mutants were palmitoylated to the same extent as wild type caveolin-3, indicating that targeting to the plasma membrane is not required for palmitoylation of caveolin-3. In conclusion, we show that LGMD-1C mutations lead to formation of unstable high molecular mass aggregates of caveolin-3 that are retained within the Golgi complex and are not targeted to the plasma membrane. Consistent with its autosomal dominant form of genetic transmission, we demonstrate that LGMD-1C mutants of caveolin-3 behave in a dominant-negative fashion, causing the retention of wild type caveolin-3 at the level of the Golgi. These data provide a molecular explanation for why caveolin-3 levels are down-regulated in patients with this form of limb girdle muscular dystrophy (LGMD-1C).  相似文献   

20.
In cellulosomes produced by Clostridium spp., the high-affinity interaction between the dockerin domain and the cohesin domain is responsible for the assembly of enzymatic subunits into the complex. Thus, heterologous expression of full-length enzymatic subunits containing the dockerin domains and of the scaffolding unit is essential for the in vitro assembly of a "designer" cellulosome, or a recombinant cellulosome with a specific function. We report the preparation of Clostridium cellulovorans recombinant cellulosomes containing the enzymatic subunit EngB and the scaffolding unit, mini-CbpA, containing a cellulose binding domain, a putative cell wall binding domain, and two cohesin units. The full-length EngB containing the dockerin domain was expressed by Bacillus subtilis WB800, which is deficient in eight extracellular proteases, to prevent the proteolytic cleavage of the enzymatic subunit between the catalytic and dockerin domains that was observed in previous attempts to express EngB with Escherichia coli. The assembly of recombinant EngB with the mini-CbpA was confirmed by immunostaining, a cellulose binding experiment, and native polyacrylamide gel electrophoresis analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号