首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motions of tropomyosin. Crystal as metaphor.   总被引:5,自引:2,他引:3       下载免费PDF全文
Movements of tropomyosin play an essential role in muscle regulation. This fibrous protein is a two-chain alpha-helical coiled coil that bonds head to tail to form cables wound in the two long grooves of the actin helix. The regulatory switch consists of tropomyosin and a "globular" Ca2+-sensitive protein complex called troponin. The structure of the tropomyosin filaments has now been determined by x-ray crystallography to approximately 15 A resolution. The complete sequence of alpha-tropomyosin is known; by using mercury markers on the cysteine residues the ends of the molecules in the filaments have been identified. Details of the coiled-coil structure have also been visualized by refinement of models against the diffraction data. The average pitch of the coiled coil is approximately 137 A, so that each tropomyosin molecule can make similar contacts with seven actin monomers. The electron density map also indicates that departures from the alpha-helical coiled coil occur in a few localized regions of the molecule, especially at the overlapping ends. Motions of tropomyosin in the crystal lattice are displaced by the character of the Bragg reflections and the strong diffuse scatter. These effects depend markedly on temperature. It appears that the molecular filaments fluctuate freely in a direction perpendicular to their axes. Moreover, the C-terminal half of the molecule "unfolds" to some degree at less than physiological temperatures. Crystallographic results on co-crystals of tropomyosin and a component of troponin (TnT) suggest that this subunit consists of structurally distinct domains, so that the troponin complex is not in fact simply "globular". The interactions of the extended alpha-helical region of TnT may "stiffen" tropomyosin and influence its motions. We picture the tropomyosin/troponin switch in muscle as a restless cable, perpetually making and breaking bonds as it vibrates on the thin filament. These movements of tropomyosin probably depend on two aspects of its design: the regular pattern of coiled-coil linkages with actin; and the aperiodic features that allow flexibility and motion.  相似文献   

2.
Tropomyosin crystal structure and muscle regulation   总被引:33,自引:0,他引:33  
The crystal structure of tropomyosin filaments has been solved to 15 A resolution by refinement of models against the diffraction data and heavy atom labeling of cysteine residues. These results confirm and extend earlier findings. The improved maps reveal the pitch of the coiled coil, the location of the cysteine residues, and the location and features of the overlapping molecular ends in the filaments. A correlation can now be made between regions of the amino acid sequence and key features of the molecule, such as contact sites in the lattice and departures from regularity along the coiled coil. The crystal shows remarkable dynamic features and the relative flexibility of different parts of the molecule as well as its anisotropic character have been determined. The structure and motions of tropomyosin in the crystal provide information on the structure of tropomyosin in muscle and its possible role in regulation. An atomic model of the molecule has been constructed, based on the low resolution X-ray results, together with the stereochemistry of alpha-helical coiled coils. In contrast to previous views, the molecule appears to display but one set of seven alpha-sites that permit weak linkages of the flexible tropomyosin filament to the actin helix. Correspondingly, we picture that in the "off" state of ATPase activity, the alpha-sites are not occupied; in the "on" state, they are only partly occupied; and in the "potentiated" state, they are more completely saturated. Control of contraction is therefore seen as a statistical mechanism requiring at least three distinct average conformations for the tropomyosin molecule on the actin helix.  相似文献   

3.
Tropomyosin is a coiled-coil protein that binds head-to-tail along the length of actin filaments in eukaryotic cells, stabilizing them and providing protection from severing proteins. Tropomyosin cooperatively regulates actin's interaction with myosin and mediates the Ca2+ -dependent regulation of contraction by troponin in striated muscles. The N-terminal and C-terminal ends are critical functional determinants that form an "overlap complex". Here we report the solution NMR structure of an overlap complex formed of model peptides. In the complex, the chains of the C-terminal coiled coil spread apart to allow insertion of 11 residues of the N-terminal coiled coil into the resulting cleft. The plane of the N-terminal coiled coil is rotated 90 degrees relative to the plane of the C terminus. A consequence of the geometry is that the orientation of postulated periodic actin binding sites on the coiled-coil surface is retained from one molecule to the next along the actin filament when the overlap complex is modeled into the X-ray structure of tropomyosin determined at 7 Angstroms. Nuclear relaxation NMR data reveal flexibility of the junction, which may function to optimize binding along the helical actin filament and to allow mobility of tropomyosin on the filament surface as it switches between regulatory states.  相似文献   

4.
The missense mutation R21H in striated muscle tropomyosin is associated with hypertrophic cardiomyopathy, a genetic cardiac disease and a leading cause of sudden cardiac death in young people. Tropomyosin adopts conformation of a coiled coil which is critical for regulation of muscle contraction. In this study, we investigated the effects of the R21H mutation on the coiled‐coil structure of tropomyosin and its interactions with its binding partners, tropomodulin and leiomodin. Using circular dichroism and isothermal titration calorimetry, we found that the mutation profoundly destabilized the structural integrity of αTM1a1‐28Zip, a chimeric peptide containing the first 28 residues of tropomyosin. The mutated αTM1a1‐28Zip was still able to interact with tropomodulin and leiomodin. However, the mutation resulted in a ~30‐fold decrease of αTM1a1‐28Zip's binding affinity to leiomodin. We used a crystal structure of αTM1a1‐28Zip that we solved at 1.5 Å resolution to study the mutation's effect in silico by means of molecular dynamics simulation. The simulation data indicated that while the mutation disrupted αTM1a1‐28Zip's coiled‐coil structure, most notably from residue Ala18 to residue His31, it may not affect the N‐terminal end of tropomyosin. The drastic decrease of αTM1a1‐28Zip's affinity to leiomodin caused by the mutation may lead to changes in the dynamics at the pointed end of thin filaments. Therefore, the R21H mutation is likely interfering with the regulation of the normal thin filament length essential for proper muscle contraction.  相似文献   

5.
Tropomyosin, a coiled coil protein that binds along the length of actin filaments, contains 40 uninterrupted heptapeptide repeats characteristic of coiled coils. Yet, it is flexible. Regions of tropomyosin that may be important for binding to the filament and for interacting with troponin deviate from canonical coiled coil structure in subtle ways, altering the local conformation or energetics without interrupting the coiled coil. In a region rich in interface alanines (an Ala cluster), the chains pack closer than in canonical coiled coils, and are staggered, resulting in a bend [Brown et al. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8496-8501]. Brown et al. suggested that bends at alanine clusters allow tropomyosin to wind on the actin filament helix. Another explanation is that local destabilization of the coiled coil, rather than close packing of the chains at Ala clusters per se, allows flexibility. Changing three Ala residues to canonical interface residues, A74L-A78V-A81L, greatly stabilized tropomyosin, measured using circular dichroism and differential scanning calorimetry, and reduced actin affinity >10-fold. Normal actin affinity and stability were restored in a mutant A74Q-A78N-A81Q that mimicked the stability of the Ala cluster but not the close packing of the chains. Analysis and modeling of comparable mutations introduced closer to the N-terminus show that the effects on stability and function depend on context. Models based on tropomyosin crystal structures give insight into possible effects of the mutations on the structure. We conclude that the significance of the Ala clusters in allowing flexibility of tropomyosin is stability-driven.  相似文献   

6.
Tropomyosin binds end to end along the actin filament. Tropomyosin ends, and the complex they form, are required for actin binding, cooperative regulation of actin filaments by myosin, and binding to the regulatory protein, troponin T. The aim of the work was to understand the isoform and structural specificity of the end-to-end association of tropomyosin. The ability of N-terminal and C-terminal model peptides with sequences of alternate alpha-tropomyosin isoforms, and a troponin T fragment that binds to the tropomyosin overlap, to form complexes was analyzed using circular dichroism spectroscopy. Analysis of N-terminal extensions (N-acetylation, Gly, AlaSer) showed that to form an overlap complex between the N-terminus and the C-terminus requires that the N-terminus be able to form a coiled coil. Formation of a ternary complex with the troponin T fragment, however, effectively takes place only when the overlap complex sequences are those found in striated muscle tropomyosins. Striated muscle tropomyosins with N-terminal modifications formed ternary complexes with troponin T that varied in affinity in the order: N-acetylated > Gly > AlaSer > unacetylated. The circular dichroism results were corroborated by native gel electrophoresis, and the ability of the troponin T fragment to promote binding of full-length tropomyosins to filamentous actin.  相似文献   

7.
A quantitative analysis of the direction of bending of two‐stranded alpha‐helical coiled coils in crystal structures has been carried out to help determine how the amino acid sequence of the coiled coil influences its shape and function. Change in the axial staggering of the coiled coil, occurring at the boundaries of either clusters of core alanines in tropomyosin or of clusters of core bulky residues in the myosin rod, causes bending within the plane of the local dimer. The results also reveal that large gaps in the core of the coiled coil, which are seen for small core residues near large core residues or for unbranched core residues near canonical branched core residues, are correlated with bending out of the local dimeric plane. Comparison of tropomyosin structures determined in independent crystal environments provides further evidence for the concept that sequence directs the bending of the coiled coil, but that crystal environment is at least as important as sequence for determining the magnitude of bending. Tropomyosin thus appears to consist of more directionally restrained hinge‐like joints rather than directionally variable universal joints, which helps account for and predicts the geometric and dynamic nature of its binding to F‐actin.  相似文献   

8.
Tropomyosin is a protein that controls the interactions of actin and myosin as a part of the regulation of muscle contraction. The 420 Å long α-helical coiled-coil molecules form long filaments, both in muscle and in crystals. The x-ray diffraction data from tropomyosin crystals have indicated large scale motions of the filaments that can be related to the inherent mechanical properties of the molecule, and by extension, to the role of tropomyosin in the cooperative activation of the thin filaments of muscle. Diffuse scattering analysis has provided information about the amplitudes of the motions that has been used to calculate the intrinsic flexibility of the molecule. It can then be shown that each tropomyosin molecule by itself can only mediate interactions of the nearest-neighboring tropomyosin molecules along the filament. The repeating nature of the thin filament, however, allows the entire filament to activate cooperatively. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Contraction of skeletal and cardiac muscles is regulated by Ca(2+) binding to troponin in the actin-containing thin filaments, leading to an azimuthal movement of tropomyosin around the filament that uncovers the myosin binding sites on actin. Here, we use polarized fluorescence to determine the orientation of the C-terminal lobe of troponin C (TnC) in skeletal muscle cells as a step toward elucidating the molecular mechanism of troponin-mediated regulation. Assuming, as shown by X-ray crystallography, that this lobe of TnC is part of a well-defined troponin domain called the IT arm, we show that the coiled coil formed by troponin components I and T makes an angle of about 55° with the thin filament axis in relaxed muscle, in contrast with previous models based on electron microscopy in which this angle is close to 0°. The E helix of TnC makes an angle of about 45° with the thin filament axis. Both the IT coiled coil and the TnC E helix tilt by about 10° on muscle activation. By combining in situ measurements of the orientation of the IT arm and regulatory domain of troponin, which together form the troponin core complex, with published intermolecular distances between thin filament components, we derive models of thin filament structure in which the IT arm of troponin holds its regulatory domain close to the actin surface. Although the structure and function of troponin regions outside the core complex remain to be characterized, the present results provide useful constraints for molecular models of the mechanism of muscle regulation.  相似文献   

10.
We have used molecular replacement followed by a highly parameterized refinement to determine the structure of tropomyosin crystals to a resolution to 9 A. The shape, coiled-coil structure and interactions of the molecules in the crystals have been determined. These crystals have C2 symmetry with a = 259.7 A, b = 55.3 A, c = 135.6 A and beta = 97.2 degrees. Because of the unusual distribution of intensity in X-ray diffraction patterns from these crystals, it was possible to solve the rotation problem by inspection of qualitative aspects of the diffraction data and to define unequivocally the general alignment of the molecules along the (332) and (3-32) directions of the unit cell. The translation function was then solved by a direct search procedure, while electron microscopy of a related crystal form indicated the probable location of molecular ends in the asymmetric unit, as well as the anti-parallel arrangement. The structural model we have obtained is much clearer than that obtained previously with crystals of extraordinarily high solvent content and shows the two alpha-helices of the coiled coil over most of the length of the molecules and establishes the coiled-coil pitch at 140(+/- 10) A. Moreover, the precise value of the coiled-coil pitch varies along the molecule, probably in response to local variations in the amino acid sequence, which we have determined by sequencing the appropriate cDNA. The crystals are constructed from layers of tropomyosin filaments. There are two molecules in the crystallographic asymmetric unit and the molecules within a layer are bent into an approximately sinusoidal profile. Molecules in consecutive layers in the crystal lie at an angle relative to one another as found in crystalline arrays of actin and myosin rod. There are three classes of interactions between tropomyosin molecules in the spermine-induced crystals and these give some insights into the molecular interactions between coiled-coil molecules that may have implications for assemblies such as muscle thick filaments and intermediate filaments. In interactions within a layer, the geometry of coiled-coil contacts is retained, whereas in contacts between molecules in adjacent layers the coiled-coil geometry varies and these interactions instead appear to be dominated by the repeating pattern of charged zones along the molecule.  相似文献   

11.
The coiled coil is a widespread motif involved in oligomerization and protein-protein interactions, but the structural requirements for binding to target proteins are poorly understood. To address this question, we measured binding of tropomyosin, the prototype coiled coil, to actin as a model system. Tropomyosin binds to the actin filament and cooperatively regulates its function. Our results support the hypothesis that coiled-coil domains that bind to other proteins are flexible. We made mutations that alter interface packing and stability as well as mutations in surface residues in a postulated actin binding site. Actin affinity, measured by cosedimentation, was correlated with coiled-coil stability and local instability and side chain flexibility, analyzed with circular dichroism and fluorescence spectroscopy. The flexibility from interruptions in the stable coiled-coil interface is essential for actin binding. The surface residues in a postulated actin binding site participate in actin binding when the coiled coil within it is poorly packed.  相似文献   

12.
Sulfhydryl groups at Cys-36 on the beta chain and at Cys-190 on the gamma chain of chicken gizzard tropomyosin were reacted with the pyrene-containing sulfhydryl-specific reagents N-(1-pyrenyl)iodoacetamide and N-(1-pyrenyl)maleimide. Tropomyosin prepared and labeled under nondenaturing conditions displayed significant pyrene monomer emission but low levels of pyrene excimer fluorescence. In contrast, tropomyosin subjected to denaturation and renaturation prior to labeling, or labeled in the denatured state prior to renaturation, displayed considerable excimer emission. Furthermore, labeling of isolated beta or gamma chains in denaturant, followed by reconstitution, gave separate samples of beta beta- and gamma gamma-tropomyosin that exhibited even greater pyrene excimer to monomer emission ratios. As pyrene excimers can form only when an excited pyrene is immediately adjacent to a ground state pyrene, i.e., when the labeled Cys residues on the two chains in a tropomyosin coiled coil share the same cross section, these results support conclusions based upon chemical crosslinking studies [C. Sanders, L. D. Burtnick, and L. B. Smillie (1986) J. Biol. Chem. 261, 12774-12778] that native gizzard tropomyosin exists predominantly as a beta gamma-heterodimer. In addition, the low degree of labeling of native gizzard tropomyosin and the differences in degrees of labeling of beta beta- and gamma gamma-tropomyosins in the absence of denaturants reflect on the accessibilities of the sulfhydryl groups in these tropomyosin isoforms. Circular dichroism measurements indicate that the labeled proteins form stable coiled coil structures that have thermal stabilities comparable to that of the native protein.  相似文献   

13.
Tropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin’s coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain. This is because the conformation of the overlap region that joins neighboring molecules is poorly understood, thus leaving a significant gap in our understanding of thin-filament structure and regulation. However, recent molecular-dynamics simulations of overlap segments defined their overall shape and provided unique and sufficient cues to model the whole actin-tropomyosin filament assembly in atomic detail. In this study, we show that these MD structures merge seamlessly onto the ends of tropomyosin coiled-coils. Adjacent tropomyosin molecules can then be joined together to provide a comprehensive model of the tropomyosin cable running continuously on F-actin. The resulting complete model presented here describes for the first time (to our knowledge) an atomic-level structure of αα-striated muscle tropomyosin bound to an actin filament that includes the critical overlap domain. Thus, the model provides a structural correlate to evaluate thin-filament mechanics, self-assembly mechanisms, and the effect of disease-causing mutations.  相似文献   

14.
Tropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin’s coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain. This is because the conformation of the overlap region that joins neighboring molecules is poorly understood, thus leaving a significant gap in our understanding of thin-filament structure and regulation. However, recent molecular-dynamics simulations of overlap segments defined their overall shape and provided unique and sufficient cues to model the whole actin-tropomyosin filament assembly in atomic detail. In this study, we show that these MD structures merge seamlessly onto the ends of tropomyosin coiled-coils. Adjacent tropomyosin molecules can then be joined together to provide a comprehensive model of the tropomyosin cable running continuously on F-actin. The resulting complete model presented here describes for the first time (to our knowledge) an atomic-level structure of αα-striated muscle tropomyosin bound to an actin filament that includes the critical overlap domain. Thus, the model provides a structural correlate to evaluate thin-filament mechanics, self-assembly mechanisms, and the effect of disease-causing mutations.  相似文献   

15.
Actin filament functional diversity is paralleled by variation in the composition of isoforms of tropomyosin in these filaments. Although the role of tropomyosin is well understood in skeletal muscle, where it regulates the actin-myosin interaction, its role in the cytoskeleton has been obscure. The intracellular sorting of tropomyosin isoforms indicated a role in spatial specialization of actin filament function. Genetic manipulation and protein chemistry studies have confirmed that these isoforms are functionally distinct. Tropomyosins differ in their recruitment of myosin motors and their interaction with actin filament regulators such as ADF-cofilin. Tropomyosin isoforms have therefore provided a powerful mechanism to diversify actin filament function in different intracellular compartments.  相似文献   

16.
Contraction of striated muscles is regulated by tropomyosin strands that run continuously along actin-containing thin filaments. Tropomyosin blocks myosin-binding sites on actin in resting muscle and unblocks them during Ca2+-activation. This steric effect controls myosin-crossbridge cycling on actin that drives contraction. Troponin, bound to the thin filaments, couples Ca2+-concentration changes to the movement of tropomyosin. Ca2+-free troponin is thought to trap tropomyosin in the myosin-blocking position, while this constraint is released after Ca2+-binding. Although the location and movements of tropomyosin are well known, the structural organization of troponin on thin filaments is not. Its mechanism of action therefore remains uncertain. To determine the organization of troponin on the thin filament, we have constructed atomic models of low and high-Ca2+ states based on crystal structures of actin, tropomyosin and the "core domain" of troponin, and constrained by distances between filament components and by their location in electron microscopy (EM) reconstructions. Alternative models were also built where troponin was systematically repositioned or reoriented on actin. The accuracy of the different models was evaluated by determining how well they corresponded to EM images. While the initial low and high-Ca2+ models fitted the data precisely, the alternatives did not, suggesting that the starting models best represented the correct structures. Thin filament reconstructions were generated from the EM data using these starting models as references. In addition to showing the core domain of troponin, the reconstructions showed additional detail not present in the starting models. We attribute this to an extension of TnI linking the troponin core domain to actin at low (but not at high) Ca2+, thereby trapping tropomyosin in the OFF-state. The bulk of the core domain of troponin appears not to move significantly on actin, regardless of Ca2+ level. Our observations suggest a simple model for muscle regulation in which troponin affects the charge balance on actin and hence tropomyosin position.  相似文献   

17.
Tropomyosin is a well-characterized regulator of muscle contraction. It also stabilizes actin filaments in a variety of muscle and non-muscle cells. Although these two functions of tropomyosin could have different impacts on actin cytoskeletal organization, their functional relationship has not been studied in the same experimental system. Here, we investigated how tropomyosin stabilizes actin filaments and how this function is influenced by muscle contraction in Caenorhabditis elegans body wall muscle. We confirmed the antagonistic role of tropomyosin against UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament organization using multiple UNC-60B mutant alleles. Tropomyosin was also antagonistic to UNC-78 (AIP1) in vivo and protected actin filaments from disassembly by UNC-60B and UNC-78 in vitro, suggesting that tropomyosin protects actin filaments from the ADF/cofilin-AIP1 actin disassembly system in muscle cells. A mutation in the myosin heavy chain caused greater reduction in contractility than tropomyosin depletion. However, the myosin mutation showed much weaker suppression of the phenotypes of ADF/cofilin or AIP1 mutants than tropomyosin depletion. These results suggest that muscle contraction has only minor influence on the tropomyosin's protective role against ADF/cofilin and AIP1, and that the two functions of tropomyosin in actin stability and muscle contraction are independent of each other.  相似文献   

18.
Tropomyosin is present in virtually all eucaryotic cells, where it functions to modulate actin-myosin interaction and to stabilize actin filament structure. In striated muscle, tropomyosin regulates contractility by sterically blocking myosin-binding sites on actin in the relaxed state. On activation, tropomyosin moves away from these sites in two steps, one induced by Ca(2+) binding to troponin and a second by the binding of myosin to actin. In smooth muscle and non-muscle cells, where troponin is absent, the precise role and structural dynamics of tropomyosin on actin are poorly understood. Here, the location of tropomyosin on F-actin filaments free of troponin and other actin-binding proteins was determined to better understand the structural basis of its functioning in muscle and non-muscle cells. Using electron microscopy and three-dimensional image reconstruction, the association of a diverse set of wild-type and mutant actin and tropomyosin isoforms, from both muscle and non-muscle sources, was investigated. Tropomyosin position on actin appeared to be defined by two sets of binding interactions and tropomyosin localized on either the inner or the outer domain of actin, depending on the specific actin or tropomyosin isoform examined. Since these equilibrium positions depended on minor amino acid sequence differences among isoforms, we conclude that the energy barrier between thin filament states is small. Our results imply that, in striated muscles, troponin and myosin serve to stabilize tropomyosin in inhibitory and activating states, respectively. In addition, they are consistent with tropomyosin-dependent cooperative switching on and off of actomyosin-based motility. Finally, the locations of tropomyosin that we have determined suggest the possibility of significant competition between tropomyosin and other cellular actin-binding proteins. Based on these results, we present a general framework for tropomyosin modulation of motility and cytoskeletal modelling.  相似文献   

19.
Tropomyosin is a coiled coil that associates N-terminus to C-terminus to form a continuous strand along both sides of the actin filament and regulates its function. One long, high molecular weight tropomyosin molecule spans the length of seven actin subunits. In these forms there is a 7-fold periodicity in noninterface residues that have been proposed to correspond to seven quasi-equivalent actin binding sites. Interruption of the stable, canonical coiled coil by residues that destabilize the interhelical interface, such as Ala clusters, is required for actin binding. Previous studies have shown that the N-terminal half of period 5 (residues 165-188) is critical for actin binding and regulatory function and that both the surface "consensus" residues and the embedded, destabilizing Ala cluster are required for function. In the present work we test the hypothesis of quasi-equivalence of tropomyosin's periodic sites by replacing the proposed binding sites by substituting the crucial period 5 region with regions of period 1 or 2. Replacement mutants were designed to test the importance of the coincidence of the consensus residues and a destabilizing interface. The results show that generic (interface instability) and specific periodic surface residues are essential for function and that the periods tested (periods 1, 2, and 5) are quasi-equivalent for actin binding. However, regulatory functions are period-specific: periods 1 and 5 for binding to actin in the force-producing state and period 5 for Ca2+-dependent regulation with troponin.  相似文献   

20.
Ali LF  Cohen JM  Tobacman LS 《Biochemistry》2010,49(51):10873-10880
Tropomyosin is a ubiquitous actin-binding protein with an extended coiled-coil structure. Tropomyosin-actin interactions are weak and loosely specific, but they potently influence myosin. One such influence is inhibitory and is due to tropomyosin's statistically preferred positions on actin that sterically interfere with actin's strong attachment site for myosin. Contrastingly, tropomyosin's other influence is activating. It increases myosin's overall actin affinity ~4-fold. Stoichiometric considerations cause this activating effect to equate to an ~4(7)-fold effect of myosin on the actin affinity of tropomyosin. These positive, mutual, myosin-tropomyosin effects are absent if Saccharomyces cerevisiae tropomyosin replaces mammalian tropomyosin. To investigate these phenomena, chimeric tropomyosins were generated in which 38-residue muscle tropomyosin segments replaced a natural duplication within S. cerevisiae tropomyosin TPM1. Two such chimeric tropomyosins were sufficiently folded coiled coils to allow functional study. The two chimeras differed from TPM1 but in opposite ways. Consistent with steric interference, myosin greatly decreased the actin affinity of chimera 7, which contained muscle tropomyosin residues 228-265. On the other hand, myosin S1 increased by an order of magnitude the actin affinity of chimera 3, which contained muscle tropomyosin residues 74-111. Similarly, myosin S1-ADP binding to actin was strengthened 2-fold by substitution of chimera 3 tropomyosin for wild-type TPM1. Thus, a yeast tropomyosin was induced to mimic the activating behavior of mammalian tropomyosin by inserting a mammalian tropomyosin sequence. The data were not consistent with direct tropomyosin-myosin binding. Rather, they suggest an allosteric mechanism, in which myosin and tropomyosin share an effect on the actin filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号