首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.

Background

The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAFV600 mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway.

Methodology/Principal Findings

The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance.

Conclusions/Significance

Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors.  相似文献   

2.
Du K  Zheng Q  Zhou M  Zhu L  Ai B  Zhou L 《Current microbiology》2011,63(4):341-346
Chlamydiae are obligate intracellular bacteria that cause variety of human diseases. Chlamydia-infected host cells are profoundly resistant to apoptosis induced by many different apoptotic stimuli. The inhibition of apoptosis is thought to be an important immune escape mechanism allowing chlamydiae to productively complete their obligate intracellular growth cycle. Infection with chlamydiae can activate the Raf/MEK/ERK pathway. Because the survival pathway can modulate apoptosis, we used MEK-specific inhibitor U0126 and Raf-specific inhibitor GW5074 to examine the role of Raf/MEK/ERK pathway in chlamydial antiapoptotic activity. Apoptosis was induced by staurosporine (STS) and detected by morphology, DNA fragmentation, caspase-3 activation, and poly (ADP-ribose) polymerase cleavage. Inhibition of the pathway sensitized Chlamydia-infected cells to STS-mediated cell apoptosis. The data indicate that chlamydial antiapoptotic activity involves activation of the Raf/MEK/ERK survival pathway.  相似文献   

3.
4.

Purpose

Dendritic cells (DCs) can induce strong tumor-specific T-cell immune responses. Constitutive upregulation of the mitogen-activated protein kinase (MAPK) pathway by a BRAFV600 mutation, which is present in about 50 % of metastatic melanomas, may be linked to compromised function of DCs in the tumor microenvironment. Targeting both MEK and BRAF has shown efficacy in BRAFV600 mutant melanoma.

Methods

We co-cultured monocyte-derived human DCs with melanoma cell lines pretreated with the MEK inhibitor U0126 or the BRAF inhibitor vemurafenib. Cytokine production (IL-12 and TNF-α) and surface marker expression (CD80, CD83, and CD86) in DCs matured with the Toll-like receptor 3/Melanoma Differentiation-Associated protein 5 agonist polyI:C was examined. Additionally, DC function, viability, and T-cell priming capacity were assessed upon direct exposure to U0126 and vemurafenib.

Results

Cytokine production and co-stimulation marker expression were suppressed in polyI:C-matured DCs exposed to melanoma cells in co-cultures. This suppression was reversed by MAPK blockade with U0126 and/or vemurafenib only in melanoma cell lines carrying a BRAFV600E mutation. Furthermore, when testing the effect of U0126 directly on DCs, marked inhibition of function, viability, and DC priming capacity was observed. In contrast, vemurafenib had no effect on DC function across a wide range of dose concentrations.

Conclusions

BRAFV600E mutant melanoma cells modulate DC through the MAPK pathway as its blockade can reverse suppression of DC function. MEK inhibition negatively impacts DC function and viability if applied directly. In contrast, vemurafenib does not have detrimental effects on important functions of DCs and may therefore be a superior candidate for combination immunotherapy approaches in melanoma patients.  相似文献   

5.
It has been shown that ultrasound (US) stimulation accelerates fracture healing in the animal models and non‐operatively clinical uses. Nitric oxide (NO) is a crucial early mediator in mechanically induced bone formation. Here we found that US‐mediated inducible nitric oxide synthase (iNOS) expression was attenuated by Ras inhibitor (manumycin A), Raf‐1 inhibitor (GW5074), MEK inhibitor (PD98059), NF‐κB inhibitor (PDTC), and IκB protease inhibitor (TPCK). US‐induced Ras activation was inhibited by manumycin A. Raf‐1 phosphorylation at Ser338 by US was inhibited by manumycin A and GW5074. US‐induced MEK and ERK activation was inhibited by manumycin A, GW5074, and PD98059. Stimulation of preosteoblasts with US activated IκB kinase α/β (IKK α/β), IκBαphosphorylation, p65 phosphorylation at Ser276, p65, and p50 translocation from the cytosol to the nucleus, and κB‐luciferase activity. US‐mediated an increase of IKK α/β, IκBα, and p65 phosphorylation, κB‐luciferase activity and p65 and p50 binding to the NF‐κB element was inhibited by manumycin A, GW5074, and PD98059. Our results suggest that US increased iNOS expression in preosteoblasts via the Ras/Raf‐1/MEK/ERK/IKKαβ and NF‐κB signaling pathways. J. Cell. Physiol. 220: 196–203, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Meng J  Fang B  Liao Y  Chresta CM  Smith PD  Roth JA 《PloS one》2010,5(9):e13026
AZD6244 (ARRY-142886) is an inhibitor of MEK1/2 and can inhibit cell proliferation or induce apoptosis in a cell-type dependent manner. The precise molecular mechanism of AZD6244-induced apoptosis is not clear. To investigate mechanisms of AZD6244 induced apoptosis in human lung cancer, we determined the molecular changes of two subgroups of human lung cancer cell lines that are either sensitive or resistant to AZD6244 treatment. We found that AZD6244 elicited a large increase of Bim proteins and a smaller increase of PUMA and NOXA proteins, and induced cell death in sensitive lung cancer cell lines, but had no effect on other Bcl-2 related proteins in those cell lines. Knockdown of Bim by siRNA greatly increased the IC(50) and reduced apoptosis for AZD6244 treated cells. We also found that levels of endogenous p-Thr32-FOXO3a and p-Ser253-FOXO3a were lower in AZD6244-sensitive cells than in AZD6244-resistant cells. In the sensitive cells, AZD6244 induced FOXO3a nuclear translocation required for Bim activation. Moreover, the silencing of FOXO3a by siRNA abrogated AZD6244-induced cell apoptosis. In addition, we found that transfection of constitutively active AKT up-regulated p-Thr32-FOXO3a and p-Ser253-FOXO3a expression and inhibited AZD6244-induced Bim expression in sensitive cells. These results show that Bim plays an important role in AZD6244-induced apoptosis in lung cancer cells and that the PI3K/AKT/FOXO3a pathway is involved in Bim regulation and susceptibility of lung cancer cells to AZD6244. These results have implications in the development of strategies to overcome resistance to MEK inhibitors.  相似文献   

7.
Cerebellar granule neurons undergo apoptosis when switched from a medium containing high potassium (HK) to one that has low potassium (LK). LK-induced cell death is blocked by GW5074 [5-Iodo-3-[(3,5-dibromo-4-hydroxyphenyl) methylene]-2-indolinone], a synthetic drug that inhibits c-Raf activity in vitro. GW5074 has no direct effect on the activities of several apoptosis-associated kinases when assayed in vitro. In contrast to its effect in vitro, treatment of neurons with GW5074 causes c-Raf activation (when measured in vitro in the absence of the drug) and stimulates the Raf-MEK-ERK pathway. Treatment of neurons with GW5074 also leads to an increase in the activity of B-Raf, which is not inhibited by GW5074 in vitro at concentrations at which the drug exerts its neuroprotective effect. PD98059 and U0126, two distinct inhibitors of MEK, block the activation of ERK by GW5074 but have no effect on its ability to prevent cell death. Overexpression of a dominant-negative form of Akt does not reduce the efficacy of GW5074, demonstrating an Akt-independent mechanism of action. Neuroprotection is inhibited by SN-50, a specific inhibitor of nuclear factor-kappa B (NF-kappaB) and by the Ras inhibitor S-trans, trans-farnesylthiosalicylic acid (FTS) implicating NF-kappaB and Ras in the neuroprotective signaling pathway activated by GW5074. In addition to preventing LK-induced apoptosis, treatment with GW5074 protects against the neurotoxic effects of MPP+ and methylmercury in cerebellar granule neurons, and glutathione depletion-induced oxidative stress in cortical neurons. Furthermore, GW5074 prevents neurodegeneration and improves behavioral outcome in an animal model of Huntington's disease. Given its neuroprotective effect on distinct types of cultured neurons, in response to different neurotoxic stimuli, and in an animal model of neurodegeneration, GW5074 could have therapeutic value against neurodegenerative pathologies in humans.  相似文献   

8.
The role of JAK signaling in cell cycle transit and maintenance of genomic stability was determined in HL-60 human myeloblastic leukemia cells. We have previously reported that a pan-JAK inhibitor caused ERK-dependent endoreduplication. In the current study we find that JAK inhibition caused nuclear re-localization of RAF-1, which could be inhibited by RAF inhibitor GW5074. GW5074 also inhibited JAK inhibitor-induced appearance of nuclear phosphorylated RAF-1(pS621RAF) and MEK, and it inhibited the JAK inhibitor-induced co-immunoprecipitation of nuclear RAF-1 and MEK. JAK inhibition also increased nuclear BubR1 phosphorylation, which was diminished by RAF inhibitor GW5074. RAF-1 and BubR1 in the nucleus co-immunoprecipitated; and GW5074 eliminated this. Furthermore, inhibiting RAF with GW5074 blocked the pan-JAK inhibitor-induced endoreduplication. These data thus show that JAK inhibition causes nuclear re-localization and phosphorylation of RAF and MEK where RAF binds BubR1 with ensuing nuclear RAF-dependent BubR1 phosphorylation. Inhibiting RAF inhibited this and endoreduplication. The results suggest that there is a JAK/RAF/MEK/BubR1 axis that can regulate genomic stability. In this hypothetical model JAK suppresses RAF/MEK phosphorylation and nuclear re-localization, but JAK inhibition induces the phosphorylations and re-localization with association of RAF and phosphorylated BubR1 in the nucleus leading to endoreduplication.Key words: endoreduplication, JAK, genomic instability, MAPK, HL-60 cells  相似文献   

9.
10.
The dynamic balance between polymerization and depolymerization of microtubules is critical for cells to enter and exit mitosis, and drugs that disrupt this balance, such as taxol, colchicine, and nocodazole, arrest the cell cycle in mitosis. Although the Raf/MEK/MAPK pathway can be activated by these drugs, its role in mitosis has not been addressed. Here, we characterize activation of Raf/MEK/MAPK by nocodazole when mitosis is induced. We find that at early time points (up to 3 h) in nocodazole induction, Raf/MEK/MAPK is activated, and inhibition of MAPK activation by a MEK inhibitor, PD98059 or U0126, reduces the number of cells entering mitosis by creating a block at G(2). At later time points and in mitosis, activation of MEK/MAPK is severely inhibited, even though Raf-1 activity remains high and can be further increased by growth factor. This inhibition is reversed when cells are released from metaphase and enter G(0)/G(1) phase. In addition, we find that binding of Raf-1 to 14-3-3 is progressively induced by nocodazole, reaching a maximum in mitosis, and that this binding is necessary to maintain mitotic Raf-1 activity. Our present study indicates that activation of the Raf/MEK/MAPK pathway is necessary for the G(2)/M progression.  相似文献   

11.
12.

Objectives

To better understand the molecular mechanisms of regeneration and explore the potential signalling pathways as therapeutic targets for heart attacks.

Results

After treatment with the MEK inhibitor AZD6244 upon cardiac injury, the core members in MAPK/ERK signalling—mek and erk—demonstrate elevated expression, and these proteins are deposited at the injury site in zebrafish. pERK is also induced in non-cardiomyocytes near the injury site. Furthermore, the induced expression of a dominant-negative form of MEK1 inhibits zebrafish cardiac regeneration, characterized by increased cardiac fibrosis (a hallmark of regenerative failure), reduced or delayed production of regenerative myocardium, and migration of FLI1+ endothelial cells, without direct inhibition of cardiomyocyte proliferation.

Conclusion

Appropriate activation of MAPK/ERK signalling is essential for zebrafish cardiac regeneration.
  相似文献   

13.
The MEK inhibitor MEK162 is the first targeted therapy agent with clinical activity in patients whose melanomas harbor NRAS mutations; however, median PFS is 3.7 months, suggesting the rapid onset of resistance in the majority of patients. Here, we show that treatment of NRAS‐mutant melanoma cell lines with the MEK inhibitors AZD6244 or trametinib resulted in a rebound activation of phospho‐ERK (pERK). Functionally, the recovery of signaling was associated with the maintenance of cyclin‐D1 expression and therapeutic escape. The combination of a MEK inhibitor with an ERK inhibitor suppressed the recovery of cyclin‐D1 expression and was associated with a significant enhancement of apoptosis and the abrogation of clonal outgrowth. The MEK/ERK combination strategy induced greater levels of apoptosis compared with dual MEK/CDK4 or MEK/PI3K inhibition across a panel of cell lines. These data provide the rationale for further investigation of vertically co‐targeting the MAPK pathway as a potential treatment option for NRAS‐mutant melanoma patients.  相似文献   

14.
Patients with pancreatic cancer have dismal prognoses, and novel therapies are urgently needed. Mutations of the KRAS oncogene occur frequently in pancreatic cancer and represent an attractive target. Direct targeting of the predominant KRAS pathways have been challenging and research into therapeutic strategies have been now refocused on pathways downstream of KRAS, phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK [MEK]). We hypothesized that concurrent inhibition of the PI3K and MEK pathways would result in synergistic antitumor activity, as it would circumvent the compensatory feedback loop between the two pathways. We investigated the combined effect of the PI3K inhibitor, GDC0941, and the MEK inhibitor, AZD6244, on cell viability, apoptosis and cell signaling in a panel of pancreatic cancer cell lines. An in vivo analysis was conducted on pancreatic cancer xenografts. While BxPC-3 (KRAS wild type) and MIA PaCa-2 (KRAS mutated) cell lines were sensitive to GDC0941 and AZD6244 as single agents, synergistic inhibition of tumor cell growth and induction of apoptosis were observed in both cell lines when the two drugs were combined. Interestingly, phosphorylation of the cap-dependent translational components, 4E-binding protein (p-4E-BP1) and S6 was found to be closely associated with sensitivity to GDC0941 and AZD6244. In BxPC-3 cell xenografts, survival differences were observed between the control and the AZD6244, GDC0941, and combination groups. Our study provides the rationale for concurrent targeting of the PI3K and MEK pathways, regardless of KRAS status, and suggests that phosphorylation of 4E-BP1and S6 can serve as a predictive biomarker for response to treatment.  相似文献   

15.
In this study, we investigated the signaling pathway involved in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) release by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, in human pulmonary epithelial cells (A549). PMA-induced COX-2 expression was attenuated by PKC inhibitors (Go 6976 and Ro 31-8220), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), and an NF-kappaB inhibitor (PDTC), but not by a tyrosine kinase inhibitor (genistein) or a p38 MAPK inhibitor (SB 203580). PMA also caused the activation of Ras, Raf-1, and ERK1/2. PMA-induced activation of Ras and Raf-1 was inhibited by Ro 31-8220 and manumycin A. PMA-mediated activation of ERK1/2 was inhibited by Ro 31-8220, manumycin A, GW 5074, and PD 098059. Stimulation of cells with PMA caused IkappaBalpha phosphorylation, IkappaBalpha degradation, and the formation of a NF-kappaB-specific DNA-protein complex. The PMA-mediated increase in kappaB-luciferase activity was inhibited by Ro 31-8220, manumycin A, GW5074, PD 098059, and PDTC. Taken together, these results indicate that PMA might activate PKC to elicit activation of the Ras/Raf-1/ERK1/2 pathway, which in turn initiates NF-kappaB activation, and finally induces COX-2 expression and PGE2 release in A549 cells.  相似文献   

16.
The mitogen-activated protein kinase/ERK kinase (MEK)/ERK pathway was shown to be constitutively activated in a large number of acute myelogenous leukemia (AML) cells, suggesting the important roles of this pro-survival signaling in leukemogenesis and proliferation of AML cells. This study explored the impact of the MEK inhibitor AZD6244 on the effect of cytarabien (AraC), one of the most commonly used anti-leukemia agents, to induce growth arrest and apoptosis of AML cells. AZD6244 effectively blocked AraC-induced MEK/ERK activation and enhanced its ability to induce growth arrest and apoptosis of NB4 and HL60 cells in parallel with induction of DNA damage as measured by detection of γ-H2AX by Western Blot analysis, resulting in enhanced expression of p21 waf1 and downregulation of c-Myc and Bcl-xl in these cells. Enhanced induction of apoptosis mediated by combination of AZD6244 and AraC was also shown in freshly isolated AML cells (n = 3). Taken together, concomitant administration of AraC and the inhibitor of MEK/ERK signaling may be useful for treatment of individuals with AML.  相似文献   

17.
18.
The role of JAK signaling in cell cycle transit and maintenance of genomic stability was determined in HL-60 human myeloblastic leukemia cells. We have previously reported that a pan-JAK inhibitor caused ERK-dependent endoreduplication. In the current study we find that JAK inhibition caused nuclear re-localization of RAF-1, which could be inhibited by RAF inhibitor GW5074. GW5074 also inhibited JAK inhibitor-induced appearance of nuclear phosphorylated RAF-1(pS621RAF) and MEK, and it inhibited the JAK inhibitor-induced co-immunoprecipitation of nuclear RAF-1 and MEK. JAK inhibition also increased nuclear BubR1 phosphorylation, which was diminished by RAF inhibitor GW5074. RAF-1 and BubR1 in the nucleus co-immunoprecipitated; and GW5074 eliminated this. Furthermore, inhibiting RAF with GW5074 blocked the pan-JAK inhibitor-induced endoreduplication. These data thus show that JAK inhibition causes nuclear re-localization and phosphorylation of RAF and MEK where RAF binds BubR1 with ensuing nuclear RAF-dependent BubR1 phosphorylation. Inhibiting RAF inhibited this and endoreduplication. The results suggest that there is a JAK/RAF/MEK/BubR1 axis that can regulate genomic stability. In this hypothetical model JAK suppresses RAF/MEK phosphorylation and nuclear re-localization, but JAK inhibition induces the phosphorylations and re-localization with association of RAF and phosphorylated BubR1 in the nucleus leading to endoreduplication.  相似文献   

19.
Drug resistance is a major obstacle in the targeted therapy of melanoma using BRAF/MEK inhibitors. This study was to identify BRAF V600E-associated oncogenic pathways that predict resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors. We took in silico approaches to analyze the activities of 24 cancer-related pathways in melanoma cells and identify those whose activation was associated with BRAF V600E and used the support vector machine (SVM) algorithm to predict the resistance of BRAF-mutated melanoma cells to BRAF/MEK inhibitors. We then experimentally confirmed the in silico findings. In a microarray gene expression dataset of 63 melanoma cell lines, we found that activation of multiple oncogenic pathways preferentially occurred in BRAF-mutated melanoma cells. This finding was reproduced in 5 additional independent melanoma datasets. Further analysis of 46 melanoma cell lines that harbored BRAF mutation showed that 7 pathways, including TNFα, EGFR, IFNα, hypoxia, IFNγ, STAT3, and MYC, were significantly differently expressed in AZD6244-resistant compared with responsive melanoma cells. A SVM classifier built on this 7-pathway activation pattern correctly predicted the response of 10 BRAF-mutated melanoma cell lines to the MEK inhibitor AZD6244 in our experiments. We experimentally showed that TNFα, EGFR, IFNα, and IFNγ pathway activities were also upregulated in melanoma cell A375 compared with its sub-line DRO, while DRO was much more sensitive to AZD6244 than A375. In conclusion, we have identified specific oncogenic pathways preferentially activated in BRAF-mutated melanoma cells and a pathway pattern that predicts resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors, providing novel clinical implications for melanoma therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号