首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
3.
4.
5.
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8A resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.  相似文献   

6.
Functional specialization within the Fur family of metalloregulators   总被引:6,自引:0,他引:6  
The ferric uptake regulator (Fur) protein, as originally described in Escherichia coli, is an iron-sensing repressor that controls the expression of genes for siderophore biosynthesis and iron transport. Although Fur is commonly thought of as a metal-dependent repressor, Fur also activates the expression of many genes by either indirect or direct mechanisms. In the best studied model systems, Fur functions as a global regulator of iron homeostasis controlling both the induction of iron uptake functions (under iron limitation) and the expression of iron storage proteins and iron-utilizing enzymes (under iron sufficiency). We now appreciate that there is a tremendous diversity in metal selectivity and biological function within the Fur family which includes sensors of iron (Fur), zinc (Zur), manganese (Mur), and nickel (Nur). Despite numerous studies, the mechanism of metal ion sensing by Fur family proteins is still controversial. Other family members use metal catalyzed oxidation reactions to sense peroxide-stress (PerR) or the availability of heme (Irr).  相似文献   

7.
8.
9.
The zinc importer ZupT is required for the efficient allocation of zinc to zinc-dependent proteins in the metal-resistant bacterium Cupriavidus metallidurans but not for zinc import per se. The expression of zupT is upregulated under conditions of zinc starvation. C. metallidurans contains three members of the Fur family of regulators that qualify as candidates for the zupT regulator. The expression of a zupT-lacZ reporter gene fusion was strongly upregulated in a ΔfurC mutant but not in a ΔfurA or ΔfurB mutant. Expression of the genes for transition-metal importers (pitA, corA1, corA2, and corA3) was not changed in this pattern in all three Δfur mutants, but they were still downregulated under conditions of elevated zinc concentrations, indicating the presence of another zinc-dependent regulator. FurA was a central regulator of the iron metabolism in C. metallidurans, and furA was constitutively expressed under the conditions tested. Expression of furB was upregulated under conditions of iron starvation, and FurB could be an iron starvation Fur connecting general metal and iron homeostasis, as indicated by the phenotype of a ΔfurB ΔfurC double mutant. FurC was purified as a Strep-tagged protein and retarded the electrophoretic mobility of a DNA fragment upstream of zupT. Binding of FurC to this operator region was influenced by the presence of zinc ions and EDTA. Thus, FurC is the main zinc uptake regulator (Zur) of C. metallidurans and represses synthesis of the central zinc importer ZupT when sufficient zinc is present.  相似文献   

10.
Iron is an essential element for almost all organisms, although an overload of this element results in toxicity because of the formation of hydroxyl radicals. Consequently, most living entities have developed sophisticated mechanisms to control their intracellular iron concentration. In many bacteria, including the opportunistic pathogen Pseudomonas aeruginosa, this task is performed by the ferric uptake regulator (Fur). Fur controls a wide variety of basic physiological processes including iron uptake systems and the expression of exotoxin A. Here, we present the first crystal structure of Fur from P. aeruginosa in complex with Zn2+ determined at a resolution of 1.8 A. Furthermore, X-ray absorption spectroscopic measurements and microPIXE analysis were performed in order to characterize the distinct zinc and iron binding sites in solution. The combination of these complementary techniques enables us to present a model for the activation and DNA binding of the Fur protein.  相似文献   

11.
Many bacteria use an ABC transporter for high-affinity uptake of zinc with a cluster 9 solute-binding protein. Other members of this protein family transport manganese. At present, it is not always possible to distinguish zinc-specific and manganese-specific transporters on the basis of sequence analysis. Low-affinity ZIP-type zinc transporters in bacteria have also been identified. Most high-affinity zinc uptake systems are regulated by Zur proteins, which form at least three unrelated subgroups of the Fur protein family (regulators of iron transport). High-affinity transport of zinc out of the periplasmic space poses a problem to the cell because zinc is a cofactor of several periplasmic enzymes. Certain zinc-binding proteins in the periplasm might function as chaperones to supply these enzymes with zinc.  相似文献   

12.

Background  

The zinc uptake regulator Zur is a Zn2+-sensing metalloregulatory protein involved in the maintenance of bacterial zinc homeostasis. Up to now, regulation of zinc homeostasis by Zur is poorly understood in Y. pestis.  相似文献   

13.
14.
The regulator Fur represses with Fe2+ as cofactor iron uptake genes. The fhuF gene reacts very sensitive to minor changes of Fe2+ and Fur. It is assumed that FhuF helps in the mobilisation of iron out of the hydroxamate siderophores transported into the cell. Analysis of the protein revealed an unusual [2Fe-2S] cluster bound to a Cys-Cys-X10-Cys-X2-Cys motif in FhuF. suf genes responsible for the synthesis of the iron sulfur center were identified. The Zur protein shows 27% identity to the Fur protein of E. coli. It regulates as a repressor the high affinity uptake system znuACB. Only two additional Zur binding sites in the promoter region of genes with unknown function were found. Properties of Zur and Fur proteins from different bacteria are compared.  相似文献   

15.
16.
Iron homeostasis is, in many bacterial species, mediated by the ferric uptake regulator (Fur). A regulatory site able to bind iron to activate Fur for DNA binding has been described, and a structural zinc site essential for the dimerization has also been proposed. They have been localized and named site 1 and site 2, respectively, from the crystal structure of a zinc-substituted Pseudomonas aeruginosa Fur (PA-Fur). Notwithstanding the studies on Fur proteins from various species, both the precise site of iron binding and the effect on DNA binding affinity are still controversial. These issues were investigated here by molecular dynamics simulations and free energy calculations. Simulations were performed for eight molecular systems represented by the three forms of Fur, that is, apo Fur, metal-substituted Fur, and Fur complexed with DNA. Because of the lack of a Fur-DNA complex crystal structure, the recently published model based on mass spectrometry experiments on Escherichia coli Fur (EC-Fur), and the crystal structure of PA-Fur, was used, after adjustment to adopt a symmetric conformation. The simulation results suggest that the formerly proposed site 2 is, in fact, the regulatory iron-sensing site. The calculations also predict that Fe(2+) at site 2 is hexacoordinated having an octahedral environment with only nitrogen and oxygen atoms, which is in accordance with previous spectroscopic characterizations. Energy decomposition pinpoints H87 as an additional amino acid that defines the regulatory metal site. Finally, free energy decomposition analysis reveals a number of amino acids potentially important in dimerization and in DNA binding.  相似文献   

17.
18.
The ferric uptake regulator, Fur, represses iron uptake and siderophore biosynthetic genes under iron-replete conditions. Here we report in vitro solution studies on Vibrio anguillarum Fur binding to the consensus 19-bp Escherichia coli iron box in the presence of several divalent metals. We found that V. anguillarum Fur binds the iron box in the presence of Mn(2+), Co(2+), Cd(2+), and to a lesser extent Ni(2+) but, unlike E. coli Fur, not in the presence of Zn(2+). We also found that V. anguillarum Fur contains a structural zinc ion that is necessary yet alone is insufficient for DNA binding.  相似文献   

19.
20.
Zur is a regulator of the high-affinity zinc uptake system in many bacteria. In Xanthomonas campestris pv. campestris 8004, a putative protein encoded by the open reading frame designated as XC1430 shows 42% amino acid similarity with the Zur of Escherichia coli. An XC1430-disrupted mutant 1430nk was constructed by homologous suicide plasmid integration. 1430nk failed to grow in rich medium supplemented with Zn2+ at a concentration of 400 microM and in nonrich medium supplemented with Zn2+ at a concentration of 110 microM, whereas the wild-type strain grew well in the same conditions. In rich medium with 400 microM Zn2+, 1430nk accumulated significantly more Zn2+ than the wild-type strain. 1430nk showed a reduction in virulence on the host plant Chinese radish (Raphanus sativus L. var. radiculus Pers.) and produced less extracellular polysaccharide (EPS) than did the wild-type strain in the absence of added zinc. These results revealed that XC1430 is a functional member of the Zur regulator family that controls zinc homeostasis, EPS production, and virulence in X. campestris pv. campestris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号