首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent thymic emigrants (RTE) are an important subpopulation of naive CD8+ T cells because of their ability to reconstitute a diverse immune system after periods of T cell depletion. In neonatal mice, the majority of peripheral T lymphocytes are RTE, cells that have recently left the thymus to populate the periphery. Postulating that these cells could have unique trafficking mechanisms, we compared adhesion molecule and chemokine receptor expression of neonatal RTE with mature adult lymphocytes. Neonatal CD8+ splenocytes uniformly express alpha(E) integrin and exhibit a high responsiveness to CC chemokine ligand (CCL25) (as compared with adult CD8+ splenocytes). Mature CD8+ thymocytes have a similar alpha(E) integrin(+) CCL25 responsive phenotype, as do adult CD8+ RTE identified by intrathymic FITC injection. With increasing age, the frequency of CD8+ alpha(E) integrin(+) splenocytes decreases, roughly correlating with thymic involution. Moreover, halting thymic output by thymectomy accelerates the age-dependent decline in peripheral CD8+ alpha(E) integrin(+) RTE phenotype cells. Low expression of CD44 distinguishes these CD8+ RTE from a population of memory phenotype alpha(E) integrin(+) CD8+ cells that are CD44(high). We conclude that CD8+ RTE have unique adhesive and chemotactic properties that distinguish them from naive CD8+ T cells. These properties may enable specialized microenvironmental and cell-cell interactions contributing to the fate of RTE in the periphery during the early post-thymic period. This phenotype will also facilitate the identification and isolation of RTE for further studies.  相似文献   

2.
Neonatal cytotoxic T cell responses have only been elicited to date with immunogens or delivery systems inducing potent direct APC activation. To define the minimal activation requirements for the induction of neonatal CD8(+) cytotoxic responses, we used synthetic microspheres (MS) coated with a single CD8(+) T cell peptide from lymphocytic choriomeningitis virus (LCMV) or HIV-1. Unexpectedly, a single injection of peptide-conjugated MS without added adjuvant induced CD4-dependent Ag-specific neonatal murine cytotoxic responses with adult-like CTL precursor frequency, avidity for Ag, and frequency of IFN-gamma-secreting CD8(+) splenocytes. Neonatal CD8(+) T cell responses to MS-LCMV were elicited within 2 wk of a single immunization and, upon challenge, provided similar protection from viral replication as adult CTLs, demonstrating their in vivo competence. As previously reported, peptide-coated MS elicited no detectable activation of adult CD11c(+) dendritic cells (DC). In contrast, CTL responses were associated with a partial activation of neonatal CD11c(+) DC, reflected by the up-regulation of CD80 and CD86 expression but no concurrent changes in MHC class II or CD40 expression. However, this partial activation of neonatal DC was not sufficient to circumvent the requirement for CD4(+) T cell help. The effective induction of neonatal CD8(+) T cell responses by this minimal Ag delivery system demonstrates that neonatal CD11c(+) DC may mature sufficiently to stimulate naive CD8(+) neonatal T cells, even in the absence of strong maturation signals.  相似文献   

3.
IL-27 induces stronger proliferation of naive than memory human B cells and CD4(+) T cells. In B cells, this differential response is associated with similar levels of IL-27 receptor chains, IL-27Rα and gp130, in both subsets and stronger STAT1 and STAT3 activation by IL-27 in naive B cells. Here, we show that the stronger proliferative response of CD3-stimulated naive CD4(+) T cells to IL-27 is associated with lower levels of IL-27Rα but higher levels of gp130 compared with memory CD4(+) T cells. IL-27 signaling differs between naive and memory CD4(+) T cells, as shown by more sustained STAT1, -3, and -5 activation and weaker activation of SHP-2 in naive CD4(+) T cells. In the latter, IL-27 increases G0/G1 to S phase transition, cell division and, in some cases, cell survival. IL-27 proliferative effect on naive CD4(+) T cells is independent of MAPK, but is dependent on c-Myc and Pim-1 induction by IL-27 and is associated with induction of cyclin D2, cyclin D3, and CDK4 by IL-27 in a c-Myc and Pim-1-dependent manner. In BCR-stimulated naive B cells, IL-27 only increases entry in the S phase and induces the expression of Pim-1 and of cyclins A, D2, and D3. In these cells, inhibition of Pim-1 inhibits IL-27 effect on proliferation and cyclin induction. Altogether, these data indicate that IL-27 mediates proliferation of naive CD4(+) T cells and B cells through induction of both common and distinct sets of cell cycle regulators.  相似文献   

4.
BACKGROUND: Recently, heightened systemic translocation of microbial products was found in persons with chronic HIV infection and this was linked to immune activation and CD4(+) T cell homeostasis. METHODOLOGY: We examined here the effects of microbial Toll-like receptor (TLR) ligands on T cell activation in vitro. CONCLUSIONS/FINDINGS: We show that exposure to TLR ligands results in activation of memory and effector CD4(+) and CD8(+) T cells. After exposure to each of 8 different ligands that activate TLRs 2, 3, 4, 5, 7, 8, and 9, CD8(+) T cells are activated and gain expression of the C type lectin CD69 that may promote their retention in lymphoid tissues. In contrast, CD4(+) T cells rarely increase CD69 expression but instead enter cell cycle. Despite activation and cell cycle entry, CD4(+) T cells divide poorly and instead, disproportionately undergo activation-induced cell death. Systemic exposure to TLR agonists may therefore increase immune activation, effector cell sequestration in lymphoid tissues and T cell turnover. These events may contribute to the pathogenesis of immune dysfunction and CD4+ T cell losses in chronic infection with the human immunodeficiency virus.  相似文献   

5.
Nascimbeni M  Pol S  Saunier B 《PloS one》2011,6(5):e20145
CD4(+) and CD8(+) T cells, the main effectors of adaptive cellular immune responses, differentiate from immature, non-functional CD4(+)CD8(+) double-positive T (DPT) cells in the thymus. Increased proportions of circulating DPT lymphocytes have been observed during acute viral infections; in chronic viral diseases, the role and repartition of extra-thymic DPT cells remain largely uncharacterized. We performed a phenotypic analysis of DPT cells in blood and liver from patients chronically infected by hepatitis C (HCV) or B (HBV) viruses. The highest percentages of DPT cells, predominantly CD4(high)CD8(low), were observed in patients infected by HCV, while HBV-infected patients mostly displayed CD4(low)CD8(high) and CD4(high)CD8(high) DPT cells. All proportions of DPT cells were higher in liver than in blood with, for each subpopulation referred to above, a correlation between their frequencies in these two compartments. In HCV patients, intra-hepatic DPT cells displayed more heterogeneous activation, differentiation and memory phenotypes than in the blood; most of them expressed CD1a, a marker of T cell development in the thymus. Ex vivo, the inoculation of liver slices with HCV produced in cell culture was accompanied by a disappearance of CD8(high) cells, suggesting a direct effect of the virus on the phenotype of DPT cells in the liver. Our results suggest that, in half of the patients, chronic HCV infection promotes the production of DPT cells, perhaps by their re-induction in the thymus and selection in the liver.  相似文献   

6.
Despite the rapid accumulation of quantitative data on the dynamics of CD8(+) T cell responses following acute viral or bacterial infections of mice, the pathways of differentiation of naive CD8(+) T cells into memory during an immune response remain controversial. Currently, three models have been proposed. In the "stem cell-associated differentiation" model, following activation, naive T cells differentiate into stem cell-like memory cells, which then convert into terminally differentiated short-lived effector cells. In the "linear differentiation" model, following activation, naive T cells first differentiate into effectors, and after Ag clearance, effectors convert into memory cells. Finally, in the "progressive differentiation" model, naive T cells differentiate into memory or effector cells depending on the amount of specific stimulation received, with weaker stimulation resulting in formation of memory cells. This study investigates whether the mathematical models formulated from these hypotheses are consistent with the data on the dynamics of the CD8(+) T cell response to lymphocytic choriomeningitis virus during acute infection of mice. Findings indicate that two models, the stem cell-associated differentiation model and the progressive differentiation model, in which differentiation of cells is strongly linked to the number of cell divisions, fail to describe the data at biologically reasonable parameter values. This work suggests additional experimental tests that may allow for further discrimination between different models of CD8(+) T cell differentiation in acute infections.  相似文献   

7.
CD4(+) T cells promote effective CD8(+) T cell-mediated immunity, but the timing and mechanistic details of such help remain controversial. Furthermore, the extent to which innate stimuli act independently of help in enhancing CD8(+) T cell responses is also unresolved. Using a noninfectious vaccine model in immunocompetent mice, we show that even in the presence of innate stimuli, CD4(+) T cell help early after priming is required for generating an optimal pool of functional memory CD8(+) T cells. CD4(+) T cell help increased the size of a previously unreported population of IL-6Ralpha(high)IL-7Ralpha(high) prememory CD8(+) T cells shortly after priming that showed a survival advantage in vivo and contributed to the majority of functional memory CD8(+) T cells after the contraction phase. In accord with our recent demonstration of chemokine-guided recruitment of naive CD8(+) T cells to sites of CD4(+) T cell-dendritic cell interactions, the generation of IL-6Ralpha(high)IL-7Ralpha(high) prememory as well as functional memory CD8(+) T cells depended on the early postvaccination action of the inflammatory chemokines CCL3 and CCL4. Together, these findings support a model of CD8(+) T cell memory cell differentiation involving the delivery of key signals early in the priming process based on chemokine-guided attraction of naive CD8(+) T cells to sites of Ag-driven interactions between TLR-activated dendritic cells and CD4(+) T cells. They also reveal that elevated IL-6Ralpha expression by a subset of CD8(+) T cells represents an early imprint of CD4(+) T cell helper function that actively contributes to the survival of activated CD8(+) T cells.  相似文献   

8.
Memory CD8(+) T cell responses are thought to be more effective as a result of both a higher frequency of Ag-specific clones and more rapid execution of effector functions such as granule-mediated lysis. Murine models have indicated that memory CD8(+) T cells exhibit constitutive expression of perforin and can lyse targets directly ex vivo. However, the regulated expression of cytotoxic granules in human memory CD8(+) T cell subsets has been underexplored. Using intracellular flow cytometry, we observed that only a minor fraction of CD45RA(-)CD8(+) T cells, or of CD8(+) T cells reactive to EBV-HLA2 tetramer, expressed intracellular granzyme B (GrB). Induction of GrB-containing cytotoxic granules in both CD45RA(+) and CD45RA(-) cells was achieved by stimulation with anti-CD3/anti-CD28 mAb-coated beads, required at least 3 days, occurred after several rounds of cell division, and required cell cycle progression. The strongest GrB induction was seen in the CCR7(+) subpopulations, with poorest proliferation being observed in the CD45RA(-)CCR7(-) effector-memory pool. Our results indicate that, as with naive T cells, induction of cytotoxic granules in human Ag-experienced CD8(+) T cells requires time and cell division, arguing that the main numerical advantage of a memory T cell pool is a larger frequency of CTL precursors. The fact that granule induction can be achieved through TCR and CD28 ligation has implications for restoring lytic effector function in the context of antitumor immunity.  相似文献   

9.
10.
Signaling events affecting thymic selection of un-manipulated polyclonal natural CD25(+)foxp3(+) regulatory T cells (nTreg) have not been established ex vivo. Here, we report a higher frequency of phosphorylated STAT-5 (pSTAT-5) in nTreg cells in the adult murine thymus and to a lesser extent in the periphery, compared to other CD4(+)CD8(-) subsets. In the neonatal thymus, the numbers of pSTAT-5(+) cells in CD25(+)foxp3(-) and nTreg cells increased in parallel, suggesting that pSTAT-5(+)CD25(+)foxp3(-) cells might represent the precursors of foxp3(+) regulatory T cells. This "specific" pSTAT-5 expression detected in nTreg cells ex vivo was likely due to a very recent signal given by IL-2/IL-15 cytokines in vivo since (i) it disappeared rapidly if cells were left unstimulated in vitro and (ii) was also observed if total thymocytes were stimulated in vitro with saturating amounts of IL-2 and/or IL-15 but not IL-7. Interestingly, STAT-5 activation upon IL-2 stimulation correlated better with foxp3 and CD122 than with CD25 expression. Finally, we show that expression of an endogenous superantigen strongly affected the early Treg cell repertoire but not the proportion of pSTAT-5(+) cells within this repertoire. Our results reveal that continuous activation of the CD122/STAT-5 signaling pathway characterize regulatory lineage differentiation in the murine thymus.  相似文献   

11.
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in mediating cellular responses. We have examined the importance of reversible cysteine sulfenic acid formation in naive CD8(+) T cell activation and proliferation. We observed that, within minutes of T cell activation, naive CD8(+) T cells increased ROI levels in a manner dependent upon Ag concentration. Increased ROI resulted in elevated levels of cysteine sulfenic acid in the total proteome. Analysis of specific proteins revealed that the protein tyrosine phosphatases SHP-1 and SHP-2, as well as actin, underwent increased sulfenic acid modification following stimulation. To examine the contribution of reversible cysteine sulfenic acid formation to T cell activation, increasing concentrations of 5,5-dimethyl-1,3-cyclohexanedione (dimedone), which covalently binds to cysteine sulfenic acid, were added to cultures. Subsequent experiments demonstrated that the reversible formation of cysteine sulfenic acid was critical for ERK1/2 phosphorylation, calcium flux, cell growth, and proliferation of naive CD8(+) and CD4(+) T cells. We also found that TNF-alpha production by effector and memory CD8(+) T cells was more sensitive to the inhibition of reversible cysteine sulfenic acid formation than IFN-gamma. Together, these results demonstrate that reversible cysteine sulfenic acid formation is an important regulatory mechanism by which CD8(+) T cells are able to modulate signaling, proliferation, and function.  相似文献   

12.
Ag-experienced or memory T cells have increased reactivity to recall Ag, and can be distinguished from naive T cells by altered expression of surface markers such as CD44. Memory T cells have a high turnover rate, and CD8(+) memory T cells proliferate upon viral infection, in the presence of IFN-alphabeta and/or IL-15. In this study, we extend these findings by showing that activated NKT cells and superantigen-activated T cells induce extensive bystander proliferation of both CD8(+) and CD4(+) memory T cells. Moreover, proliferation of memory T cells can be induced by an IFN-alphabeta-independent, but IFN-gamma- or IL-12-dependent pathway. In these conditions of bystander activation, proliferating memory (CD44(high)) T cells do not derive from activation of naive (CD44(low)) T cells, but rather from bona fide memory CD44(high) T cells. Together, these data demonstrate that distinct pathways can induce bystander proliferation of memory T cells.  相似文献   

13.
To address whether a functional dichotomy exists between CD80 and CD86 in naive T cell activation in vivo, we administered anti-CD80 or CD86 blocking mAb alone or in combination to mice with parent-into-F(1) graft-vs-host disease (GVHD). In this model, the injection of naive parental T cells into unirradiated F(1) mice results in either a Th1 cytokine-driven, cell-mediated immune response (acute GVHD) or a Th2 cytokine-driven, Ab-mediated response (chronic GVHD) in the same F(1) recipient. Combined CD80/CD86 blockade beginning at the time of donor cell transfer mimicked previous results seen with CTLA4Ig and completely abrogated either acute or chronic GVHD by preventing the activation and maturation of donor CD4(+) T cells as measured by a block in acquisition of memory marker phenotype and cytokine production. Similar results were seen with selective CD86 blockade; however, the degree of CD4 inhibition was always less than that seen with combined CD80/CD86 blockade. A more striking effect was seen with selective CD80 blockade in that chronic GVHD was converted to acute GVHD. This effect was associated with the induction of Th1 cytokine production, donor CD8(+) T cell activation, and development of antihost CTL. The similarity of this effect to that reported for selective CTLA4 blockade suggests that CD80 is a critical ligand for CTLA4 in mediating the down-regulation of Th1 responses and CD8(+) T cell activation. In contrast, CD86 is critical for the activation of naive CD4(+) T cells in either a Th1 or a Th2 cytokine-mediated response.  相似文献   

14.
Age-related changes in mature CD4+ T cells: cell cycle analysis   总被引:1,自引:0,他引:1  
T cell proliferative responses decrease with age, but the mechanisms responsible are unknown. We examined the impact of age on memory and naive CD4(+) T cell entry and progression through the cell cycle using acridine orange to identify cell cycle stage. For both subsets, fewer stimulated cells from old donors were able to enter and progress through the first cell cycle, with an increased number of cells arrested in G(0) and fewer cells in post G(0) phases. The number of dead cells as assessed by sub-G(0) DNA was also significantly greater in the old group. CD4(+) T cells from old mice also exhibited a significant reduction in clonal history as assessed by CFSE staining. This was associated with a significant decline in cyclin D2 mRNA and protein. We propose that decreases in cyclin D2 are at least partially responsible for the proliferative decline found in aged CD4(+) T cells.  相似文献   

15.
Naive T cells undergo robust proliferation in lymphopenic conditions, whereas they remain quiescent in steady-state conditions. However, a mechanism by which naive T cells are kept from proliferating under steady-state conditions remains unclear. In this study, we report that memory CD4 T cells are able to limit naive T cell proliferation within lymphopenic hosts by modulating stimulatory functions of dendritic cells (DC). The inhibition was mediated by IL-27, which was primarily expressed in CD8(+) DC subsets as the result of memory CD4 T cell-DC interaction. IL-27 appeared to be the major mediator of inhibition, as naive T cells deficient in IL-27R were resistant to memory CD4 T cell-mediated inhibition. Finally, IL-27-mediated regulation of T cell proliferation was also observed in steady-state conditions as well as during Ag-mediated immune responses. We propose a new model for maintaining peripheral T cell homeostasis via memory CD4 T cells and CD8(+) DC-derived IL-27 in vivo.  相似文献   

16.
The secretion of IL-2 is a critical and early landmark in the activation program of CD4(+) T cells in vitro, but the lack of sensitive assays has limited its application for studying T cell activation in vivo. Using a mouse cytokine capture assay we were able to detect the rapid secretion of IL-2 after an in vivo stimulus by 1-2 h in naive T cells and as early as 30 min in memory T cells. Maximal secretion was achieved within 1-2 h for memory cells or 6-8 h for naive T cells. Surprisingly IL-2 production terminated quickly in vivo and secretion was undetectable by 20-24 h in either cell type. We further demonstrated that this short duration of secretion can be influenced by cellular competition between Ag-specific CD4(+) T cells. The consequences of competition were mimicked by reducing the strength of the antigenic stimulus. These data argue that early competition between T cells influences both the eventual frequency of IL-2 producers in the population and also the duration of their secretion, potentially by altering the strength or duration of the stimulus available to each T cell.  相似文献   

17.
Developing T cells journey through the different thymic microenvironments while receiving signals that eventually will allow some of them to become mature naive T cells exported to the periphery. This maturation can be visualized by the phenotype of the developing cells. CCR8 is a ss-chemokine receptor preferentially expressed in the thymus. We have developed 8F4, an anti-mouse CCR8 mAb that is able to neutralize the ligand-induced activation of CCR8, and used it to characterize the CCR8 protein expression in the different thymocyte subsets. Taking into account the intrathymic lineage relationships, our data showed that CCR8 expression in thymus followed two transient waves along T cell maturation. The first one took place in CD4(-) CD8(-) double-negative thymocytes, which showed a low CCR8 expression, and the second wave occurred after TCR activation by the Ag-dependent positive selection in CD4(+) CD8(+) double-positive cells. From that maturation stage, CCR8 expression gradually increased as the CD4(+) cell differentiation proceeded, reaching a maximum at the CD4(+) CD8(-) single-positive stage. These CD4(+) cells expressing CCR8 were also CD69(high) CD62L(low) thymocytes, suggesting that they still needed to undergo some differentiation step before becoming functionally competent naive T cells ready to be exported from the thymus. Interestingly, no significant amounts of CCR8 protein were detectable in CD4(-) CD8(+) thymocytes. Our data showing a clear regulation of the CCR8 protein in thymus suggest a relevant role for CCR8 in this lymphoid organ, and identify CCR8 as a possible marker of thymocyte subsets recently committed to the CD4(+) lineage.  相似文献   

18.
19.
Human memory CD4(+) T cells respond better to inflammatory CCLs/CC chemokines, CCL3 and CCL5, than naive CD4(+) T cells. We analyzed the regulatory mechanism underlying this difference. Memory and naive CD4(+) T cells expressed similarly high levels of CCR1; however, CCR5 was only expressed in memory CD4(+) T cells at low levels. Experiments using mAbs to block chemokine receptors revealed that CCR1 functioned as a major receptor for the binding of CCL5 in memory and naive CD4(+) T cells as well as the ligand-induced chemotaxis in memory CD4(+) T cells. Stimulation of memory CD4(+) T cells with CCL5 activated protein tyrosine kinase-dependent cascades, which were significantly blocked by anti-CCR1 mAb, whereas this stimulation failed to induce these events in naive CD4(+) T cells. Intracellular expressions of regulator of G protein signaling 3 and 4 were only detected in naive CD4(+) T cells. Pretreatment of cell membrane fractions from memory and naive CD4(+) T cells with GTP-gamma S inhibited CCL5 binding, indicating the involvement of G proteins in the interaction of CCL5 and its receptor(s). In contrast, CCL5 enhanced the GTP binding to G(i alpha) and G(q alpha) in memory CD4(+) T cells, but not in naive CD4(+) T cells. Thus, a failure of the ligand-induced activation of CCR1-mediated downstream signaling event as well as a deficiency of CCR5 expression may be involved in the hyporesponsiveness of naive CD4(+) T cells to CCL3 and CCL5.  相似文献   

20.
The age-associated decline in immunocompetence is paralleled by changes in the proportions of PBL subpopulations. In turn, the size and composition of the peripheral lymphocyte pool is determined by input from the thymus and bone marrow and by the balance of proliferation and death in each lymphocyte subpopulation. We compared the kinetics of lymphocyte subtypes in young (seven of eight CMV seronegative) and healthy elderly human subjects (six of seven CMV seropositive), using deuterated glucose DNA labeling in vivo to measure rates of T cell proliferation and disappearance. For CD45RO(+) cells of both CD4(+) and CD8(+) subtypes and for CD4(+)CD45RA(+) cells the kinetics of proliferation and disappearance were remarkably similar between elderly and young subjects. In the young, the kinetics of CD8(+)CD45RA(+) cells with a naive phenotype resembled those of CD4(+)CD45RA(+) cells. However, CD8(+)CD45RA(+) T cells from the elderly exhibited a predominantly primed phenotype, and for this subset, although the proliferation rate was similar to that of other CD45RA(+) cells, the disappearance rate of labeled cells was greatly decreased compared with that of all other T cell subsets. Our data provide a direct demonstration that there are no substantial changes in in vivo kinetics for most T cell populations in healthy elderly compared with young subjects. However, primed CD8(+)CD45RA(+) cells show unusual kinetic properties, indicating the persistence of these cells in the blood and dissociation of proliferation from disappearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号