首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dialysis-related amyloidosis, which occurs in the patients receiving a long-term hemodialysis with high frequency, accompanies the deposition of amyloid fibrils composed of beta(2)-microglobulin (beta2-m). In vitro, beta2-m forms two kinds of fibrous structures at acidic pH. One is a rigid "mature fibril", and the other is a flexible thin filament often called an "immature fibril". In addition, a 22-residue peptide (K3 peptide) corresponding to Ser20 to Lys41 of intact beta2-m forms rigid amyloid-like fibrils similar to mature fibrils. We compared the core of these three fibrils at single-residue resolution using a recently developed hydrogen/deuterium (H/D) exchange method with the dissolution of fibrils by dimethylsulfoxide (DMSO). The exchange time-course of these fibrils showed large deviations from a single exponential curve showing that, because of the supramolecular structures, the same residue exists in different environments from molecule to molecule, even in a single fibril. The exchange profiles revealed that the core of the immature fibril is restricted to a narrow region compared to that of the mature fibril. In contrast, all residues were protected from exchange in the K3 fibril, indicating that a whole region of the peptide is engaged in the beta-sheet network. These results suggest the mechanism of amyloid fibril formation, in which the core beta-sheet formed by a minimal sequence propagates to form a rigid and extensive beta-sheet network.  相似文献   

2.
The aggregation of beta(2)-microglobulin (beta(2)m) into amyloid fibrils occurs in the condition known as dialysis-related amyloidosis (DRA). The protein has a beta-sandwich fold typical of the immunoglobulin family, which is stabilized by a highly conserved disulphide bond linking Cys25 and Cys80. Oxidized beta(2)m forms amyloid fibrils rapidly in vitro at acidic pH and high ionic strength. Here we investigate the role of the single disulphide bond of beta(2)m in amyloidosis in vitro. We show that reduction of the disulphide bond destabilizes the native protein such that non-native molecules are populated at neutral pH. These species are prone to oligomerization but do not form amyloid fibrils when incubated for up to 8 mo at pH 7.0 in 0.4 M NaCl. Over the pH range 4.0-1.5 in the presence of 0.4 M NaCl, however, amyloid fibrils of reduced beta(2)m are formed. These fibrils are approximately 10 nm wide, but are shorter and assemble more rapidly than those produced from the oxidized protein. These data show that population of non-native conformers of beta(2)m at neutral pH by reduction of its single disulphide bond is not sufficient for amyloid formation. Instead, association of one or more specific partially unfolded molecules formed at acid pH are necessary for the formation of beta(2)m amyloid in vitro. Further experiments will now be needed to determine the role of different oligomeric species of beta(2)m in the toxicity of the protein in vivo.  相似文献   

3.
Beta-2-microglobulin (beta(2)m) has been shown to form amyloid fibrils with distinct morphologies under acidic conditions in vitro. Short, curved fibrils (<600 nm in length), form rapidly without a lag phase, with a maximum rate at pH 3.5. By contrast, fibrils with a long (approximately 1 microm), straight morphology are produced by incubation of the protein at pH< or =3.0. Both fibril types display Congo red birefringence, bind Thioflavin-T and have X-ray fibre diffraction patterns consistent with a cross-beta structure. In order to investigate the role of different partially folded states in generating fibrils of each type, and to probe the effect of protein stability on amyloid formation, we have undertaken a detailed mutagenesis study of beta(2)m. Thirteen variants containing point mutations in different regions of the native protein were created and their structure, stability and fibril forming propensities were investigated as a function of pH. By altering the stability of the native protein in this manner, we show that whilst destabilisation of the native state is important in the generation of amyloid fibrils, population of specific denatured states is a pre-requisite for amyloid formation from this protein. Moreover, we demonstrate that the formation of fibrils with different morphologies in vitro correlates with the relative population of different precursor states.  相似文献   

4.
Beta(2)-microglobulin (beta(2)m) forms amyloid fibrils that deposit in the musculo-skeletal system in patients undergoing long-term hemodialysis. How beta(2)m self-assembles in vivo is not understood, since the monomeric wild-type protein is incapable of forming fibrils in isolation in vitro at neutral pH, while elongation of fibril-seeds made from recombinant protein has only been achieved at low pH or at neutral pH in the presence of detergents or cosolvents. Here we describe a systematic study of the effect of 11 physiologically relevant factors on beta(2)m fibrillogenesis at pH 7.0 without denaturants. By comparing the results obtained for the wild-type protein with those of two variants (DeltaN6 and V37A), the role of protein stability in fibrillogenesis is explored. We show that DeltaN6 forms low yields of amyloid-like fibrils at pH 7.0 in the absence of seeds, suggesting that this species could initiate fibrillogenesis in vivo. By contrast, high yields of amyloid-like fibrils are observed for all proteins when assembly is seeded with fibril-seeds formed from recombinant protein at pH 2.5 stabilized by the addition of heparin, serum amyloid P component (SAP), apolipoprotein E (apoE), uremic serum, or synovial fluid. The results suggest that the conditions within the synovium facilitate fibrillogenesis of beta(2)m and show that different physiological factors may act synergistically to promote fibril formation. By comparing the behavior of wild-type beta(2)m with that of DeltaN6 and V37A, we show that the physiologically relevant factors enhance fibrillogenesis by stabilizing fibril-seeds, thereby allowing fibril extension by rare assembly competent species formed by local unfolding of native monomers.  相似文献   

5.
Dialysis related amyloidosis is a serious complication of long-term hemodialysis in which beta(2)-microglobulin (beta(2)m) forms amyloid fibrils that deposit predominantly in cartilaginous tissues. How these fibrils form in vivo, however, is poorly understood. Here we perform a systematic investigation into the role of macrophages in the formation and degradation of beta(2)m amyloid fibrils, building on observations that macrophages are found in association with beta(2)m amyloid deposits in vivo and that these cells contain intra-lysosomal beta(2)m amyloid. In live cell imaging experiments we demonstrate that macrophages internalize monomeric beta(2)m, whereupon it is sorted to lysosomes. At lysosomal pH beta(2)m self-associates in vitro to form amyloid-like fibrils with an array of morphologies as visualized by atomic force microscopy. Cleavage of the monomeric protein by both macrophages and lysosomal proteases isolated from these cells results in the rapid degradation of the monomeric protein, preventing amyloid formation. Incubation of macrophages with preformed fibrils revealed that macrophages internalize amyloid-like fibrils formed extracellularly, but in marked contrast with the monomeric protein, the fibrils were not degraded within macrophage lysosomes. Correspondingly beta(2)m fibrils were highly resistant to degradation by high concentrations of lysosomal proteases isolated from macrophages. Despite their enormous degradative capacity, therefore, macrophage lysosomes cannot ameliorate dialysis-related amyloidosis by degrading pre-existing amyloid fibrils, but lysosomal proteases may play a protective role by eliminating amyloid precursors before beta(2)m fibrils can accumulate in what may represent an otherwise fibrillogenic environment.  相似文献   

6.
To obtain insight into the mechanism of amyloid fibril formation from beta(2)-microglobulin (beta2-m), we prepared a series of peptide fragments using a lysine-specific protease from Achromobacter lyticus and examined their ability to form amyloid fibrils at pH 2.5. Among the nine peptides prepared by the digestion, the peptide Ser(20)-Lys(41) (K3) spontaneously formed amyloid fibrils, confirmed by thioflavin T binding and electron microscopy. The fibrils composed of K3 peptide induced fibril formation of intact beta2-m with a lag phase, distinct from the extension reaction without a lag phase observed for intact beta2-m seeds. Fibril formation of K3 peptide with intact beta2-m seeds also exhibited a lag phase. On the other hand, the extension reaction of K3 peptide with the K3 seeds occurred without a lag phase. At neutral pH, the fibrils composed of either intact beta2-m or K3 peptide spontaneously depolymerized. Intriguingly, the depolymerization of K3 fibrils was faster than that of intact beta2-m fibrils. These results indicated that, although K3 peptide can form fibrils by itself more readily than intact beta2-m, the K3 fibrils are less stable than the intact beta2-m fibrils, suggesting a close relation between the free energy barrier of amyloid fibril formation and its stability.  相似文献   

7.
The role of amino acid sequence in conformational switching observed in prions and proteins associated with amyloid diseases is not well understood. To study alpha to beta conformational transitions, we designed a series of peptides with structural duality; namely, peptides with sequence features of both an alpha-helical leucine zipper and a beta-hairpin. The parent peptide, Template-alpha, was designed to be a canonical leucine-zipper motif and was confirmed as such using circular dichroism spectroscopy and analytical ultracentrifugation. To introduce beta-structure character into the peptide, glutamine residues at sites away from the leucine-zipper dimer interface were replaced by threonine to give Template-alphaT. Unlike the parent peptide, Template-alphaT underwent a heat-inducible switch to beta-structure, which reversibly formed gels containing amyloid-like fibrils. In contrast to certain other natural proteins where destabilization of the native states facilitate transitions to amyloid, destabilization of the leucine-zipper form of Template-alphaT did not promote a transformation. Cross-linking the termini of the peptides compatible with the alternative beta-hairpin design, however, did promote the change. Furthermore, despite screening various conditions, only the internally cross-linked form of the parent, Template-alpha, peptide formed amyloid-like fibrils. These findings demonstrate that, in addition to general properties of the polypeptide backbone, specific residue placements that favor beta-structure promote amyloid formation.  相似文献   

8.
Amyloid fibril formation is associated with several pathologies, including Alzheimer's disease, Parkinson's disease, type II diabetes, and prion diseases. Recently, a relationship between basement membrane components and amyloid deposits has been reported. The basement membrane protein, laminin, may be involved in amyloid-related diseases, since laminin is present in amyloid plaques in Alzheimer's disease and binds to amyloid precursor protein. Recently, we showed that peptide A208 (AASIKVAVSADR), the IKVAV-containing peptide, formed amyloid-like fibrils. We previously identified 60 cell adhesive sequences in laminin-1 using a total of 673 12-mer synthetic peptides. Here, we screened for additional amyloidogenic sequences among 60 cell adhesive peptides derived from laminin-1. We first examined amyloid-like fibril formation by the 60 active peptides with Congo red, a histological dye binding to many amyloid-like proteins. Thirteen peptides were stained with Congo red. Four of the 13 peptides promoted cell attachment and neurite outgrowth like the IKVAV-containing peptide. The four peptides also showed amyloid-like fibril formation in both X-ray diffraction and electron microscopic analyses. The amyloidogenic peptides contain consensus amino acid components, including both basic and acidic amino acids and Ser and Ile residues. These results indicate that at least five laminin-derived peptides can form amyloid-like fibrils. We conclude that the laminin-derived amyloidogenic peptides have the potential to form amyloid-like fibrils in vivo, possibly when laminin-1 is degraded.  相似文献   

9.
Many proteins form amyloid-like fibrils in vitro under conditions that favour the population of partially folded conformations or denatured state ensembles. Characterising the structural and dynamic properties of these states is crucial towards understanding the mechanisms of self-assembly in amyloidosis. The aggregation of beta2-microglobulin (beta2m) into amyloid fibrils in vivo occurs in the condition known as dialysis-related amyloidosis (DRA) and the protein has been shown to form amyloid-like fibrils under acidic conditions in vitro. We have used a number of 1H-15N nuclear magnetic resonance (NMR) experiments in conjunction with site-directed mutagenesis to study the acid-unfolded state of beta2m. 15N NMR transverse relaxation experiments reveal that the acid-denatured ensemble, although predominantly unfolded at the N and C termini, contains substantial non-native structure in the central region of the polypeptide chain, stabilised by long-range interactions between aromatic residues and by the single disulphide bond. Relaxation dispersion studies indicate that the acid-unfolded ensemble involves two or more distinct species in conformational equilibrium on the micro- to millisecond time-scale. One of these species appears to be hydrophobically collapsed, as mutations in an aromatic-rich region of the protein, including residues that are solvent-exposed in the native protein, disrupt this structure and cause a consequent decrease in the population of this conformer. Thus, acid-unfolded beta2m consists of a heterogeneous ensemble of rapidly fluctuating species, some of which contain stable, non-native hydrophobic clusters. Given that amyloid assembly of beta2m proceeds with lag kinetics under the conditions of this study, a rarely populated species such as a conformer with non-native aromatic clustering could be key to the initiation of amyloidosis.  相似文献   

10.
Seeding-dependent propagation and maturation of amyloid fibril conformation   总被引:1,自引:0,他引:1  
Recent studies of amyloid fibrils have focused on the presence of multiple amyloid forms even with one protein and their propagation by seeding, leading to conformational memory. To establish the structural basis of these critical features of amyloid fibrils, we used the amyloidogenic fragment Ser20-Lys41 (K3) of beta2-microglobulin, a protein responsible for dialysis-related amyloidosis. In 20% (v/v) 2,2,2-trifluoroethanol and 10 mM HCl (pH approximately 2), K3 peptide formed two types of amyloid-like fibrils, f218 and f210, differing in the amount of beta-sheet as measured by circular dichroism spectroscopy and Fourier transform infrared spectroscopy. Atomic force microscopy showed that the fibril with a larger amount of beta-sheet (f210) is thinner and longer. Both fibrils were reproduced by seeding, showing the template-dependent propagation of a fibril's conformation. However, upon repeated self-seeding, f218 fibrils were gradually transformed into f210 fibrils, revealing the conformational maturation. The observed maturation can be explained fully by a competitive propagation of two fibrils. The maturation of amyloid fibrils might play a role during the development of amyloidosis.  相似文献   

11.
Merozoite surface protein 2 (MSP2) from the human malaria parasite Plasmodium falciparum is expressed as a GPI-anchored protein on the merozoite surface. It has been implicated in the process of erythrocyte invasion and is a leading vaccine candidate. MSP2 is an intrinsically unstructured protein (IUP), and recombinant MSP2 forms amyloid-like fibrils upon storage. We have examined synthetic peptides corresponding to sequences in the conserved N-terminal region of MSP2 for the presence of local structure and the ability to form fibrils related to those formed by full-length MSP2. In a 25-residue peptide corresponding to the entire N-terminal region of mature MSP2, structures calculated from NMR data show the presence of nascent helical and turn-like structures. An 8-residue peptide from the central region of the N-terminal domain (residues 8-15) also formed a turn-like structure. Both peptides formed fibrils that were similar but not identical to the amyloid-like fibrils formed by full-length MSP2. Notably, the fibrils formed by the peptides bound both Congo Red and Thioflavin T, whereas the fibrils formed by full-length MSP2 bound only Congo Red. The propensity of peptides from the N-terminal conserved region of MSP2 to form amyloid-like fibrils makes it likely that this region contributes to fibril formation by the full-length protein. Thus, in contrast to the more common pathway of amyloid formation by structured proteins, which proceeds via partially unfolded intermediates that then undergo beta-aggregation, MSP2 is an example of a largely unstructured protein with at least one small structured region that has an important role in fibril formation.  相似文献   

12.
The N-terminal 1–83 residues of apolipoprotein A-I (apoA-I) have a strong propensity to form amyloid fibrils, in which the 46–59 segment was reported to aggregate to form amyloid-like fibrils. In this study, we demonstrated that a fragment peptide comprising the extreme N-terminal 1–43 residues strongly forms amyloid fibrils with a transition to β-sheet-rich structure, and that the G26R point mutation enhances the fibril formation of this segment. Our results suggest that in addition to the 46–59 segment, the extreme N-terminal region plays a crucial role in the development of amyloid fibrils by the N-terminal fragment of amyloidogenic apoA-I variants.  相似文献   

13.
The N-terminal fragment 1-29 of horse heart apomyoglobin (apoMb(1-29)) is highly prone to form amyloid-like fibrils at low pH. Fibrillogenesis at pH 2.0 occurs following a nucleation-dependent growth mechanism, as evidenced by the thioflavin T (ThT) assay. Transmission electron microscopy (TEM) confirms the presence of regular amyloid-like fibrils and far-UV circular dichroism (CD) spectra indicate the acquisition of a high content of beta-sheet structure. ThT assay, TEM and CD highlight fast and complete disaggregation of the fibrils, if the pH of a suspension of mature fibrils is increased to 8.3. It is of interest that amyloid-like fibrils form again if the pH of the solution is brought back to 2.0. While apoMb(1-29) fibrils obtained at pH 2.0 are resistant to proteolysis by pepsin, the disaggregated fibrils are easily cleaved at pH 8.3 by trypsin and V8 protease, and some of the resulting fragments aggregate very quickly in the proteolysis mixture, forming amyloid-like fibrils. We show that the increase of amyloidogenicity of apoMb(1-29) following acidification or proteolysis at pH 8.3 can be attributed to the decrease of the peptide net charge following these alterations. The results observed here for apoMb(1-29) provide an experimental basis for explaining the effect of charge and pH on amyloid fibril formation by both unfolded and folded protein systems.  相似文献   

14.
Beta2-microglobulin (beta2-m), a typical immunoglobulin domain made of seven beta-strands, is a major component of amyloid fibrils formed in dialysis-related amyloidosis. To understand the mechanism of amyloid fibril formation in the context of full-length protein, we prepared various mutants in which proline (Pro) was introduced to each of the seven beta-strands of beta2-m. The mutations affected the amyloidogenic potential of beta2-m to various degrees. In particular, the L23P, H51P, and V82P mutations significantly retarded fibril extension at pH 2.5. Among these, only L23P is included in the known "minimal" peptide sequence, which can form amyloid fibrils when isolated as a short peptide. This indicates that the residues in regions other than the minimal sequence, such as H51P and V82P, determine the amyloidogenic potential in the full-length protein. To further clarify the mutational effects, we measured their stability against guanidine hydrochloride of the native state at pH 8.0 and the amyloid fibrils at pH 2.5. The amyloidogenicity of mutants showed a significant correlation with the stability of the amyloid fibrils, and little correlation was observed with that of the native state. It has been proposed that the stability of the native state and the unfolding rate to the amyloidogenic precursor as well as the conformational preference of the denatured state determine the amyloidogenicity of the proteins. The present results reveal that, in addition, stability of the amyloid fibrils is a key factor determining the amyloidogenic potential of the proteins.  相似文献   

15.
Inter-segmental interaction at the growing tip of the amyloid fibril of beta2-microglobulin (beta2m) was investigated using IR microscopy. Cross-seeded fibril formation was implemented, in which the amyloid fibril of the #21-31 fragment of beta2m (fA[#21-31]) was generated on the beta2m amyloid fibril (fA[beta2m]) as a seed. Differences between the IR spectra of the cross-seeded fibril and those of the seed were attributed to the contribution from the tip, whose structure is discussed. The results indicated that 6.5 +/- 1.0 out of 11 residues of the fA[#21-31] tip on fA[beta2m] are contained in a beta-sheet at pH 2.5, which was smaller than the corresponding value (7.5 +/- 1.1 residues) of the spontaneous fA[#21-31] at pH 2.5. The tip was suggested to have a planar structure, indicating the planarity of the interacting segment. The N-terminal region of fA[#21-31] in the fibril is more exposed to the solvent than that in the tip, and vice versa for the C-terminal region. This is consistent with the different protonation levels of these regions, and the direction of peptide in the fibrils is determined from these results.  相似文献   

16.
To search for the essential regions responsible for the beta2-microglobulin (beta2-m) amyloid fibril formation, we synthesized six peptides corresponding to six of the seven beta-sheets in the native structure of beta2-m, and examined their amyloidogenicity. Among the peptides examined, peptide (21-31) (strand B) and the mixture of peptide (21-31) and (78-86) (strand F) showed fibril formation at both pH 2.5 and 7.5. Peptide (21-31) is the N-terminal half of the previously reported proteolytic fragment of beta2-m, Ser21-Lys41 (K3), suggesting that this region may be the essential core. Interestingly, the dimer formation of peptide (21-31) by the disulfide bond substantially facilitated the fibril formation, indicating that the disulfide bond is important for the structural stability of the fibrils.  相似文献   

17.
Most of the disease causing proteins such as beta amyloid, amylin, and huntingtin protein, which are natively disordered, readily form fibrils consisting of beta-sheet polymers. Though all amyloid fibrils are made up of beta-sheet polymers, not all peptides with predominant beta-sheet content in the native state develop into amyloid fibrils. We hypothesize that stable amyloid like fibril formation may require mixture of different conformational states in the peptide. We have tested this hypothesis on amyloid forming peptide namely HCl(Ile)(5)NH(CH(2)CH(2)O)(3)CH(3) (I). We show peptide I, has propensity to form self-assembled structures of beta-sheets in aqueous solutions. When incubated over a period of time in aqueous buffer, I self assembled into beta sheet like structures with diameters ranging from 30 to 60 A that bind with amyloidophilic dyes like Congo red and Thioflavin T. Interestingly peptide I developed into unstable fibrils after prolonged aging at higher concentration in contrast with the general mature fibril-forming propensity of various amyloid petides known to date.  相似文献   

18.
Human islet amyloid polypeptide (hIAPP) accumulates as pancreatic amyloid in type 2 diabetes and readily forms fibrils in vitro. Investigations into the mechanism of hIAPP fibril formation have focused largely on residues 20 to 29, which are considered to comprise a primary amyloidogenic domain. In rodents, proline substitutions within this region and the subsequent beta-sheet disruption, prevents fibril formation. An additional amyloidogenic fragment within the C-terminal sequence, residues 30 to 37, has been identified recently. We have extended these observations by examining a series of overlapping peptide fragments from the human and rodent sequences. Using protein spectroscopy (CD/FTIR), electron microscopy and X-ray diffraction, a previously unrecognised amyloidogenic domain was localised within residues 8 to 20. Synthetic peptides corresponding to this region exhibited a transition from random coil to beta-sheet conformation and assembled into fibrils having a typical amyloid-like morphology. The comparable rat 8-20 sequence, which contains a single His18Arg substitution, was also capable of assembling into amyloid-like fibrils. Examination of peptide fragments corresponding to residues 1 to 13 revealed that the immediate N-terminal region is likely to have only a modulating influence on fibril formation or conformational conversion. The contributions of charged residues as they relate to the amyloid-forming 8-20 sequence were also investigated using IAPP fragments and by assessing the effects of pH and counterions. The identification of these principal amyloidogenic sequences and the effects of associated factors provide details on the IAPP aggregation pathway and structure of the peptide in its fibrillar state.  相似文献   

19.
Beta(2)-microglobulin (beta(2)m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Although full-length beta(2)m readily forms amyloid fibrils in vitro by seed-dependent extension with a maximum at pH 2.5, fibril formation under physiological conditions as detected in patients has been difficult to reproduce. A 22-residue K3 peptide of beta(2)m, Ser(20)-Lys(41), obtained by digestion with Acromobacter protease I, forms amyloid fibrils without seeding. To obtain further insight into the mechanism of fibril formation, we studied the pH dependence of fibril formation of the K3 peptide and its morphology using a ThT fluorescence assay and electron microscopy, respectively. K3 peptide formed amyloid fibrils over a wide range of pH values with an optimum around pH 7 and contrasted with the pH profile of the seed-dependent extension reaction of full-length beta(2)m. This suggests that once the rigid native-fold of beta(2)m is unfolded and additional factors triggering the nucleation process are provided, full-length beta(2)m discloses an intrinsic potential to form amyloid fibrils at neutral pH. The fibril formation was strongly promoted by dimerization of K3 through Cys(25). The morphology of the fibrils varied depending on the fibril formation conditions and the presence or absence of a disulfide bond. Various fibrils had the potential to seed fibril formation of full-length beta(2)m accompanied with a characteristic lag phase, suggesting that the internal structures are similar.  相似文献   

20.
Human beta(2)-microglobulin (beta(2)m) forms amyloid fibrils in hemodialysis related amyloidosis. Peptides spanning the beta strands of beta(2)m have been shown to form amyloid fibrils in isolation. We have studied the self-association of a 13-residue peptide Ac-DWSFYLLYYTEFT-am (Pbeta(2)m) spanning one of the beta-strands of human beta(2)-microglobulin when dissolved in various organic solvents such as methanol (MeOH), trifluoroethanol (TFE), hexafluoroisopropanol (HFIP), and dimethylsulfoxide. We have observed that Pbeta(2)m forms amyloid fibrils when diluted from organic solvents into aqueous buffer at pH 7.0 as judged by increase in thioflavin T fluorescence. Fibril formation was observed to depend on the solvents in which peptide stock solutions were prepared. Circular dichroism spectra indicated propensity for helical conformation in MeOH, TFE, and HFIP. In buffer, beta-structure was observed irrespective of the solvent in which the peptide stock solutions were prepared. Atomic force microscopy images obtained by drying the peptide on mica from organic solvents indicated the ability of Pbeta(2)m to self-associate to form nonfibrillar structures. Morphology of the structures was dependent on the solvent in which the peptide was dissolved. Peptides that have the ability to self-associate such as amyloid-forming peptides would be attractive candidates for the generation of self-assembled structures with varying morphologies by appropriate choice of surfaces and solvents for dissolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号