首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relapse with drug-resistant disease is the main cause of death in MYCN-amplified neuroblastoma patients. MYCN-amplified neuroblastoma cells in vitro are characterized by a failure to arrest at the G?-S checkpoint after irradiation- or drug-induced DNA damage. We show that several MYCN-amplified cell lines harbor additional chromosomal aberrations targeting p53 and/or pRB pathway components, including CDK4/CCND1/MDM2 amplifications, p16INK4A/p14ARF deletions or TP53 mutations. Cells with these additional aberrations undergo significantly lower levels of cell death after doxorubicin treatment compared with MYCN-amplified cells, with no additional mutations in these pathways. In MYCN-amplified cells CDK4 expression is elevated, increasing the competition between CDK4 and CDK2 for binding p21. This results in insufficient p21 to inhibit CDK2, leading to high CDK4 and CDK2 kinase activity upon doxorubicin treatment. CDK4 inhibition by siRNAs, selective small compounds or p19INK4D overexpression partly restored G?-S arrest, delayed S-phase progression and reduced cell viability upon doxorubicin treatment. Our results suggest a specific function of p19INK4D, but not p16INK4A, in sensitizing MYCN-amplified cells with a functional p53 pathway to doxorubicin-induced cell death. In summary, the CDK4/cyclin D-pRB axis is altered in MYCN-amplified cells to evade a G?-S arrest after doxorubicin-induced DNA damage. Additional chromosomal aberrations affecting the p53-p21 and CDK4-pRB axes compound the effects of MYCN on the G? checkpoint and reduce sensitivity to cell death after doxorubicin treatment. CDK4 inhibition partly restores G?-S arrest and sensitizes cells to doxorubicin-mediated cell death in MYCN-amplified cells with an intact p53 pathway.  相似文献   

2.
3.
4.
5.
p16/INK4A/CDKN2A is an important tumor suppressor gene that arrests cell cycle in G1 phase inhibiting binding of CDK4/6 with cyclin D1, leaving the Rb tumor suppressor protein unphosphorylated and E2F bound and inactive. We hypothesized that p16 has a role in exit from cell cycle that becomes defective in cancer cells. Well characterized p16‐defective canine mammary cancer cell lines (CMT28, CMT27, and CMT12), derived stably p16‐transfected CMT cell clones (CMT27A, CMT27H, CMT28A, and CMT28F), and normal canine fibroblasts (NCF), were used to investigate expression of p16 after serum starvation into quiescence followed by re‐feeding to induce cell cycle re‐entry. The parental CMT cell lines used lack p16 expression either at the mRNA or protein expression levels, while p27 and other p16‐associated proteins, including CDK4, CDK6, cyclin D1, and Rb, were expressed. We have successfully demonstrated cell cycle arrest and relatively synchronous cell cycle re‐entry in parental CMT12, CMT28 and NCF cells as well as p16 transfected CMT27A, CMT27H, CMT28A, and CMT28F cells and confirmed this by 3H‐thymidine incorporation and flow cytometric analysis of cell cycle phase distribution. p16‐transfected CMT27A and CMT27H cells exited cell cycle post‐serum‐starvation in contrast to parental CMT27 cells. NCF, CMT27A, and CMT28F cells expressed upregulated levels of p27 and p16 mRNA, post‐serum starvation, as cells exited cell cycle and entered quiescence. Because quiescence and differentiation are associated with increased levels of p27, our data demonstrating that p16 was upregulated along with p27 during quiescence, suggests a potential role for p16 in maintaining these non‐proliferative states. J. Cell. Biochem. 114: 1355–1363, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Salidroside (p-hydroxyphenethyl-beta-d-glucoside), which is present in all species of the genus Rhodiola, has been reported to have a broad spectrum of pharmacological properties. The present study, for the first time, focused on evaluating the effects of the purified salidroside on the proliferation of various human cancer cell lines derived from different tissues, and further investigating its possible molecular mechanisms. Cell viability assay and [3H] thymidine incorporation were used to evaluate the cytotoxic effects of salidroside on cancer cell lines, and flow cytometry analyzed the change of cell cycle distribution induced by salidroside. Western immunoblotting further studied the expression changes of cyclins (cyclin D1 and cyclin B1), cyclin-dependent kinases (CDK4 and Cdc2), and cyclin-dependent kinase inhibitors (p21Cip1 and p27Kip1). The results showed that salidroside inhibited the growth of various human cancer cell lines in concentration- and time-dependent manners, and the sensitivity to salidroside was different in those cancer cell lines. Salidroside could cause G1-phase or G2-phase arrest in different cancer cell lines, meanwhile, salidroside resulted in a decrease of CDK4, cyclin D1, cyclin B1 and Cdc2, and upregulated the levels of p27Kip1 and p21Cip1. Taken together, salidroside could inhibit the growth of cancer cells by modulating CDK4-cyclin D1 pathway for G1-phase arrest and/or modulating the Cdc2-cyclin B1 pathway for G2-phase arrest.  相似文献   

7.
Transgenic mice overexpressing the c-Fos oncoprotein develop osteosarcomas that are associated with deregulated expression of cell cycle genes. Here we have generated osteoblast cell lines expressing c-fos under the control of a tetracycline-regulatable promoter to investigate the role of c-Fos in osteoblast cell cycle control in vitro. Three stable subclones, AT9.2, AT9.3, and AT9.7, derived from MC3T3-E1 mouse osteoblasts, expressed high levels of exogenous c-fos mRNA and protein in the absence of tetracycline. Functional contribution of ectopic c-Fos to AP-1 complexes was confirmed by electromobility shift assays and transactivation of AP-1 reporter constructs. Induction of exogenous c-Fos in quiescent AT9.2 cells caused accelerated S-phase entry following serum stimulation, resulting in enhanced growth rate. Ectopic c-Fos resulted in increased expression of cyclins A and E protein levels, and premature activation of cyclin A-, cyclin E-, and cyclin-dependent kinase (CDK) 2-associated kinase activities, although cyclin D levels and CDK4 activity were not affected significantly in these cell lines. The enhanced CDK2 kinase activity was associated with a rapid, concomitant dissociation of p27 from CDK2-containing complexes. Deregulated cyclin A expression and CDK2 activity was also observed in primary mouse osteoblasts overexpressing c-Fos, but not in fibroblasts, and c-Fos transgenic tumor-derived osteosarcoma cells constitutively expressed high levels of cyclin A protein. These data suggest that overexpression of c-Fos in osteoblasts results in accelerated S phase entry as a result of deregulated cyclin A/E-CDK2 activity. This represents a novel role for c-Fos in osteoblast growth control and may provide c-Fos-overexpressing osteoblasts with a growth advantage during tumorigenesis.  相似文献   

8.
Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.  相似文献   

9.
β-Elemene monosubstituted amine, ether and rhenium coordinated complex were synthesized. Their structures were characterized by IR, 1H NMR, 13C NMR, HRMS or EA. Their IC50 on HeLa cell lines, cell cycle and protein expression of G1 phase (Cyclin D1, Rb, P-Rb) were detected respectively by the method of WST-1, Flow Cytometry and Western Blot. The Results showed that the in vitro anti-proliferative activity of β-elemene monosubstituted amine and Re(CO)3-β-elemene derivatives in human cervix epitheloid carcinoma HeLa cells were improved significantly compared with both of ether derivatives and parent β-elemene. These derivatives could reduce Rb phosphorylation and cyclin D1 protein expression to arrest the cell cycle at G1 phase.  相似文献   

10.
《Genomics》1995,29(3)
Progression through the G1 phase of the cell cycle is dependent on the activity of holoenzymes formed between D-type cyclins and their catalytic partners, the cyclin-dependent kinases cdk4 and cdk6. p16INK4a,p15INK4b, and p18INK4c, a group of structurally related proteins, function as specific inhibitors of the cyclin D-dependent kinases and are likely to play physiologic roles as specific regulators of these kinasesin vivo.A new member of the INK4 gene family, murineINK4d,has recently been identified. Here we report the isolation of humanINK4d(gene symbolCDKN2D), which is 86% identical at the amino acid level to the murine clone and 44% identical to each of the other human INK4 family members. TheINK4dgene is ubiquitously expressed as a single 1.4-kb mRNA with the highest levels detected in thymus, spleen, peripheral blood leukocytes, fetal liver, brain, and testes. The abundance ofINK4dmRNA oscillates in a cell-cycle-dependent manner with expression lowest at mid G1 and maximal during S phase. Using a P1-phage genomic clone ofINK4dfor fluorescencein situhybridization analysis, the location of this gene was mapped to chromosome 19p13. No rearrangements or deletions of theINK4dgene were observed in Southern blot analysis of selected cases of pediatric acute lymphoblastic leukemia (ALL) containing a variant (1;19)(q23′3) translocation that lacks rearrangement of eitherE2AorPBX1, or in ALL cases containing homozygous or hemizygous deletions of the related genes,INK4aandINK4b.  相似文献   

11.
12.
Our previous works revealed that human ribosomal protein S13 (RPS13) was up‐regulated in multidrug‐resistant gastric cancer cells and overexpression of RPS13 could protect gastric cancer cells from drug‐induced apoptosis. The present study was designed to explore the role of RPS13 in tumorigenesis and development of gastric cancer. The expression of RPS13 in gastric cancer tissues and normal gastric mucosa was evaluated by immunohistochemical staining and Western blot analysis. It was found RPS13 was expressed at a higher level in gastric cancer tissues than that in normal gastric mucosa. RPS13 was then genetically overexpressed in gastric cancer cells or knocked down by RNA interference. It was demonstrated that up‐regulation of RPS13 accelerated the growth, enhanced in vitro colony forming and soft agar cologenic ability and promoted in vivo tumour formation potential of gastric cancer cells. Meanwhile, down‐regulation of RPS13 in gastric cancer cells resulted in complete opposite effects. Moreover, overexpression of RPS13 could promote G1 to S phase transition whereas knocking down of RPS13 led to G1 arrest of gastric cancer cells. It was further demonstrated that RPS13 down‐regulated p27kip1 expression and CDK2 kinase activity but did not change the expression of cyclin D, cyclin E, CDK2, CDK4 and p16INK4A. Taken together, these data indicate that RPS13 could promote the growth and cell cycle progression of gastric cancer cells at least through inhibiting p27kip1 expression.  相似文献   

13.
14.
15.
The physiology of p16INK4A-mediated G1 proliferative arrest   总被引:11,自引:0,他引:11  
Phosphorylation of the product of the retinoblastoma susceptibility gene (Rb) physiologically inactivates its growth-suppressive properties. Rb phosphorylation is mediated by cyclin-dependent kinases (CDKs), whose activity is enhanced by cyclins and inhibited by CDK inhibitors. p16INK4A is a member of a family of inhibitors specific for CDK4 and CDK6. p16INK4A is deleted and inactivated in a wide variety of human malignancies, including familial melanomas and pancreatic carcinoma syndromes, indicating that it is an authentic human tumor suppressor. Although one mechanism for its tumor suppression may be prevention of Rb phosphorylation, thereby causing G1 arrest, many normal cell types express p16INK4A, and are still able to traverse the cell cycle. In a search for other mechanisms, we have found that p16INK4A is required for p53-independent G1 arrest in response to DNA-damaging agents, including topoisomerase I and II inhibitors. Thus, like other tumor suppressors, p16INK4A plays an essential role in a DNA-damage checkpoint that leads to cell cycle arrest.  相似文献   

16.
17.
The EGF receptor-mediated targeting gene delivery system GE7 was used to transduce exogenous genepCEP-p21 WAF-1 into human hepatocellular carcinoma cell bothin vitro andin vivo. Afterin vitro transduction of the exogenous gene, the growth of the cell lines SMMC-7721 and BEL-7402 was significantly inhibited compared with the control. On day 8 the inhibition rates of the above cell lines reached 56.0% and 66.7%, respectively. Thein vivo experiment showed that the growth of human hepatoma transplanted in nude mice injected with GE7 gene delivery system subcutaneously once a week for 3 weeks was remarkably inhibited compared with that of untransfected control. The average tumor weight of the experiment group was (0.083 ±0.043) g, while that of the control group was (0.281 ±0.173) g. The difference is significant (P<0.05). It was indicated that GE7 gene delivery system could efficiently transduce exogenous genepCEP-p21 WAF-1 into hepatoma cell with high EGF receptor expression, and inhibit the cell growth with high efficacy bothin vivo andin vitro.  相似文献   

18.
Rb independent inhibition of cell growth by p15(INK4B).   总被引:2,自引:0,他引:2  
The INK4 cyclin dependent kinase inhibitors (CDKI), such as p15(INK4B) and p16(INK4A), block cell cycle progression from G to S phase. This is mediated by inhibition of phosphorylation of proteins, including the retinoblastoma susceptibility protein (Rb), by cyclin dependent kinases. Ectopic over-expression of the p16(INK4A) CDKI can inhibit growth of cell lines depending on Rb status. Cell lines lacking Rb, with few exceptions, are resistant to growth inhibition by p16(INK4A). The effects of ectopic over-expression of p15(INK4B) in cell lines with and without wild type Rb were examined by measuring cell recovery. Proliferation was inhibited in cells lacking Rb as well as in cells with wild type Rb expression. Experiments analyzing the effectiveness of chimeric p15(INK4B)/p16(INK4A) proteins indicated that the Rb independent growth inhibition required N-terminal residues of p15(INK4B). Linker insertion mutation of p15(INK4B) showed that the inhibition was dependent on intact ankyrin structures. Double staining flow cytometry found that the growth inhibition correlated with a decrease in cells in G2/M phases of the cell cycle. These findings are consistent with Rb independent inhibition of the progression from G1 to S caused by overexpression of p15(INK4B).  相似文献   

19.
Considering the resistance of papillary thyroid cancer (PTC) 131I therapy, this study was designed to find a solution at molecular respect. By probing into lncRNA-NEAT1/miR-101-3p/FN1 axis and PI3K/AKT signaling pathway, this study provided a potential target for PTC therapy. 131I-resistant cell lines were established by continuous treatment with median-lethal 131I. Bioinformatic analysis was applied to filtrate possible lncRNA/miRNA/mRNA and related signaling pathway. Luciferase reporter assay was employed in the verification of the targeting relationship between lncRNA and miRNA as well as miRNA and mRNA. MTT assay and flow cytometry assay were performed to observe the impact of NEAT1/miR-101-3p/FN1 on cell viability and apoptosis in radioactivity iodine (RAI)-resistant PTC cell lines, respectively. Western blot and qRT-PCR were conducted to measure the expression of proteins and mRNAs in RAI-resistant PTC tissues and cells. Meanwhile, endogenous PTC mice model were constructed, in order to verify the relation between NEAT1 and RAI-resistance in vivo. NEAT1 was over-expressed in RAI-resistant PTC tissues and cell lines and could resist RAI by accelerating proliferation accompanied by suppressing apoptosis. It indicated that overexpressed NEAT1 restrained the damage of RAI to tumor in both macroscopic and microcosmic. Besides, NEAT1/miR-101-3p exhibited a negative correlation by directly targeting each other. The expression of FN1, an overexpressed downstream protein in RAI-resistance PTC tissues, could be tuned down by miR-101-3p, while the decrease could be restored by NEAT1. In conclusion, both in vitro and in vivo, NEAT1 suppression could inhibit 131I resistance of PTC by upregulating miR-101-3p/FN1 expression and inactivated PI3K/AKT signaling pathway both in vitro and in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号