首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
WW结构域是由38~40个氨基酸残基严密组织形成一个连贯、紧凑的结构域;它以包含两个色氨酸残基为主要特征,能专一地与含有XPPXY保守序列的蛋白质相互作用.这种相互作用涉及许多细胞内事件,如非受体信号传导、转录调节、蛋白质降解等等,并且这种相互作用的变化会直接或间接影响到人体的正常生理代谢功能而引起疾病.  相似文献   

2.
WW domains are small protein-protein interaction modules that recognize proline-rich stretches in proteins. The class II tandem WW domains of the formin binding protein 11 (FBP11) recognize specifically proteins containing PPLPp motifs as present in the formins that are involved in limb and kidney development, and in the methyl-CpG-binding protein 2 (MeCP2), associated with the Rett syndrome. The interaction involves the specific recognition of a leucine side-chain. Here, we report on the novel structure of the complex formed by the FPB11WW1 domain and the formin fragment APPTPPPLPP revealing the specificity determinants of class II WW domains.  相似文献   

3.
The Hippo kinase pathway is emerging as a conserved signaling pathway that is essential for organ growth and tumorigenesis in Drosophila and mammalians. Although the signaling of the core kinases is relatively well understood, less is known about the upstream inputs, downstream outputs and regulation of the whole cascade. Enrichment of the Hippo pathway components with WW domains and their cognate proline-rich interacting motifs provides a versatile platform for further understanding the mechanisms that regulate organ growth and tumorigenesis. Here, we review recently discovered mechanisms of WW domain-mediated interactions that contribute to the regulation of the Hippo signaling pathway in tumorigenesis. We further discuss new insights and future directions on the emerging role of such regulation.  相似文献   

4.
Li N  Hou T  Ding B  Wang W 《Proteins》2011,79(11):3208-3220
PDZ domain is one of the abundant modular domains that recognize short peptide sequences to mediate protein-protein interactions. To decipher the binding specificity of PDZ domain, we analyzed the interactions between 11 mouse PDZ domains and 2387 peptides using a method called MIEC-SVM, which energetically characterizes the domain-peptide interaction using molecular interaction energy components (MIECs) and predicts binding specificity using support vector machine (SVM). Cross-validation and leave-one-domain-out test showed that the MIEC-SVM using all 44 PDZ-peptide residue pairs at the interaction interface outperformed the sequence-based methods in the literature. A further feature (residue pair) selection procedure illustrated that 16 residue pairs were uninformative to the binding specificity, even though they contributed significantly (~50%) to the binding energy. If only using the 28 informative residue pairs, the performance of the MIEC-SVM on predicting the PDZ binding specificity was significantly improved. This analysis suggests that the informative and uninformative residue interactions between the PDZ domain and the peptide may represent those contributing to binding specificity and affinity, respectively. We performed additional structural and energetic analyses to shed light on understanding how the PDZ-peptide recognition is established. The success of the MIEC-SVM method on PDZ domains in this study and SH3 domains in our previous studies illustrates its generality on characterizing protein-peptide interactions and understanding protein recognition from a structural and energetic viewpoint.  相似文献   

5.
WW domains mediate protein-protein interactions in a number of different cellular functions by recognizing proline-containing peptide sequences. We determined peptide recognition propensities for 42 WW domains using NMR spectroscopy and peptide library screens. As potential ligands, we studied both model peptides and peptides based on naturally occurring sequences, including phosphorylated residues. Thirty-two WW domains were classified into six groups according to detected ligand recognition preferences for binding the motifs PPx(Y/poY), (p/phi)P(p,g)PPpR, (p/phi)PPRgpPp, PPLPp, (p/xi)PPPPP, and (poS/poT)P (motifs according to modified Seefeld Convention 2001). In addition to these distinct binding motifs, group-specific WW domain consensus sequences were identified. For PPxY-recognizing domains, phospho-tyrosine binding was also observed. Based on the sequences of the PPx(Y/poY)-specific group, a profile hidden Markov model was calculated and used to predict PPx(Y/poY)-recognition activity for WW domains, which were not assayed. PPx(Y/poY)-binding was found to be a common property of NEDD4-like ubiquitin ligases.  相似文献   

6.
The WW domain is an approximately 38 residue peptide-binding motif that binds a variety of sequences, including the consensus sequence xPPxY. We have displayed hYAP65 WW on the surface of M13 phage and randomized one-third of its three-stranded antiparallel beta-sheet. Improved binding to the hydrophobic peptide, GTPPPPYTVG (WW1), was selected in the presence of three different concentrations of proteinase K to simultaneously drive selection for improved stability as well as high-affinity binding. While some of the selected binders show cooperative unfolding transitions, others show noncooperative thermal unfolding curves. Two novel WW consensus sequences have been identified, which bind to the xPPxY motif with higher affinity than the wild-type hYAP65 WW domain. These WW domain sequences are not precedented in any natural WW domain sequence. Thus, there appear to be a large number of motifs capable of recognizing the target peptide sequence, only a subset of which appear to be used in natural proteins.  相似文献   

7.
A good approach to test our current knowledge on formation of protein beta-sheets is de novo protein design. To obtain a three-stranded beta-sheet mini-protein, we have built a series of chimeric peptides by taking as a template a previously designed beta-sheet peptide, Betanova-LLM, and incorporating N- and/or C-terminal extensions taken from WW domains, the smallest natural beta-sheet domain that is stable in absence of disulfide bridges. Some Betanova-LLM strand residues were also substituted by those of a prototype WW domain. The designed peptides were cloned and expressed in Escherichia coli. The ability of the purified peptides to adopt beta-sheet structures was examined by circular dichroism (CD). Then, the peptide showing the highest beta-sheet population according to the CD spectra, named 3SBWW-2, was further investigated by 1H and 13C NMR. Based on NOE and chemical shift data, peptide 3SBWW-2 adopts a well defined three-stranded antiparallel beta-sheet structure with a disordered C-terminal tail. To discern between the contributions to beta-sheet stability of strand residues and the C-terminal extension, the structural behavior of a control peptide with the same strand residues as 3SBWW-2 but lacking the C-terminal extension, named Betanova-LYYL, was also investigated. beta-Sheet stability in these two peptides, in the parent Betanova-LLM and in WW-P, a prototype WW domain, decreased in the order WW-P > 3SBWW-2 > Betanova-LYYL > Betanova-LLM. Conclusions about the contributions to beta-sheet stability were drawn by comparing structural properties of these four peptides.  相似文献   

8.
WW and SH3 domains, two different scaffolds to recognize proline-rich ligands   总被引:15,自引:0,他引:15  
WW domains are small protein modules composed of approximately 40 amino acids. These domains fold as a stable, triple stranded beta-sheet and recognize proline-containing ligands. WW domains are found in many different signaling and structural proteins, often localized in the cytoplasm as well as in the cell nucleus. Based on analyses of seven structures of WW domains, we discuss their diverse binding preferences and sequence conservation patterns. While modeling WW domains for which structures have not been determined we uncovered a case of potential molecular and functional convergence between WW and SH3 domains. The binding surface of the modeled WW domain of Npw38 protein shows a remarkable similarity to the SH3 domain of Sem5 protein, confirming biochemical data on similar binding predilections of both domains.  相似文献   

9.
In a yeast two hybrid screen with the human isoform of Dendrin (KIAA0749), a putative modulator of the postsynaptic cytoskeleton, we isolated a cDNA coding for a novel protein, KIBRA, possessing two amino-terminal WW domains, an internal C2-like domain and a carboxy-terminal glutamic acid-rich stretch. Northern blot analysis revealed that the expression of KIBRA mRNA was predominately found in kidney and brain. In vitro interaction studies revealed that the first KIBRA WW domain binds specifically to PPxY motifs. Transient transfection of monkey kidney cells with constructs encoding Myc-tagged KIBRA displayed a cytoplasmic localization and a perinuclear enrichment of the protein.  相似文献   

10.
This study shows that a combination of sequence homology and structural information can be used to increase the stability of the WW domain by 2.5 kcal mol(-1) and increase the T(m) by 28 degrees C. Previous homology-based protein design efforts typically investigate positions with low sequence identity, whereas this study focuses on semi-conserved core residues and proximal residues, exploring their role(s) in mediating stabilizing interactions on the basis of structural considerations. The A20R and L30Y mutations allow increased hydrophobic interactions because of complimentary surfaces and an electrostatic interaction with a third residue adjacent to the ligand-binding hydrophobic cluster, increasing stability significantly beyond what additivity would predict for the single mutations. The D34T mutation situated in a pi-turn possibly disengages Asn31, allowing it to make up to three hydrogen bonds with the backbone in strand 1 and loop 2. The synergistic mutations A20R/L30Y in combination with the remotely located mutation D34T add together to create a hYap WW domain that is significantly more stable than any of the protein structures on which the design was based (Pin and FBP28 WW domains).  相似文献   

11.
Class I WW domains are present in many proteins of various functions and mediate protein interactions by binding to short linear PPxY motifs. Tandem WW domains often bind peptides with multiple PPxY motifs, but the interplay of WW–peptide interactions is not always intuitive. The WW domain–containing oxidoreductase (WWOX) harbors two WW domains: an unstable WW1 capable of PPxY binding and stable WW2 that cannot bind PPxY. The WW2 domain has been suggested to act as a WW1 domain chaperone, but the underlying mechanism of its chaperone activity remains to be revealed. Here, we combined NMR, isothermal calorimetry, and structural modeling to elucidate the roles of both WW domains in WWOX binding to its PPxY-containing substrate ErbB4. Using NMR, we identified an interaction surface between these two domains that supports a WWOX conformation compatible with peptide substrate binding. Isothermal calorimetry and NMR measurements also indicated that while binding affinity to a single PPxY motif is marginally increased in the presence of WW2, affinity to a dual-motif peptide increases 10-fold. Furthermore, we found WW2 can directly bind double-motif peptides using its canonical binding site. Finally, differential binding of peptides in mutagenesis experiments was consistent with a parallel N- to C-terminal PPxY tandem motif orientation in binding to the WW1–WW2 tandem domain, validating structural models of the interaction. Taken together, our results reveal the complex nature of tandem WW-domain organization and substrate binding, highlighting the contribution of WWOX WW2 to both protein stability and target binding.  相似文献   

12.
WW domains are protein modules that bind proline-rich ligands. WW domain-ligand complexes are of importance as they have been implicated in several human diseases such as muscular dystrophy, cancer, hypertension, Alzheimer's, and Huntington's diseases. We report the results of a protein array aimed at mapping all the human WW domain protein-protein interactions. Our biochemical approach integrates parallel synthesis of peptides, protein expression, and high-throughput screening methodology combined with tools of bioinformatics. The results suggest that the majority of the bioinformatically predicted WW peptide ligands and most WW domains are functional, and that only about 10% of the measured domain-ligand interactions are positive. The analysis of the WW domain protein arrays also underscores the importance of the amino acid residues surrounding the WW ligand core motifs for specific binding to WW domains. In addition, the methodology presented here allows for the rapid elucidation of WW domain-ligand interactions with multiple applications including prediction of exact WW ligand binding sites, which can be applied to the mapping of other protein signaling domain families. Such information can be applied to the generation of protein interaction networks and identification of potential drug targets. To our knowledge, this report describes the first protein-protein interaction map of a domain in the human proteome.  相似文献   

13.
14.
15.
Ellis JJ  Broom M  Jones S 《Proteins》2007,66(4):903-911
A data set of 89 protein-RNA complexes has been extracted from the Protein Data Bank, and the nucleic acid recognition sites characterized through direct contacts, accessible surface area, and secondary structure motifs. The differences between RNA recognition sites that bind to RNAs in functional classes has also been analyzed. Analysis of the complete data set revealed that van der Waals interactions are more numerous than hydrogen bonds and the contacts made to the nucleic acid backbone occur more frequently than specific contacts to nucleotide bases. Of the base-specific contacts that were observed, contacts to guanine and adenine occurred most frequently. The most favored amino acid-nucleotide pairings observed were lysine-phosphate, tyrosine-uracil, arginine-phosphate, phenylalanine-adenine and tryptophan-guanine. The amino acid propensities showed that positively charged and polar residues were favored as expected, but also so were tryptophan and glycine. The propensities calculated for the functional classes showed trends similar to those observed for the complete data set. However, the analysis of hydrogen bond and van der Waal contacts showed that in general proteins complexed with messenger RNA, transfer RNA and viral RNA have more base specific contacts and less backbone contacts than expected, while proteins complexed with ribosomal RNA have less base-specific contacts than the expected. Hence, whilst the types of amino acids involved in the interfaces are similar, the distribution of specific contacts is dependent upon the functional class of the RNA bound.  相似文献   

16.
The roots of pokeweed (Phytolacca americana) are known to contain the lectins designated PL-A, PL-B, PL-C, PL-D1, and PL-D2. Of these lectins, the crystal structures of two PLs, the ligand-free PL-C and the complex of PL-D2 with tri-N-acetylchitotriose, have been determined at 1.8A resolution. The polypeptide chains of PL-C and PL-D2 form three and two repetitive chitin-binding domains, respectively. In the crystal structure of the PL-D2 complex, one trisaccharide molecule is shared mainly between two neighboring molecules related to each other by a crystallographic 2(1)-screw axis, and infinite helical chains of complexed molecules are generated by the sharing of ligand molecules. The crystal structure of PL-C reveals that the molecule is a dimer of two identical subunits, whose polypeptide chains are located in a head-to-tail fashion by a molecular 2-fold axis. Three putative carbohydrate-binding sites in each subunit are located in the dimer interface. The dimerization of PL-C is performed through the hydrophobic interactions between the carbohydrate-binding sites of the opposite domains in the dimer, leading to a distinct dimerization mode from that of wheat-germ agglutinin. Three aromatic residues in each carbohydrate-binding site of PL-C are involved in the dimerization. These residues correspond to the residues that interact mainly with the trisaccharide in the PL-D2 complex and appear to mimic the saccharide residues in the complex. Consequently, the present structure of the PL-C dimer has no room for accommodating carbohydrate. The quaternary structure of PL-C formed through these putative carbohydrate-binding residues may lead to the lack of hemagglutinating activity.  相似文献   

17.
WW domain proteins are usually regarded as simple models for understanding the folding mechanism of β-sheet. CC45 is an artificial protein that is capable of folding into the same structure as WW domain. In this article, the replica exchange molecular dynamics simulations are performed to investigate the folding mechanism of CC45. The analysis of thermal stability shows that β-hairpin 1 is more stable than β-hairpin 2 during the unfolding process. Free energy analysis shows that the unfolding of this protein substantially proceeds through solvating the smaller β-hairpin 2, followed by the unfolding of β-hairpin 1. We further propose the unfolding process of CC45 and the folding mechanism of two β-hairpins. These results are similar to the previous folding studies of formin binding protein 28 (FBP28). Compared with FBP28, it is found that CC45 has more aromatic residues in N-terminal loop, and these residues contact with C-terminal loop to form the outer hydrophobic core, which increases the stability of CC45. Knowledge about the stability and folding behaviour of CC45 may help in understanding the folding mechanisms of the β-sheet and in designing new WW domains.  相似文献   

18.
Protein–protein interactions (PPIs) in all the molecular aspects that take place both inside and outside cells. However, determining experimentally the structure and affinity of PPIs is expensive and time consuming. Therefore, the development of computational tools, as a complement to experimental methods, is fundamental. Here, we present a computational suite: MODPIN, to model and predict the changes of binding affinity of PPIs. In this approach we use homology modeling to derive the structures of PPIs and score them using state‐of‐the‐art scoring functions. We explore the conformational space of PPIs by generating not a single structural model but a collection of structural models with different conformations based on several templates. We apply the approach to predict the changes in free energy upon mutations and splicing variants of large datasets of PPIs to statistically quantify the quality and accuracy of the predictions. As an example, we use MODPIN to study the effect of mutations in the interaction between colicin endonuclease 9 and colicin endonuclease 2 immune protein from Escherichia coli. Finally, we have compared our results with other state‐of‐art methods.  相似文献   

19.
The NMR solution structure of the isolated Apo Pin1 WW domain (6-39) reveals that it adopts a twisted three-stranded antiparallel beta-sheet conformation, very similar to the structure exhibited by the crystal of this domain in the context of the two domain Pin1 protein. While the B factors in the apo x-ray crystal structure indicate that loop 1 and loop 2 are conformationally well defined, the solution NMR data suggest that loop 1 is quite flexible, at least in the absence of the ligand. The NMR chemical shift and nuclear Overhauser effect pattern exhibited by the 6-39 Pin1 WW domain has proven to be diagnostic for demonstrating that single site variants of this domain adopt a normally folded structure. Knowledge of this type is critical before embarking on time-consuming kinetic and thermodynamic studies required for a detailed understanding of beta-sheet folding.  相似文献   

20.
The second WW domain in mammalian Salvador protein (SAV1 WW2) is quite atypical, as it forms a beta-clam-like homodimer. The second WW domain in human MAGI1 (membrane associated guanylate kinase, WW and PDZ domain containing 1) (MAGI1 WW2) shares high sequence similarity with SAV1 WW2, suggesting comparable dimerization. However, an analytical ultracentrifugation study revealed that MAGI1 WW2 (Leu355-Pro390) chiefly exists as a monomer at low protein concentrations, with an association constant of 1.3 x 10(2) M(-1). We determined its solution structure, and a structural comparison with the dimeric SAV1 WW2 suggested that an Asp residue is crucial for the inhibition of the dimerization. The substitution of this acidic residue with Ser resulted in the dimerization of MAGI1 WW2. The spin-relaxation data suggested that the MAGI1 WW2 undergoes a dynamic process of transient dimerization that is limited by the charge repulsion. Additionally, we characterized a longer construct of this WW domain with a C-terminal extension (Leu355-Glu401), as the formation of an extra alpha-helix was predicted. An NMR structural determination confirmed the formation of an alpha-helix in the extended C-terminal region, which appears to be independent from the dimerization regulation. A thermal denaturation study revealed that the dimerized MAGI1 WW2 with the Asp-to-Ser mutation gained apparent stability in a protein concentration-dependent manner. A structural comparison between the two constructs with different lengths suggested that the formation of the C-terminal alpha-helix stabilized the global fold by facilitating contacts between the N-terminal linker region and the main body of the WW domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号