首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elongase of very long chain fatty acids-4 (ELOVL4) is the only mammalian enzyme known to synthesize C28-C36 fatty acids. In humans, ELOVL4 mutations cause Stargardt disease-3 (STGD3), a juvenile dominant macular degeneration. Heterozygous Stgd3 mice that carry a pathogenic mutation in the mouse Elovl4 gene demonstrate reduced levels of retinal C28-C36 acyl phosphatidylcholines (PC) and epidermal C28-C36 acylceramides. Homozygous Stgd3 mice die shortly after birth with signs of disrupted skin barrier function. In this study, we report generation of transgenic (Tg) mice with targeted Elovl4 expression driven by an epidermal-specific involucrin promoter. In homozygous Stgd3 mice, this transgene reinstates both epidermal Elovl4 expression and synthesis of two missing epidermal lipid groups: C28-C36 acylceramides and (O-linoleoyl)-omega-hydroxy C28-C36 fatty acids. Transgene expression also restores skin barrier function and rescues the neonatal lethality of homozygous Stgd3 mice. These studies establish the critical requirement for epidermal C28-C36 fatty acid synthesis for animal viability. In addition to the skin, Elovl4 is also expressed in other tissues, including the retina, brain, and testes. Thus, these mice will facilitate future studies to define the roles of C28-C36 fatty acids in the Elovl4-expressing tissues.  相似文献   

2.
Isolation and characterization of thrombomodulin from human placenta   总被引:18,自引:0,他引:18  
Protein C, a plasma protein, is activated by thrombin to a protease (protein Ca) that functions as a physiological anticoagulant. We have isolated thrombomodulin, a cofactor required for the rapid activation of protein C, from human placenta. The purification to near homogeneity was achieved using a crude Triton-solubilized protein fraction from a placental particulate fraction as starting material. Chromatography on DEAE-Sepharose removed 95% of the protein and achieved a 3-fold purification. Thrombomodulin was then isolated by affinity chromatography on a column of thrombin-Sepharose wherein the thrombin had been previously inactivated with diisopropyl fluorophosphate. The final preparation was purified 7,900-fold over the membrane extract with a yield of 7%. We obtained 0.88 mg of thrombomodulin from 100 g of membrane extract derived from 5 kg of placenta. The protein was nearly homogeneous as judged by electrophoresis on 10% acrylamide sodium dodecyl sulfate gels in the presence of 2-mercaptoethanol with an apparent Mr = 105,000. Western blot analysis without 2-mercaptoethanol gave an apparent Mr = 75,000. The protein stimulated the rate of protein C activation by thrombin 800-fold to 10 mol of Ca formed/min/mol of thrombin. Thrombin and thrombomodulin appear to form a 1:1 stoichiometric complex as judged from experiments where we measured the effect of varying the concentration of thrombomodulin with respect to thrombin and the converse, on rates of protein C activation. An antibody directed against rabbit lung thrombomodulin inhibited the human placenta protein by 66%, and the amino acid composition of the proteins from the two species was similar indicating that the proteins are closely related. The apparent Michaelis constant of the thrombin-thrombomodulin complex for protein C is 9.8 microM. The protein C activation reaction requires calcium ions and is maximal at 1 mM Ca2+; higher concentrations inhibited the reaction. Coagulation factor Va and factor Va light chain both stimulate the activity of human thrombomodulin 2- to 3-fold.  相似文献   

3.
Half of all familial breast cancers are due to mutation in the BRCA1 gene. However, despite its importance, attempts to model BRCA1-induced disease in the mouse have been disappointing. Heterozygous Brca1 knockout mice do not develop mammary tumors and homozygous knockout mice die during embryogenesis from ill-defined causes. Sequence analysis has shown that the coding region, genomic organization, and regulatory sequences of the human and mouse genes are not well conserved. This has raised the question of whether the mouse can serve as an effective model for functional analysis of the human BRCA1 gene. To address this question we have introduced a bacterial artificial chromosome containing the human BRCA1 gene into the germline of Brca1 knockout mice. Surprisingly, we have found that the embryonic lethality of Brca1 knockout mice is rescued by the human transgene. We also show that expression of human BRCA1 transgene mirrors the endogenous murine gene. Our "humanized" transgenic mice can serve as a model system for functional analyses of the human BRCA1 gene. Published 2001 Wiley-Liss, Inc.  相似文献   

4.
Cathepsin B (CTSB) and cathepsin L (CTSL) are two widely expressed cysteine proteases thought to predominantly reside within lysosomes. Functional analysis of CTSL in humans is complicated by the existence of two CTSL-like homologs (CTSL and CTSL2), in contrast to mice, which possess only one CTSL enzyme. Thus, transgenic expression of human CTSL in CTSL-deficient mice provides an opportunity to study the in vivo functions of this human protease without interference by its highly related homolog. While mice with single-gene deficiencies for murine CTSB or CTSL survive without apparent neuromuscular impairment, murine CTSB/CTSL double-deficient mice display degeneration of cerebellar Purkinje cells and neurons of the cerebral cortex, resulting in severe hypotrophy, motility defects, and lethality during their third to fourth week of life. Here we show that expression of human CTSL through a genomic transgene results in widespread expression of human CTSL in the mouse that is capable of rescuing the lethality found in CTSB/CTSL double-deficient animals. Human CTSL is expressed in the brain of these compound mutants, predominantly in neurons of the cerebral cortex and in Purkinje cells of the cerebellum, where it appears to prevent neuronal cell death.  相似文献   

5.
The incidence of spontaneously occurring deciduomata is considerably higher in T-stock than in (C3H X C57BL)F1 females. The basis for this difference was studied in vivo, by means of embryo transplantation procedure, and in vitro, by means of short-term embryo culture. Both studies indicate that strain differences in the incidence of spontaneous deciduomata may be largely, if not wholly, accounted for by genetic differences between embryos themselves expressed in terms of the rate of development during the preimplantation period and in the ability to survive the preimplantation and early implantation environment.  相似文献   

6.
Sphingomyelin phosphodiesterase 3 (SMPD3) is a pleiotropic lipid metabolizing enzyme involved in multiple physiological processes. A deletion mutation in the murine Smpd3 gene called fragilitas ossium (fro) leads to severe skeletal abnormalities in the developing fro/fro embryos. Although fro/fro mice can be useful to study many different aspects of SMPD3 functions, their perinatal lethality makes it difficult to generate a sufficient number of mice for controlled studies. In fact, on the C57BL/6 genetic background, none of the fro/fro mice survive beyond the perinatal stage. In this study, we used the “Tet‐On” inducible gene expression system to express Smpd3 transiently in fro/fro;ROSA‐rtTA;TRE‐Smpd3 embryos on the C57BL/6 background. This induced Smpd3 expression corrected all the skeletal abnormalities in these embryos and prevented their early death. However, induction of Smpd3 expression in the adolescent fro/fro;ROSA‐rtTA;TRE‐Smpd3 mice was not sufficient to correct the defects in trabecular bone mineralization and the impaired growth of the long bones. This novel mouse model will be a useful tool to study SMPD3 biology in vivo. genesis 52:408–416, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Dietrich P  Yue J  E S  Dragatsis I 《PloS one》2011,6(10):e27015
Familial Dysautonomia (FD) is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population, and leads to death before the age of 40. The disease is characterized by abnormal development and progressive degeneration of the sensory and autonomic nervous system. A single base pair substitution in intron 20 of the Ikbkap gene accounts for 98% of FD cases, and results in the expression of low levels of the full-length mRNA with simultaneous expression of an aberrantly spliced mRNA in which exon 20 is missing. To date, there is no animal model for the disease, and the essential cellular functions of IKAP--the protein encoded by Ikbkap--remain unknown. To better understand the normal function of IKAP and in an effort to generate a mouse model for FD, we have targeted the mouse Ikbkap gene by homologous recombination. We created two distinct alleles that result in either loss of Ikbkap expression, or expression of an mRNA lacking only exon 20. Homozygosity for either mutation leads to developmental delay, cardiovascular and brain malformations, accompanied with early embryonic lethality. Our analyses indicate that IKAP is essential for expression of specific genes involved in cardiac morphogenesis, and that cardiac failure is the likely cause of abnormal vascular development and embryonic lethality. Our results also indicate that deletion of exon 20 abolishes gene function. This implies that the truncated IKAP protein expressed in FD patients does not retain any significant biological function.  相似文献   

8.
PurposeAluminum (Al) is a harmful metal to organisms and is capable of entering the human body in multiple ways, such as through drinking, breathing, deodorant use, and vaccination. This study examined the prospective toxicity of Al and the protective attributes of pomegranate juice (PJ) on neurobehavioral and biochemical parameters of male mice.MethodsSix groups of male mice were treated for 35 days with 20 % PJ (group II), 40 % PJ (group III), 400 mg/kg Al (group IV), Al + 20 % PJ (group V), Al + 40 % PJ (group VI) or tap water (control, group I). Behavioral assessments were conducted for learning and memory evaluations at the end of experiment. In addition, the forebrain was isolated for biochemical analysis.ResultsThe exposure of male mice to Al decreased learning and memory retention in the shuttle box, Morris water-maze and T-Maze tests. Biochemical analysis revealed significant depletions in neurotransmitters including DA, 5-HT and AChE and oxidative proteins including GSH, GST, CAT and SOD and increased TBARES levels in Al-treated mice compared to untreated mice. Pomegranate juice provided protection against these effects after Al exposure by ameliorating learning and memory retention and oxidative state in a dose-independent manner.ConclusionOur data demonstrated that Al exposure caused behavioral and biochemical disorders. Pomegranate juice in lower dose has beneficial properties for health and can be used as a source of antioxidants to reduce the toxicity of Al and other substances.  相似文献   

9.
The reduced folate carrier (RFC1) is an important route by which the major blood folate, 5-methyltetrahydrofolate, is transported into mammalian cells. In this study we determined the consequences of inactivation of RFC1 in mice by homologous recombination. While RFC1-null embryos died in utero before embryonic day 9.5 (E9.5), near-normal development could be sustained in RFC1(-)/- embryos examined at E18.5 by supplementation of pregnant RFC1(+/-) dams with 1-mg daily subcutaneous doses of folic acid. About 10% of these animals went on to live birth but died within 12 days. These RFC1(-)/- mice showed a marked absence of erythropoiesis in bone marrow, spleen, and liver along with lymphoid depletion in the splenic white pulp and thymus. In addition, there was some impairment of renal and seminiferous tubule development. These data indicate that in the absence of RFC1 function, neonatal animals die due to failure of hematopoietic organs.  相似文献   

10.
Studies on cell division traditionally focus on the mechanisms of chromosome segregation and cytokinesis, yet we know comparatively little about how organelles segregate. Analysis of organelle partitioning in asymmetrically dividing cells has provided insights into the mechanisms through which cells control organelle distribution. Interestingly, these studies have revealed that segregation mechanisms frequently link organelle distribution to organelle growth and formation. Furthermore, in many cases, cells use organelles, such as the endoplasmic reticulum and P granules, as vectors for the segregation of information. Together, these emerging data suggest that the coordination between organelle growth, division, and segregation plays an important role in the control of cell fate inheritance, cellular aging, and rejuvenation, i.e., the resetting of age in immortal lineages.  相似文献   

11.
Head development of Drosophila melanogaster was studied by forming, in a background of Minute (M) cells, clones whose cell division rate was higher (M+). By studying such clones true developmental restrictions on clonal growth may be revealed, and not restrictions on clones which are just the result of interactions between neighboring cells. Pigment, bristle, and trichome markers allowed clone detection in both the compound eye and in much of the head cuticle. Clones were formed by X-ray-induced mitotic recombination at three stages in the first and second instar. Initial experiments determined some parameters of cell division in the compound eye and verified the differential division rate of M+ cells growing in an M background, and vice versa. The earliest and most striking developmental restriction on clonal growth divides the head into a dorsal and a ventral compartment. No evidence for anterior-posterior compartmentalization was found. By 75 hr of development in Minute flies, several lines of developmental restriction are formed which subdivide these two compartments. Evidence is presented which supports these conclusions: One subdivision may contain cells of different clonal origin, cells derived from the same progenitor blastoderm cell may be in different subdivisions, and each subdivision is formed from a group of contiguous cells.  相似文献   

12.
13.
Decorin, a proteoglycan, interacts with extracellular matrix proteins, growth factors and receptors. Decorin expression and spatio-temporal distribution were studied by RT-PCR and immunofluorescence, while decorin function was examined by blocking antibodies in the early chick embryo. Decorin was first detectable at stage XIII (late blastula). During gastrulation (stage HH3-4), decorin fluorescence was intense in epiblast cells immediately adjacent to the streak, and in migrating cells. Decorin fluorescence was intense in endoderm and strong at mesoderm-neural plate surfaces at stage HH5-6 (neurula). At stage HH10-11 (12 somites), decorin fluorescence was intense in myelencephalon and then showed distinct expression patterns along the myelencephalon axes by stage HH17. Decorin fluorescence was intense in neural crest cells, dorsal aorta, heart, somite and neuroepithelial cells apposing the somite, nephrotome, gut and in pancreatic and liver primordia. Antibody-mediated inhibition of decorin function affected the head-to-tail embryonic axis extension, indicating that decorin is essential for convergent extension cell movements during avian gastrulation. Decorin was also essential for retinal progenitor cell polarization, neural crest migration, somite boundary formation and cell polarization, mesenchymal cell polarization and primary endoderm displacement to the embryo periphery. The embryonic blood vessels were deformed, the dorsal mesocardium was thinned and the cardiac jelly was abnormally thickened in the heart. Decorin is known to modulate collagen fibrillogenesis, a key mechanism of matrix assembly, and cell proliferation. Decorin also appears to be essential for the coordination of cell and tissue polarization, which is an important feature in organ patterning of the embryo.  相似文献   

14.
NRAS is a proto-oncogene involved in numerous myeloid malignancies. Here, we report on a mouse line bearing a single retroviral long terminal repeat inserted into Nras. This genetic modification resulted in an increased level of wild type Nras mRNA giving the possibility of studying the function and activation of wild type NRAS. Flow cytometry was used to show a variable but significant increase of immature myeloid cells in spleen and thymus, and of T-cells in the spleen. At an age of one week, homozygous mice began to retard compared to their wild type and heterozygous littermates. Two weeks after birth, animals started to progressively lose weight and die before weaning. Heterozygous mice showed a moderate increase of T-cells and granulocytes but survived to adulthood and were fertile. In homozygous and heterozygous mice Gfi1 and Gcsf mRNA levels were upregulated, possibly explaining the increment in immature myeloid cells detected in these mice. The short latency period indicates that Nras overexpression alone is sufficient to cause dose-dependent granulocytosis and T-cell expansion.  相似文献   

15.
Human placental extracts contain a herapin-inhibitable lectin activity. The lectin, which closely resembles those from chicken and rat tissues, was purified by heparin-affinity chromatography. It shares many properties with the previously reported lectins, including hapten specificity, molecular weight of monomers, and immunological cross-reactivity. Sections from different stages of placental development, stained by immunohistochemistry procedures using lectin-specific antibody, showed that the lectin was initially present only in cytotrophoblasts of early first trimester villi. Later in the first trimester, both cytotrophoblasts and syncytiotrophoblasts were stained positively for lectin. From second trimester to term, the lectin was seen only in syncytiotrophoblasts.  相似文献   

16.
In the mouse the insulin-like growth factor receptor type 2 gene (Igf2r) is imprinted and maternally expressed. Igf2r encodes a trans-membrane receptor that transports mannose-6-phosphate tagged proteins and insulin-like growth factor 2 to lysosomes. During development the receptor reduces the amount of insulin-like growth factors and thereby decreases embryonic growth. The dosage of the gene is tightly regulated by genomic imprinting, leaving only the maternal copy of the gene active. Although the function of Igf2r in development is well established, the function of imprinting the gene remains elusive. Gene targeting experiments in mouse have demonstrated that the majority of genes are not sensitive to gene dosage, and mice heterozygous for mutations generally lack phenotypic alterations. To investigate whether reduction of Igf2r gene dosage by genomic imprinting has functional consequences for development we generated a non-imprinted allele (R2Delta). We restored biallelic expression to Igf2r by deleting a critical element for repression of the paternal allele (region 2) in mouse embryonic stem cells. Maternal inheritance of the R2Delta allele has no phenotype; however, paternal inheritance results in biallelic expression of Igf2r, which causes a 20% reduction in weight late in embryonic development that persists into adulthood. Paternal inheritance of the R2Delta allele rescues the lethality of a maternally inherited Igf2r null allele and a maternally inherited Tme (T-associated maternal effect) mutation. These data show that the biological function of imprinting Igf2r is to increase birth weight and they also establish Igf2r as the Tme gene.  相似文献   

17.
18.
Mice born without CD2-associated protein (CD2AP) develop renal failure and nephrotic syndrome about 4 weeks after birth and die around 6 weeks of age. Although CD2AP is widely expressed, the severity of the renal failure precludes a clear determination of the role of CD2AP in other tissues. Here we generated transgenic mice expressing CD2AP using a podocyte-specific promoter. Podocyte-specific expression of CD2AP prevented the development of proteinuria, demonstrating that the renal failure is solely due to loss of CD2AP in podocytes and not in other renal or in immune cells. CD2AP-deficient mice are long-lived and appear phenotypically normal. Histological analysis demonstrated testicular abnormalities that were age-related. CIN85, a paralog of CD2AP, is poorly expressed in both the podocyte and the basal seminiferous tubule, suggesting that the loss of CD2AP in specific tissues may be compensated for by CIN85.  相似文献   

19.
Checkpoints of DNA integrity are conserved throughout evolution, as are the kinases ATM (Ataxia Telangiectasia mutated) and ATR (Ataxia- and Rad-related), which are related to phosphatidylinositol (PI) 3-kinase [1] [2] [3]. The ATM gene is not essential, but mutations lead to ataxia telangiectasia (AT), a pleiotropic disorder characterised by radiation sensitivity and cellular checkpoint defects in response to ionising radiation [4] [5] [6]. The ATR gene has not been associated with human syndromes and, structurally, is more closely related to the canonical yeast checkpoint genes rad3(Sp) and MEC1(Sc) [7] [8]. ATR has been implicated in the response to ultraviolet (UV) radiation and blocks to DNA synthesis [8] [9] [10] [11], and may phosphorylate p53 [12] [13], suggesting that ATM and ATR may have similar and, perhaps, complementary roles in cell-cycle control after DNA damage. Here, we report that targeted inactivation of ATR in mice by disruption of the kinase domain leads to early embryonic lethality before embryonic day 8.5 (E8.5). Heterozygous mice were fertile and had no aberrant phenotype, despite a lower ATR mRNA level. No increase was observed in the sensitivity of ATR(+/-) embryonic stem (ES) cells to a variety of DNA-damaging agents. Attempts to target the remaining wild-type ATR allele in heterozygous ATR(+/-) ES cells failed, supporting the idea that loss of both alleles of the ATR gene, even at the ES-cell level, is lethal. Thus, in contrast to the closely related checkpoint gene ATM, ATR has an essential function in early mammalian development.  相似文献   

20.
In studies initially focused on roles of nonmuscle myosin IIA (NMIIA) in the developing mouse epidermis, we have discovered that a previously described cytokeratin 5 (K5)-Cre gene construct is expressed in early embryo development. Mice carrying floxed alleles of the nonmuscle myosin II heavy chain gene (NMHC IIAflox/flox) were crossed with the K5-Cre line. The progeny of newborn pups did not show a Mendelian genotype distribution, suggesting embryonic lethality. Analysis of post-implantation conceptuses from embryonic day (E)9.5 to E13.5 revealed poorly developed embryos and defective placentas, with significantly reduced labyrinth surface area and blood vessel vascularization. These results suggested the novel possibility that the bovine K5 promoter-driven Cre-recombinase was active early in trophoblast-lineage cells that give rise to the placenta. To test this possibility, K5-Cre transgenic mice were crossed with the mT/mG reporter mouse in which activation of GFP expression indicates Cre transgene expression. We observed activation of K5-Cre-driven GFP expression in the ectoplacental cone, in the extraembryonic ectoderm, and in trophoblast giant cells in the E6.5 embryo. In addition, we observed GFP expression at E11.5 to E13.5 in both the labyrinth of the placenta and the yolk sac. NMIIA expression was detected in these same cell types in normal embryos, as well as in E13.5 yolk sac and labyrinth. These findings taken together suggest that NMHC IIA may play critical roles in the early trophoblast-derived ectoplacental cone and extraembryonic ectoderm, as well as in the yolk sac and labyrinth tissues that form later. Our findings are consistent with phenotypes of constitutive NMIIA knockout mice made earlier, that displayed labyrinth and yolk sac-specific defects, but our findings extend those observations by suggesting possible NMIIA roles in trophoblast lineages as well. These results furthermore demonstrate that K5-Cre gene constructs, previously reported to be activated starting at approximately E12.5 in the forming epidermis, may be widely useful as drivers for activation of cre/lox based gene excision in early embryo extraembronic trophoblast tissues as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号