首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The intracellular activity of pyramidal tract neurons was studied during electrical stimulation of ventrolateral and ventroposterolateral thalamic nuclei in acute experiments on cats immobilized by myorelaxants. Somatic action potentials were observed and spontaneous spikes were also produced by single and rhythmic stimulation of the thalamic nuclei at the rate of 8–14 Hz, by iontophoretic application of strychnine, and by intracellular depolarizing current pulses. These potentials had a relatively low and variable amplitude of 5–60 mV and are presumed to be dendritic action potentials. It is postulated that these variable potentials arise in the dendrites of pyramidal neurons with multiple zones generating such activity. No interaction was observed where somatic and dendritic action potentials occur simultaneously. The possible functional role of dendritic action potentials is discussed.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 435–443, July–August, 1986.  相似文献   

2.
Background and evoked neuronal activity in the cat sensorimotor cortex was recorded under a-chloralose anesthesia. Pairs of heterogeneous stimuli were applied, spaced at intervals of 0, 100, 200, 300, and 400 msec. A clicking sound, flashing light, and electroshock to the contralateral forepaw were used as stimuli. Partial or complete blockade of response to test stimuli presentations spaced 100–200 msec apart were observed when using stimulation of varying modality. The greatest test response was recorded at interstimulus intervals of 200–300 msec. Intracellular mechanisms of heterosensory interaction were investigated by applying the inhibitory transmitter antagonist picrotoxin microiontophoretically to the test cell to produce local attenuation of inhibitory effects. This substance also reduced the duration of blockage following the conditioning stimulus and the occurrence of peak level test response at a lower interstimulus interval than in the controls. Either a consistent increase in the number of spikes per response at one of the interstimulus intervals or a uniform reinforcement in unit response to several different interstimulus intervals were observed in a proportion of the cells. The contribution of intracortical inhibitory influences to the mechanisms of heterosensory interaction on neurons of the cat sensorimotor cortex is discussed in the light of our findings.A. A. Ukhtomskii Institute of Physiology, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 147–156, March–April, 1987.  相似文献   

3.
4.
5.
It was shown during acute experiments on cats immobilized with myorelaxants that intracellular injection of chloride ions into both pyramidal and non-pyramidal neurons of the sensorimotor cortex produces the early component only of IPSP, while the late phase and postburst hyperpolarization of pyramidal neurons are not very sensitive to this effect. It is deduced that membrane permeability to chloride ions increases during the early component of IPSP in pyramidal and nonpyramidal neurons of the cat sensorimotor cortex, while the late phase and postburst hyperpolarization is less dependent on chloride permeability.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 453–460, July–August, 1986.  相似文献   

6.
The lateral geniculate nucleus of the cat was explored with micropipettes having submicroscopic tips. The only reliably recorded intracellular activity was from axons. Following orthodromic stimulation, the potentials recorded by the extracellular electrodes registered the net flow of current across the soma-dendritic membrane of the principal cell bodies. The current has three phases of flow away from the soma-dendritic membrane followed by a flow of current toward this membrane. The first component is ascribed to synaptic activity. Subsequent components are ascribed to the activity of the initial segment of the axon and a limited area of high threshold membrane on the soma. The evidence is interpreted as suggesting that most of the soma-dendritic membrane is excited synaptically to produce a postsynaptic potential, but is not excited electrically and does not produce a propagating spike.  相似文献   

7.
8.
Specifics of the caudate nucleus effect upon specific and unspecific responses of the cat brain sensory-motor cortex involves an individual inhibition and temporal modulation of unspecific activity of the cortical neurons, whereas specific responses of the same cells remain the same.  相似文献   

9.
Electrical characteristics of motor cortical neurons were studied in acute experiments on immobilized cats. Values of the input resistances varied from units to tens of megohms (mean 11.11±3.93 MΩ). The threshold current is a hyperbolic function of input resistance of the corresponding neurons and negative correlation was found between the axonal conduction velocity and input resistance. The time constant (τ0) of the membrane was 7.1±3.46 msec. A time constant τ1, of 1.65±0.36 msec, could also be distinguished in some neurons. Electrotonic lengths of dendrites of the cortical neurons were calculated by the use of Rall's model: mean 3.66±0.94 (in units of length constant).  相似文献   

10.
11.
The characteristics of the averaged evoked potentials (AEP) (experiments with awake non-paralysed animals), of the evoked potentials (EP) and of the responses of single sensorimotor cortical neurons (acute experiments) of cats to tone-bursts with frequencies within 0.1-6.0 kHz were studied. Response selectivity to the tone-burst frequencies which are energetically pronounced in some biologically significant sounds for the cat was observed. The averaged curve of the dependence of the amplitude of AEP in the somatosensory cortical region (S1) on the tone-burst frequency has reliable maximum values at the frequencies of 0.8, 1.6 and 2.0-3.0 kHz. Most pronounced changes in the heart rhythm were observed within the tone-burst frequency ranges in which the AEP of the highest amplitudes were recorded. The amplitude of the AEP was found to increase during the conditioned reflex elaboration. The curve of the dependence of the probability of the EP occurrence on the frequency at equal sound pressure levels had maximum values at the frequencies of 1.6 and 3.2 kHz. The highest amplitude values of EP were found at frequencies of 0.8, 1.6 and 3.2 kHz. More than half of the recorded neurons revealed the lowest values of the response thresholds and the maximum values of the occurrence probability under suprathreshold stimulation at frequencies close to 0.8, 1.6, and 3.2 kHz. It is supposed that the above mentioned feature of the input frequency organization in sensorimotor cortex is connected with the selectivity as to the biological significance of acoustic stimuli.  相似文献   

12.
Subcutaneous injection of 10 micrograms desglycilargininvasopressin (DG-AVP) does not alter the mean frequency of background unit activity of sensorimotor cortical neurons. However, the pattern of impulse activity is essentially changed. At the same time the reactions of sensorimotor cortical neurons to microiontophoretic administration of acetylcholine and noradrenaline experience definite changes. It is suggested that the DG-AVP-induced changes in chemoreactive properties of neurons underlie the effect of this peptide on the learning and memory.  相似文献   

13.
In awake mobile rabbits, with electrodes implanted in the medial lemniscus, midbrain tegmental reticular nucleus, and pyramidal tract, combined stimulation of two brain of two brain structures resulted in elaboration of conditional connections in sensorimotor cortex neuronal populations. The main criterion of the conditioning was the appearance of changes in the neuronal activity on omission of the second stimulus. These changes represented a complex of electrical events, some of which were similar to and others different from the evoked responses to the second stimulus. Application of atropine, sulfate, chlorpromazine hydrochloride, serotonin creatinine sulfate, and gamma-aminobutyric acid (GABA) to the cortex at the site of the recording exerted a modulating effect on the conditional neuronal activity patterns. Of the above substances, GABA and atropine had the most pronounced effect. The GABA removed the short-latency components of the conditional changes which were similar to evoked responses. The atropine abolished the long-latency changes which differed from evoked responses.  相似文献   

14.
Antidromic excitation of neurons of the lateral vestibular nucleus of Deiters in cats in response to stimulation of the vestibulo-spinal tract in the cervical segments of the spinal cord was studied by intracellular microelectrode recording. Individual components of the antidromic action potential and accompanying after-potentials were analyzed and fast and slow neurons distinguished. The vestibulo-spinal neurons were differentiated on the basis of after-potentials accompanying the antidromic action potential. The ratio between fast and slow neurons differed in individual groups. The parameters of the depolarization after-potentials were directly proportional to the duration of the refractory period of the neurons studied. An attempt was made to correlate differences in the responsiveness of neurons with an identical conduction velocity along their axons with the characteristics of the depolarization after-potential.  相似文献   

15.
The electrical reactions of 294 neurons of the auditory cortex to a click were recorded in experiments on cats immobilized with tubocurarine (174 intra- and 120 extracellularly). The value of the membrane potential varied from 30 to 70 mV with intracellular leads. The following types of reactions were obtained (the number of neurons is given in parentheses): a peak without slow oscillations in the membrane potential (4), EPSP (3), EPSP-peak (6), EPSP-peak-IPSP (17), EPSP-IPSP (9), primary IPSP (114, including 23 with an after-discharge). Twenty one neurons did not react to a click. The amplitude of the sub-threshold EPSP was 1–1.5 mV, the duration of the ascending part was about 10 and of the descending part 20–30 msec. The peak potential on the ascending part of the EPSP developed at the critical level of 3–4 mV. The amplitude of the peaks varied from several millivolts to 50–60. In 17 neurons prolonged hyperpolarization having all the properties of an IPSP, developed after the peak. The amplitude of these IPSP varied in different neurons from 1 to 10 mV and the duration varied from 20 to 80 msec. IPSP without preceding excitation of the given neuron were the predominant types of reaction. The latent period of these primary IPSP varied from 7 to 20 msec and the amplitude from 1 to 15 msec with a duration of 30–200, more frequently 80–100 msec. It is suggested that two types of inhibition develop in neurons of the auditory cortex in response to a click: recurrent and afferent. The functional significance of the first consists in limiting the duration of the discharge in the reacting neurons, the second prevents the development of excitation in adjacent neurons, thereby limiting the area of neuronal activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 339–349, July–August, 1971.  相似文献   

16.
Changes of the activity of cortical neurons were studied in the posterior crucial gyrus and in the middle parts of the suprasylvian and ectosylvian gyri on cooling the brain to 18°C and below. In exact experiments it was noted that cooling the cortex to 18.8–21.8° causes a complete cessation of neuron activity. The kinetics of the change of activity under these conditions follows a definite order: first an increase of the frequency of spike discharges is observed (31–27°), then a decrease of their amplitude (at 25–22°), and finally a complete disappearance of neuron activity (at 21.8–18.8°). Discontinuation of the cooling leads to restoration of the activity of the nerve cells in inverse order: low-amplitude high-frequency discharges manifest (at 23–26°), the amplitude of the spikes increases (at 29–31°) and then the initial activity is restored (at 31–32°). The decrease of neuron activity depends on the rate of temperature drop in the cortex. The faster the cortex is cooled, the lower is the temperature at which the neurons cease to function. And conversely, slow cooling of the cortex causes an inactivation of the spike potentials at a higher temperature.S. M. Kirov Gorki State Medical Institute. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 59–63, January–February, 1970.  相似文献   

17.
Activity of 28 identified neurones of the visual cortex was recorded in cats immobilized by d-tubocurarine. Stimulation of the callosal body with a single stimulus or high-frequency train elicited a short-latency antidromic reaction of neurones in the visual cortex whose axons constitute the main part of the large cerebral commissure. Some commissural neurones responded to a single callosal stimulation by two action potentials the first one being antidromic, the second one being of long-latency postsynaptic origin. The second action potential was generated as a result of activation of axonal collaterals of the same neurone or the neighboring callosal neurones. More than a half of callosal neurones responded to a single stimulation of the lateral geniculate body by short-latency antidromic discharges and by long-latency postsynaptic reactions. These data indicate the existence of the systems of two-way neuronal connections, i.e. calloso-geniculate and geniculo-callosal ones.  相似文献   

18.
19.
In acute experiments on immobilized cats 13 functional characteristics of 96 visual cortex neurons were investigated. By means of regression, cluster, and multivariate analyses, these could be divided into two subgroups with varying degrees of correlatedness. Cells of the first subgroup were more frequently characterized by their relatively central location in the visual receptive field, while those of the second subgroup were more often found at the periphery. A significant correlation was found between 11 of the properties investigated. In each subgroup, cells with more centrally localized small receptive fields had, in comparison with neurons of the peripheral visual projection, short latent periods, lower thresholds, phasic response, and brief summation; their responses varied widely in intensity, and they had greater differential sensitivity, and were distinguished by high-frequency discharges. Significant correlation coefficients between the factors studied fluctuated between 0.21 and 0.99; moreover, there were almost twice as many significant relationships in the first subgroup of neurons as in the second. The possible mechanisms of correlations between the properties of the visual cortex neurons are discussed, as well as the reasons why they differ in cells of the two subgroups, the cortex, and the lateral geniculate body.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 587–596, September–October, 1985.  相似文献   

20.
Projections from the parietal cortex (areas 5 and 7) to subdivisions of the sensori-motor cortical region were investigated in cats using axonal degeneration techniques. Differences between the density of distribution of association fibers proceeding from these areas were found within the parietal and sensorimotor cortex. Area 5 projects mainly to the posterolateral portion of the cruciate sulcus (areas 4fu and 4) and to fields 4y, 4sfu, 6iffu, 6aa, and 6ab to a lesser extent. Area 7 is connected mainly to the medial portion of the lower lip of the cruciate sulcus (areas 6iffu, 6aa, and 6ab). Somewhat fewer fibers proceed to areas 4fu and 4. Fewer projections proceed from the parietal cortex to the somatosensory than to the motor region. Only a few single fibers connect the primary somatosensory region (fields 2, 3a, and 3b) with area 5, while area 7 does not project into this area. Neither field 5 nor 7 projects to the secondary somatosensory cortical area.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 319–326, May–June, 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号