首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurement of the stereospecific release of the pro-S proton from C-4' of enzyme-bound pyridoxamine 5'-phosphate provides an experimental means to probe parts of the active site of aspartate aminotransferase independently of substrate turnover (Tobler, H. P., Christen, P., and Gehring, H. (1986) J. Biol. Chem. 261, 7105-7108). The release of pro-S 3H from enzyme-bound [3H]pyridoxamine 5'-phosphate is 30,000 times faster than from free coenzyme. Enzyme-bound [3H]pyridoxine 5'-phosphate is not detritiated suggesting an essential role of the 4'-amino group. Formation of the unproductive complex of the [3H]pyridoxamine 5'-phosphate-enzyme with aspartate or glutamate results in a 400-fold acceleration of 3H release. In contrast, addition of borohydride or cyanoborohydride immediately stops 3H release. Experiments with a fluorescent reporter group and with differential chemical modifications indicate that the activating effect of aspartate on the release of 3H is accompanied by a shift of the so-called open/closed conformational equilibrium of the enzyme (Kirsch, J.F., Eichele, G., Ford, G. C., Vincent, M.G., Jansonius, J.N., Gehring, H., and Christen, P. (1984) J. Mol. Biol. 174, 497-525) toward the closed conformation; the inhibiting effect of borohydride and cyanoborohydride appears to be accompanied by a shift toward the open conformation. Apparently, at least part of the catalytic apparatus of aspartate aminotransferase becomes fully operative only in the closed conformation of the enzyme.  相似文献   

2.
Aspartate aminotransferase undergoes major shifts in the conformational equilibrium of the protein matrix during transamination. The present study defines the two conformational states of the enzyme by crystallographic analysis, examines the conditions under which the enzyme crystallizes in each of these conformations, and correlates these conditions with the conformational behaviour of the enzyme in solution, as monitored by a fluorescent reporter group. Cocrystallization of chicken mitochondrial aspartate aminotransferase with inhibitors and covalent coenzymesubstrate adducts yields three different crystal forms. Unliganded enzyme forms triclinic crystals of the open conformation, the structure of which has been solved (space group P1) [Ford, G. C., Eichele, G. & Jansonius, J. N. (1980) Proc. Natl Acad. Sci. USA 77, 2559-2563; Kirsch, J. F., Eichele, G., Ford, G. C., Vincent, M. G., Jansonius, J. N., Gehring, H. & Christen, P. (1984) J. Mol. Biol. 174, 487-525]. Complexes of the enzyme with dicarboxylate ligands form monoclinic or orthorhombic crystals of the closed conformation. The results of structure determinations of the latter two crystal forms at 0.44 nm resolution are described here. In the closed conformation, the small domain has undergone a rigid-body rotation of 12-14 which closes the active-site pocket. Shifts in the conformational equilibrium of aspartate aminotransferase in solution, as induced by substrates, substrate analogues and specific dicarboxylic inhibitors, can be monitored by changes in the relative fluoresence yield of the enzyme labelled at Cys166 with monobromotrimethylammoniobimane. The pyridoxal and pyridoxamine forms of the labelled enzyme show the same fluorescence properties, whereas in the apoenzyme the fluorescence intensity is reduced by 30%. All active-site ligands, if added to the labelled pyridoxal enzyme at saturating concentrations, cause a decrease in the fluorescence intensity by 40-70% and a blue shift of maximally 5 nm. Comparison of the fluorescence properties of the enzyme in various functional states with the crystallographic data shows that both techniques probe the same conformational equilibrium. The conformational change that closes the active site seems to be ligand-induced in the reaction of the pyridoxal form of the enzyme and syncatalytic in the reverse reaction with the pyridoxamine enzyme.  相似文献   

3.
S Ramaswamy  D H Park  B V Plapp 《Biochemistry》1999,38(42):13951-13959
When horse liver alcohol dehydrogenase binds coenzyme, a rotation of about 10 degrees brings the catalytic domain closer to the coenzyme binding domain and closes the active site cleft. The conformational change requires that a flexible loop containing residues 293-298 in the coenzyme binding domain rearranges so that the coenzyme and some amino acid residues from the catalytic domain can be accommodated. The change appears to control the rate of dissociation of the coenzyme and to be necessary for installation of the proton relay system. In this study, directed mutagenesis produced the activated Gly293Ala/Pro295Thr enzyme. X-ray crystallography shows that the conformations of both free and complexed forms of the mutated enzyme and wild-type apoenzyme are very similar. Binding of NAD(+) and 2,2, 2-trifluoroethanol do not cause the conformational change, but the nicotinamide ribose moiety and alcohol are not in a fixed position. Although the Gly293Ala and Pro295Thr substitutions do not disturb the apoenzyme structure, molecular modeling shows that the new side chains cannot be accommodated in the closed native holoenzyme complex without steric alterations. The mutated enzyme may be active in the "open" conformation. The turnover numbers with ethanol and acetaldehyde increase 1.5- and 5.5-fold, respectively, and dissociation constants for coenzymes and other kinetic constants increase 40-2,000-fold compared to those of the native enzyme. Substrate deuterium isotope effects on the steady state V or V/K(m) parameters of 4-6 with ethanol or benzyl alcohol indicate that hydrogen transfer is a major rate-limiting step in catalysis. Steady state oxidation of benzyl alcohol is most rapid above a pK of about 9 for V and V/K(m) and is 2-fold faster in D(2)O than in H(2)O. The results are consistent with hydride transfer from a ground state zinc alkoxide that forms a low-barrier hydrogen bond with the hydroxyl group of Ser48.  相似文献   

4.
We report here the x-ray crystal structure of a soluble catalytically active fragment of the Escherichia coli type I signal peptidase (SPase-(Delta2-75)) in the absence of inhibitor or substrate (apoenzyme). The structure was solved by molecular replacement and refined to 2.4 A resolution in a different space group (P4(1)2(1)2) from that of the previously published acyl-enzyme inhibitor-bound structure (P2(1)2(1)2) (Paetzel, M., Dalbey, R.E., and Strynadka, N.C.J. (1998) Nature 396, 186-190). A comparison with the acyl-enzyme structure shows significant side-chain and main-chain differences in the binding site and active site regions, which result in a smaller S1 binding pocket in the apoenzyme. The apoenzyme structure is consistent with SPase utilizing an unusual oxyanion hole containing one side-chain hydroxyl hydrogen (Ser-88 OgammaH) and one main-chain amide hydrogen (Ser-90 NH). Analysis of the apoenzyme active site reveals a potential deacylating water that was displaced by the inhibitor. It has been proposed that SPase utilizes a Ser-Lys dyad mechanism in the cleavage reaction. A similar mechanism has been proposed for the LexA family of proteases. A structural comparison of SPase and members of the LexA family of proteases reveals a difference in the side-chain orientation for the general base lysine, both of which are stabilized by an adjacent hydroxyl group. To gain insight into how signal peptidase recognizes its substrates, we have modeled a signal peptide into the binding site of SPase. The model is built based on the recently solved crystal structure of the analogous enzyme LexA (Luo, Y., Pfuetzner, R. A., Mosimann, S., Paetzel, M., Frey, E. A., Cherney, M., Kim, B., Little, J. W., and Strynadka, N. C. J. (2001) Cell 106, 1-10) with its bound cleavage site region.  相似文献   

5.
The crucial step in enzymatic transamination is the tautomerization of aldimine/ketimine intermediates, formed between the pyridoxyl coenzyme and the amino/keto acid substrate, which is catalyzed primarily by the active site residue Lys-258 (Malcolm, B. A., and Kirsch, J. F. (1985) Biochem. Biophys. Res. Commun. 132, 915-921; W. L. Finlayson and J. F. Kirsch, in preparation). Tyr-70 is localized in close proximity to Lys-258 and, in addition, forms a hydrogen bond with the coenzyme phosphate. Tyr-70 has been postulated to have an important role in the tautomerization (Kirsch, J. F., Eichele, G., Ford, G. C., Vincent, M. G., Jansonius, J. N., Gehring, H., and Christen, P. (1984) J. Mol. Biol. 174, 497-525). This hypothesis has now been tested by the construction and analysis of a mutant Escherichia coli aspartate aminotransferase in which Tyr-70 has been changed to Phe (Y70F). Y70F retains at least 15% of the maximal activity of the wild type enzyme (WT) (kcat = 170 +/- 15 s-1 for WT versus greater than or equal to 26 +/- 3 s-1 for Y70F and shows increased Michaelis constants for both substrates (KmAsp = 2.5 +/- 0.4 mM; Km alpha Kg = 0.59 +/- 0.08 mM for WT versus KmAsp = 3.9 +/- 0.3 mM; Km alpha Kg = 2.70 +/- 0.02 mM for Y70F (where alpha Kg is alpha-ketoglutarate) ). The spectrophotometrically determined pK a values of the internal aldimines formed between pyridoxal 5'-phosphate (PLP) and Lys-258 are identical for WT and Y70F. In assays where excess L-aspartate and excess PLP are incubated with either WT or Y70F, the mutant enzyme converts the free PLP to free pyridoxamine 5'-phosphate 80-fold faster than WT (k = (3.75 +/- 0.23) X 10(-2)s-1 for Y70F versus (4.90 +/- 0.02) X 10(-4)s-1 for WT). Y70F also converts free pyridoxamine 5'-phosphate to free PLP faster than WT. Thus, Y70F dissociates coenzyme more readily than does WT. It therefore appears that the role of Tyr-70 is mainly in preventing the dissociation of the coenzyme from the enzyme. Tyr-70 does not function in an essential chemical step.  相似文献   

6.
The interaction of thiamine diphosphate (ThDP) with transketolase (TK) involves at least two stages: [formula: see text] During the first stage, an inactive intermediate complex (TK...ThDP) is formed, which is then transformed into a catalytically active holoenzyme (TK* - ThDP). The second stage is related to conformational changes of the protein. In the preceding publication (Esakova, O. A., Meshalkina, L. E., Golbik, R., Hübner, G., and Kochetov, G. A. Eur. J. Biochem. 2004, 271, 4189 - 4194) we reported that the affinity of ThDP for TK considerably increases in the presence of the donor substrate, which may be a mechanism whereby the activity of the enzyme is regulated under the conditions of the coenzyme deficiency. Here, we demonstrate that the substrate affects the stage of the reverse conformational transition, characterized by the constant k(-1): in the presence of the substrate, its value is decreased several fold, whereas K(d) and k(+1) remain unchanged.  相似文献   

7.
Circular dichroism spectra and circular dichroism difference spectra, generated when porcine heart mitochondrial and supernatant malate dehydrogenase bind coenzymes or when enzyme dihydroincotinamide nucleotide binary complexes bind substrate analogs, are presented. No significant changes are observed in protein chromophores in the 200- to 240-nm spectral range indicating that there is apparently little or no perturbation of the alpha helix or peptide backbone when binary or ternary complexes are formed. Quite different spectral perturbances occur in the two enzymes with reduced coenzyme binding as well as with substrate-analog binding by enzyme-reduced coenzyme binding. Comparison of spectral perturbations in both enzymes with oxidized or reduced coenzyme binding suggests that the dihydronicotinamide moiety of the coenzyme interacts with or perturbs indirectly the environment of aromatic amino acid residues. Reduced coenzyme binding apparently perturbs tyrosine residues in both mitochondrial malate dehydrogenase and lactic dehydrogenase. Reduced coenzyme binding perturbs tyrosine and tryptophan residues in supernatant malate dehydrogenase. The number of reduced coenzyme binding sites was determined to be two per 70,000 daltons in the mitochondrial enzyme, and the reduced coenzyme dissociation constants, determined through the change in ellipticity at 260 nm, with dihydronicotinamide adenine dinucleotide binding, were found to be good agreement with published values (Holbrook, J. J., and Wolfe, R. G. (1972) Biochemistry 11, 2499-2502) obtained through fluorescence-binding studies and indicate no apparent extra coenzyme binding sites. When D-malate forms a ternary complex with malate dehydrogenase-reduced coenzyme complexes, perturbation of both adenine and dihydronicotinamide chromophores is evident. L-Malate binding, however, apparently produces only a perturbation of the adenine chromophore in such complexes. Since the coenzyme has been found to bind in an open conformation on the surface of the enzyme and the substrate analogs bind at or very near the dihydronicotinamide moiety binding site, protein conformational changes are implicated during ternary complex formation with D-malate which can effect the adenine chromophore at some distance from the substrate binding site.  相似文献   

8.
Mitochondrial aspartate aminotransferase is synthesized on free polysomes as a higher molecular weight precursor (Sonderegger, P., Jaussi, R., Christen, P., and Gehring, H. (1982) J. Biol. Chem. 257, 3339-3345). The present study examines whether the coenzyme pyridoxal phosphate or pyridoxamine phosphate is required for the uptake of the precursor into mitochondria. Chicken embryo fibroblasts were cultured in medium prepared with and without pyridoxal. In cells grown in the presence of pyridoxal only holoform of aspartate aminotransferase and no apoenzyme was detected. Cells cultured under pyridoxal deficiency contained about 30% of apoenzyme in secondary cultures. All of this apoform was identified as mitochondrial isoenzyme. In order to differentiate whether this apoenzyme corresponded to newly synthesized protein or originated from pre-existing holoenzyme, double isotope-labeling experiments were performed. Secondary cultures of chicken embryo fibroblasts grown under pyridoxal depletion were labeled with [3H]methionine, and then pulsed with [35S]methionine. In another series of experiments, the 3H-labeled cells were pulsed with [35S]methionine in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone in order to accumulate the precursor. Subsequently, the accumulated precursor was chased into the mitochondria by addition of the carbonyl cyanide m-chlorophenylhydrazone antagonist cysteamine. The holo- and apoenzyme from the ultrasonic extract of the double-labeled cells were separated by affinity chromatography on a phosphopyridoxyl-AH-Sepharose column, immunoprecipitated, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Under both experimental conditions, the 3H/35S ratio of the apoenzyme was less than half of that of the holoenzyme. Therefore, the apoenzyme and not the holoenzyme is the first product of the precursor in the mitochondria. Apparently, the precursor of mitochondrial aspartate aminotransferase is transported into mitochondria as apoprotein and is processed there independently of the coenzyme.  相似文献   

9.
Sanghani PC  Robinson H  Bosron WF  Hurley TD 《Biochemistry》2002,41(35):10778-10786
The human glutathione-dependent formaldehyde dehydrogenase is unique among the structurally studied members of the alcohol dehydrogenase family in that it follows a random bi bi kinetic mechanism. The structures of an apo form of the enzyme, a binary complex with substrate 12-hydroxydodecanoic acid, and a ternary complex with NAD+ and the inhibitor dodecanoic acid were determined at 2.0, 2.3, and 2.3 A resolution by X-ray crystallography using the anomalous diffraction signal of zinc. The structures of the enzyme and its binary complex with the primary alcohol substrate, 12-hydroxydodecanoic acid, and the previously reported binary complex with the coenzyme show that the binding of the first substrate (alcohol or coenzyme) causes only minor changes to the overall structure of the enzyme. This is consistent with the random mechanism of the enzyme where either of the substrates binds to the free enzyme. The catalytic-domain position in these structures is intermediate to the "closed" and "open" conformations observed in class I alcohol dehydrogenases. More importantly, two different tetrahedral coordination environments of the active site zinc are observed in these structures. In the apoenzyme, the active site zinc is coordinated to Cys44, His66 and Cys173, and a water molecule. In the inhibitor complex, the coordination environment involves Glu67 instead of the solvent water molecule. The coordination environment involving Glu67 as the fourth ligand likely represents an intermediate step during ligand exchange at the active site zinc. These observations provide new insight into metal-assisted catalysis and substrate binding in glutathione-dependent formaldehyde dehydrogenase.  相似文献   

10.
The apoenzyme of diol dehydrase was inactivated by two arginine-specific reagents, 2,3-butanedione and phenylglyoxal, in borate buffer. In both cases, the inactivation followed pseudo-first-order kinetics. Kinetic data show that the incorporation of a single reagent molecule per active site of the enzyme is necessary for the complete inactivation. The modification with 2,3-butanedione was reversed by dilution of the reagent and borate concentrations (65% activity recovered). 1,2-Propanediol (substrate) partially protected the enzyme against inactivation. The holoenzyme was almost insensitive to 2,3-butanedione and phenylglyoxal, indicating that the essential arginine residue is prevented from the attack of these reagents either by direct blockage with the bound coenzyme or by an indirect conformational change caused by coenzyme binding. The inactivation of diol dehydrase by 2,3-butanedione did not result in dissociation of the enzyme into subunits. From these results, we concluded that the essential arginine residue is located at or in close proximity to the active site of diol dehydrase.  相似文献   

11.
Tritium-hydrogen isotope exchange techniques have been employed to study the effect of tri-N-acetylglucosamine binding on the conformational dynamics of hen egg white lysozyme. Numerical Laplace inversion of the data provides exchange rate probability density functions that reveal three overlapping peaks for both the free enzyme and (GlcNAc)3-enzyme complex. Binding of (GlcNAc)3 decreases the exchange rates of all protons to some extent with by far the largest effect being observed for the slow exchanging protons. These have been located, by comparison with neutron diffraction results (Mason, S. A., Bentley, G. A., and McIntyre, G. J. (1984) in Neutrons in Biology (Schoenborn, B. P., ed) pp. 323-334, Plenum Press, New York), within the beta-sheet structure and on helices (8-13), (28-34), and (89-97), that define the edges of the so-called "hydrophobic box" in lysozyme. The regions of the protein that are most affected by binding (GlcNAc)3, as revealed by hydrogen exchange, are found to be quite distinct from the regions observed to undergo conformational changes by x-ray diffraction. Most of these segments of the protein are located at some distance from the (GlcNAc)3-binding site itself. Two segments (the beta-sheet and helix (28-34)) are closely associated with the two active-site carboxylate groups. These results suggest that exchange-stable regions having strong, highly organized hydrogen bonding may have an important role in catalytic function and the differential propagation of conformational and dynamic perturbations caused by ligand binding at distant sites on the protein.  相似文献   

12.
Secundo F  Russo C  Giordano A  Carrea G  Rossi M  Raia CA 《Biochemistry》2005,44(33):11040-11048
A combination of hydrogen/deuterium exchange, fluorescence quenching, and kinetic studies was used to acquire experimental evidence for the crystallographically hypothesized increase in local flexibility which occurs in thermophilic NAD(+)-dependent Sulfolobus solfataricus alcohol dehydrogenase (SsADH) upon substitution Asn249Tyr. The substitution, located at the adenine-binding site, proved to decrease the affinity for both coenzyme and substrate, rendering the mutant enzyme 6-fold more active when compared to the wild-type enzyme [Esposito et al. (2003) FEBS Lett. 539, 14-18]. The amide H/D exchange data show that the wild-type and mutant enzymes have similar global flexibility at 22 and 60 degrees C. However, the temperature dependence of the Stern-Volmer constant determined by acrylamide quenching shows that the increase in temperature affects the local flexibility differently, since the K(SV) increment is significantly higher for the wild-type than for the mutant enzyme over the range 18-45 degrees C. Interestingly, the corresponding van't Hoff plot (log K(SV) vs 1/T) proves nonlinear for the apo and holo wild-type and apo mutant enzymes, with a break at approximately 45 degrees C in all three cases due to a conformational change affecting the tryptophan microenvironment experienced by the quencher molecules. The Arrhenius and van't Hoff plots derived from the k(cat) and K(M) thermodependence measured with cyclohexanol and NAD(+) at different temperatures display an abrupt change of slope at 45-50 degrees C. This proves more pronounced in the case of the mutant enzyme compared to the wild-type enzyme due to a conformational change in the structure rather than to an overlapping of two or more rate-limiting reaction steps with different temperature dependencies of their rate constants. Three-dimensional analysis indicates that the observed conformational change induced by temperature is associated with the flexible loops directly involved in the substrate and coenzyme binding.  相似文献   

13.
14.
The structures of four isomorphous crystals of ternary complexes of chicken heart citrate synthase with D- or L-malate and acetyl coenzyme A or carboxymethyl coenzyme A have been determined by X-ray crystallography and fully refined at 1.9-A resolution. The structures show that both L-malate and D-malate bind in a very similar way in the presence of acetylCoA and that the enzyme conformation is "closed". Hydrogen bond geometry is suggested to account for the difference in binding constants of the two stereoisomers. The structures suggest that steric hindrance can account for the observation that proton exchange of acetyl coenzyme A with solvent is catalyzed by citrate synthase in the presence of L-malate but not D-malate. The ternary complexes with malate reveal the mode of binding of the substrate acetylCoA in the ground state. The carbonyl oxygen of the acetyl group is hydrogen bonded to a water molecule and to histidine 274, allowing unambiguous identification of the orientation of this group. The structures support the hypothesis that carboxymethyl coenzyme A is a transition-state analogue for the enolization step of the reaction (Bayer et al., 1981) and additionally support proposed mechanisms for the condensation reaction (Karpusas et al., 1990; Alter et al., 1990).  相似文献   

15.
The complex of Lactobacillus casei dihydrofolate reductase with the substrate folate and the coenzyme NADP+ has been shown to exist in solution as a mixture of three slowly interconverting conformations whose proportions are pH-dependent [Birdsall, B., Gronenborn, A. M., Hyde, E. I., Clore, G. M., Roberts, G. C. K., Feeney, J., & Burgen, A. S. V. (1982) Biochemistry 21, 5831]. The assignment of the resonances of all the aromatic protons of the ligand molecules in all three conformational states of the complex has now been completed by using a variety of NMR methods, particularly two-dimensional exchange experiments. The resonances of the nicotinamide protons of the coenzyme and the pteridine 7-proton of the folate have different chemical shifts in the three conformations, in some cases differing by more than 1 ppm. Comparison of the COSY spectra of the complex at low pH (conformation I) and high pH (conformations IIa and IIb) with that of the enzyme-methotrexate-NADP+ complex shows only slight differences in the conformation of the protein. The pattern of chemical shift changes in the ligand and the protein indicates that the structural differences are localized within the active site of the enzyme. Nuclear Overhauser effects (NOEs) are observed between the nicotinamide 5- and 6-protons and the methyl resonance of Thr 45 at both low and high pH, indicating that there is no major movement of the nicotinamide ring. By contrast, NOEs are observed between the pteridine 7-proton and the methyl protons of Leu 19 and Leu 27 in conformations I and IIa but not in conformation IIb.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Uroporphyrinogen III synthase (U3S) catalyzes the asymmetrical cyclization of a linear tetrapyrrole to form the physiologically relevant uroporphyrinogen III (uro'gen III) isomer during heme biosynthesis. Here, we report four apoenzyme and one product complex crystal structures of the Thermus thermophilus (HB27) U3S protein. The overlay of eight crystallographically unique U3S molecules reveals a huge range of conformational flexibility, including a "closed" product complex. The product, uro'gen III, binds between the two domains and is held in place by a network of hydrogen bonds between the product's side chain carboxylates and the protein's main chain amides. Interactions of the product A and B ring carboxylate side chains with both structural domains of U3S appear to dictate the relative orientation of the domains in the closed enzyme conformation and likely remain intact during catalysis. The product C and D rings are less constrained in the structure, consistent with the conformational changes required for the catalytic cyclization with inversion of D ring orientation. A conserved tyrosine residue is potentially positioned to facilitate loss of a hydroxyl from the substrate to initiate the catalytic reaction.  相似文献   

17.
Three crystal structures, representing two distinct conformational states, of the mammalian catalytic subunit of cAMP-dependent protein kinase were solved using molecular replacement methods starting from the refined structure of the recombinant catalytic subunit ternary complex (Zheng, J., et al., 1993a, Biochemistry 32, 2154-2161). These structures correspond to the free apoenzyme, a binary complex with an iodinated inhibitor peptide, and a ternary complex with both ATP and the unmodified inhibitor peptide. The apoenzyme and the binary complex crystallized in an open conformation, whereas the ternary complex crystallized in a closed conformation similar to the ternary complex of the recombinant enzyme. The model of the binary complex, refined at 2.9 A resolution, shows the conformational changes associated with the open conformation. These can be described by a rotation of the small lobe and a displacement of the C-terminal 30 residues. This rotation of the small lobe alters the cleft interface in the active-site region surrounding the glycine-rich loop and Thr 197, a critical phosphorylation site. In addition to the conformational changes, the myristylation site, absent in the recombinant enzyme, was clearly defined in the binary complex. The myristic acid binds in a deep hydrophobic pocket formed by four segments of the protein that are widely dispersed in the linear sequence. The N-terminal 40 residues that lie outside the conserved catalytic core are anchored by the N-terminal myristylate plus an amphipathic helix that spans both lobes and is capped by Trp 30. Both posttranslational modifications, phosphorylation and myristylation, contribute directly to the stable structure of this enzyme.  相似文献   

18.
TaM-BMI is a genetically engineered chimeric protein consisting of the first 55 amino acids of cardiac troponin C (but with the normally inactive first Ca2+ binding domain reactivated by site- directed mutagenesis) ligated to the last three domains of chicken calmodulin (George, S.E., VanBerkum, M.F., Ono, T., Cook, R., Hanley, R.M., Putkey, J.A., and Means, A. R. (1990) J. Biol. Chem. 265, 9228-9235). This protein binds chicken smooth muscle myosin light chain kinase (smMLCK) but fails to activate the enzyme, thus functioning as a potent competitive inhibitor (Ki = 66 nM). We have created 29 mutants of calmodulin designed to identify the minimal number of alterations which must be introduced in the first domain to convert the protein to a competitive inhibitor of smMLCK. Alterations of three amino acids predicted to lie on the external surface of calmodulin (E14A, T34K, S38M) recapitulated the phenotype of TaM-BMI and exhibited a Ki of 38 nM. Both the triple mutant and TaM-BMI activated phosphodiesterase and bound a synthetic peptide analog of the calmodulin binding region of smMLCK with an affinity similar to that of native calmodulin (Kact and Kd values of approximately 2 and 3 nM respectively). When a synthetic peptide analog of the myosin light chain phosphorylation site was used as substrate rather than the 20-kDa light chains, TaM-BMI and the triple mutant were partial agonists: the Km for peptide substrate was increased 100- and 60-fold, and catalytic activity was 45 and 60%, respectively, relative to calmodulin. These data suggest TaM-BMI and E14A/T34K/S38M may interact with the calmodulin binding domain of smMLCK in a manner similar to calmodulin. However, alterations in electrostatic and hydrophobic interactions created by the three amino acid substitutions prevent the conformational change in the enzyme usually produced by calmodulin binding. Lack of such changes results in loss of catalytic activity and light chain binding. Additionally, our results show that altering only 3 amino acids residues converts calmodulin to an enzyme-selective antagonist, thus demonstrating the ability to separate calmodulin binding to smMLCK from calmodulin-induced activation of the enzyme.  相似文献   

19.
NADH is transferred directly from one dehydrogenase enzyme site to another without intervention of the aqueous solvent whenever the two dehydrogenases are of opposite chiral specificity as regards the C4 H of NADH which is transferred in the catalyzed reduction reaction. When both enzymes catalyze the transfer of hydrogen from the same face of the nicotinamide ring, direct enzyme-enzyme transfer of NADH is not possible [Srivastava, D. K., & Bernhard, S. A. (1984) Biochemistry 23, 4538-4545; Srivastava, D. K., & Bernhard, S. A. (1985) Biochemistry (preceding paper in this issue)]. Utilizing an advanced computer graphics facility, and the known three-dimensional coordinates for three dehydrogenases, we have investigated the feasibility of various aspects of the direct transfer of dinucleotide from the site of one enzyme to the site of the other. The facile passage of the coenzyme through the first enzyme site requires an open protein conformation, characteristic of the apoenzyme rather than the holoenzyme structure. Since two dehydrogenases of the same chirality bind coenzyme in the same conformation, the direct transfer of coenzyme from one site to the other is impossible due to the restriction in molecular rotation of the coenzyme in the path of transfer from one binding site to the other; therefore, coenzyme can only be transferred from one dehydrogenase site to another site via the intermediate dissociation of coenzyme into the aqueous milieu. In contrast, when an A dehydrogenase and a B dehydrogenase are juxtaposed, it is stereochemically feasible to transfer the nicotinamide ring from its specific binding site in one enzyme to the site in the other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Rat methionine synthase was expressed chiefly as apoenzyme in recombinant baculovirus-infected insect cells (Yamada, K., Tobimatsu, T., and Toraya, T. (1998) Biosci. Biotech. Biochem. 62, 2155-2160). The apoenzyme produced was very unstable, and therefore, after complexation with methylcobalamin, the functional holoenzyme was purified to homogeneity. The specific activity and apparent K(m) values for substrates were in good agreement with those obtained with purified rat liver enzyme. The electronic spectrum of the purified recombinant enzyme resembled that of cob(II)alamin and changed to a methylcobalamin-like one upon incubation of the enzyme with titanium(III) and S-adenosylmethionine. The rate of oxidative inactivation of the enzyme in the absence of S-adenosylmethionine was slower with a stronger reducing agent like titanium(III). The nucleotide moiety, especially the phosphodiester group, was shown to play an important role in the binding of the coenzyme to apoprotein and thus for catalysis. Upon incubation with the apoenzyme in the absence of a reducing agent, cyano- and aquacobalamin were not effective or were effective only slightly in reconstituting holoenzyme. Ethyl- and propylcobalamin formed inactive complexes with apoenzyme, which were converted to holoenzyme by photolytic activation. Adenosylcobalamin was not able to form a complex with apoenzyme, which was convertible to holoenzyme by photoirradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号