首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of β-oxidation of fatty acids in isolated peroxisomes from rat liver was investigated. The enzyme system is soluble in the luminal compartment and carnitine does not appear to be involved in the transfer of the CoA derivatives through the peroxisomal membrane. Experiments involving proteolysis, inhibitors and competitive inhibition suggest that a fatty acid binding protein is responsible for the carrier process. This carrier protein seems to be present in increased amounts both in the supernatant and in the peroxisomes after clofibrate induction.  相似文献   

2.
Mitochondrial fatty acids β-oxidation disorder (FAOD) has become popular with development of tandem mass spectrometry (MS/MS) and enzymatic evaluation techniques. FAOD occasionally causes acute encephalopathy or even sudden death in children. On the other hand, hyperpyrexia may also trigger severe seizures or encephalopathy, which might be caused by the defects of fatty acid β-oxidation (FAO). We investigated the effect of heat stress on FAO to determine the relationship between serious febrile episodes and defect in β-oxidation of fatty acid in children. Fibroblasts from healthy control and children with various FAODs, were cultured in the medium loaded with unlabelled palmitic acid for 96 h at 37 °C or 41 °C. Acylcarnitine (AC) profiles in the medium were determined by MS/MS, and specific ratios of ACs were calculated. Under heat stress (at 41 °C), long-chain ACs (C12, C14, or C16) were increased, while medium-chain ACs (C6, C8, or C10) were decreased in cells with carnitine palmitoyl transferase II deficiency, very-long-chain acyl-CoA dehydrogenase deficiency and mitochondrial trifunctional protein deficiency, whereas AC species from short-chain (C4) to long-chain (C16) were barely affected in medium-chain acyl-CoA dehydrogenase and control. While long-chain ACs (C12–C16) were significantly elevated, short to medium-chain ACs (C4–C10) were reduced in multiple acyl-CoA dehydrogenase deficiency. These data suggest that patients with long-chain FAODs may be more susceptible to heat stress compared to medium-chain FAOD or healthy control and that serious febrile episodes may deteriorate long-chain FAO in patients with long-chain FAODs.  相似文献   

3.
Mitochondrial β-oxidation is an important system involved in the energy production of various cells. In this system, the function of l-carnitine is essential for the uptake of fatty acids to mitochondria. However, it is unclear whether or not endogenous respiration, ADP-induced O2 consumption without substrates, is caused by l-carnitine treatment. In this study, we investigated whether l-carnitine is essential to the β-oxidation of quarried fatty acids from the mitochondrial membrane by phospholipase A2 (PLA2) using isolated mitochondria from the liver of rats. Intact mitochondria were incubated in a medium containing Pi, CoA and l-carnitine. The effect of l-carnitine treatment on ADP-induced mitochondrial respiration was observed without exogenous respiratory substrate. Increase in mitochondrial respiration was induced by treatment with l-carnitine in a concentration-dependent manner. Treatment with rotenone, a complex I blocker, completely inhibited ADP-induced oxygen consumption even in the presence of l-carnitine. Moreover, the l-carnitine dependent ADP-induced mitochondrial oxygen consumption did not increase when PLA2 inhibitors were treated before ADP treatment. The l-carnitine-dependent ADP-induced oxygen consumption did contribute to ATP productions but not heat generation via an uncoupling system. These results suggest that l-carnitine might be essential to the β-oxidation of quarried fatty acids from the mitochondrial membrane by PLA2.  相似文献   

4.
Fatty acids are a major fuel source used to sustain contractile function in heart and oxidative skeletal muscle. To meet the energy demands of these muscles, the uptake and β-oxidation of fatty acids must be coordinately regulated in order to ensure an adequate, but not excessive, supply for mitochondrial β-oxidation. However, imbalance between fatty acid uptake and β-oxidation has the potential to contribute to muscle insulin resistance. The action of insulin is initiated by binding to its receptor and activation of the intrinsic protein tyrosine kinase activity of the receptor, resulting in the initiation of an intracellular signaling cascade that eventually leads to insulin-mediated alterations in a number of cellular processes, including an increase in glucose transport. Accumulation of fatty acids and lipid metabolites (such as long chain acyl CoA, diacylglycerol, triacylglycerol, and/or ceramide) can lead to alterations in this insulin signaling pathway. An imbalance between fatty acid uptake and oxidation is believed to be responsible for this lipid accumulation, and is thought to be a major cause of insulin resistance in obesity and diabetes, due to lipid accumulation and inhibition of one or more steps in the insulin-signaling cascade. As a result, decreasing muscle fatty acid uptake can improve insulin sensitivity. However, the potential role of increasing fatty acid β-oxidation in the heart or skeletal muscle in order to prevent cytoplasmic lipid accumulation and decrease insulin resistance is controversial. While increased fatty acid β-oxidation may lower cytoplasmic lipid accumulation, increasing fatty acid β-oxidation can decrease muscle glucose metabolism, and incomplete fatty acid oxidation has the potential to also contribute to insulin resistance. In this review, we discuss the proposed mechanisms by which alterations in fatty acid uptake and oxidation contribute to insulin resistance, and how targeting fatty acid uptake and oxidation is a potential therapeutic approach to treat insulin resistance.  相似文献   

5.
Summary From a culture broth ofPseudomonas aeruginosa (KSLA strain 473) grown on heptane as the sole source of carbon, fatty acids could be isolated after a period of decreased oxygen supply. The corresponding methyl esters—obtained by treatment with diazomethane—were separated by gas-liquid chromatography and identified by mass spectrometry. Heptylic, valeric and propionic acids were shown to be present in the original culture broth. Using the same techniques the formation of caproic acid from hexane was shown to occur, whereas the amount of butyric acid formed was extremely small and inconsistent. These results show conclusively that this microbiological oxidation of heptane and hexane proceeds by way of the corresponding fatty acids, which are further degraded by β-oxidation. The absence of caproic and valeric acids in heptane and hexane oxidation, respectively, shows that decarboxylation of fatty acids does not occur.  相似文献   

6.
Several mouse models for mitochondrial fatty acid β-oxidation (FAO) defects have been developed. So far, these models have contributed little to our current understanding of the pathophysiology. The objective of this study was to explore differences between murine and human FAO. Using a combination of analytical, biochemical and molecular methods, we compared fibroblasts of long chain acyl-CoA dehydrogenase knockout (LCAD−/−), very long chain acyl-CoA dehydrogenase knockout (VLCAD−/−) and wild type mice with fibroblasts of VLCAD-deficient patients and human controls. We show that in mice, LCAD and VLCAD have overlapping and distinct roles in FAO. The absence of VLCAD is apparently fully compensated, whereas LCAD deficiency is not. LCAD plays an essential role in the oxidation of unsaturated fatty acids such as oleic acid, but seems redundant in the oxidation of saturated fatty acids. In strong contrast, LCAD is neither detectable at the mRNA level nor at the protein level in men, making VLCAD indispensable in FAO. Our findings open new avenues to employ the existing mouse models to study the pathophysiology of human FAO defects.  相似文献   

7.
Analyses of brain phospholipid fatty acid profiles reveal a selective deficiency and enrichment in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. In order to account for this difference in brain fatty acid levels, we hypothesized that EPA is more rapidly β-oxidized upon its entry into the brain. Wild-type C57BL/6 mice were perfused with either 14C-EPA or 14C-DHA via in situ cerebral perfusion for 40 s, followed by a bicarbonate buffer to wash out the residual radiolabeled polyunsaturated fatty acid (PUFA) in the capillaries. 14C-PUFA-perfused brains were extracted for chemical analyses of neutral lipid and phospholipid fatty acids. Based on the radioactivity in aqueous, total lipid, neutral lipid and phospholipid fractions, volume of distribution (VD, μl/g) was calculated. The VD between 14C-EPA- and 14C-DHA-perfused samples was not statistically different for total lipid, neutral lipids or total phospholipids. However, the VD of 14C-EPA in the aqueous fraction was 2.5 times higher than that of 14C-DHA (p=0.025), suggesting a more extensive β-oxidation than DHA. Furthermore, radiolabeled palmitoleic acid, a fatty acid that can be synthesized de novo, was detected in brain phospholipids from 14C-EPA but not from 14C-DHA-perfused mice suggesting that β-oxidation products of EPA were recycled into endogenous fatty acid biosynthetic pathways. These findings suggest that low levels of EPA in brain phospholipids compared to DHA may be the result of its rapid β-oxidation upon uptake by the brain.  相似文献   

8.
Li H  Song Y  Zhang LJ  Gu Y  Li FF  Pan SY  Jiang LN  Liu F  Ye J  Li Q 《PloS one》2012,7(6):e36712
Lipid storage droplet protein 5 (LSDP5) is a lipid droplet-associated protein of the PAT (perilipin, adipophilin, and TIP47) family that is expressed in the liver in a peroxisome proliferator-activated receptor alpha (PPARα)-dependent manner; however, its exact function has not been elucidated. We noticed that LSDP5 was localized to the surface of lipid droplets in hepatocytes. Overexpression of LSDP5 enhanced lipid accumulation in the hepatic cell line AML12 and in primary hepatocytes. Knock-down of LSDP5 significantly decreased the triglyceride content of lipid droplets, stimulated lipolysis, and modestly increased the mitochondrial content and level of fatty-acid β-oxidation in the mitochondria. The expression of PPARα was increased in LSDP5-deficient cells and required for the increase in the level of fatty acid β-oxidation in LSDP5-deficient cells. Using serial deletions of LSDP5, we determined that the lipid droplet-targeting domain and the domain directing lipid droplet clustering overlapped and were localized to the 188 amino acid residues at the N-terminus of LSDP5. Our findings suggest that LSDP5, a novel lipid droplet protein, may contribute to triglyceride accumulation by negatively regulating lipolysis and fatty acid oxidation in hepatocytes.  相似文献   

9.
Permeabilization treatments using organic solvents or physical methods were applied to Kluyveromyces bulgaricus and compared by measuring the β-galactosidase activity of whole cells. The minimum solvent concentrations to be used for obtaining a good permeabilization were: 10% n-butanol; 20% propanol; 30% isopropanol, tert-butanol; 40% ethanol, acetone and 70% dimethylsulphoxide. Toluene/ethanol (1 : 4) at 10% was less effective. The addition of the surfactant Brij 35 to lower alkanol concentrations did not bring about a significant permeabilization but the treatment of cells with Brij 35 with a small amount of toluene in ethanol (4 : 96) resulted in a high enzymatic activity. Yeast pellet, but not yeast suspension, submitted to five cycles of freezing and thawing displayed an enzymatic activity similar to those obtained by organic solvents.  相似文献   

10.
Anaerobic biosynthesis of 1-butanol from glucose is investigated in recombinant Escherichia coli strains which form butyryl-CoA using the heterologous enzyme complex of clostridia or as a result of a reversal in the action of native enzymes of the fatty acid β-oxidation pathway. It was revealed that when the basic pathways of acetic and lactic acid formation are inactivated due to deletions of the ackA, pta, poxB, and ldhA genes, the efficiency of butyryl-CoA biosynthesis and its reduced product, i.e., 1-butanol, by two types of recombinant stains is comparable. The limiting factor for 1-butanol production by the obtained strains is the low substrate specificity of the basic CoA-dependent alcohol/aldehyde dehydrogenase AdhE from E. coli to butyryl-CoA. It was concluded that, in order to construct an efficient 1-butanol producer based on a model strain synthesizing butyryl-CoA as a result of reversed action of fatty acid β-oxidation enzymes, it is necessary to provide intensive formation of acetyl-CoA and enhanced activity of alternative alcohol and aldehyde dehydrogenases in the cells of a strain.  相似文献   

11.
The ability of glyoxysomes from sunflower (Helianthusannuus L.) cotyledons to completely degrade long-chain fatty acids into their constituent acetyl units and the time courses of the appearance of acyl-CoA intermediates during β-oxidation have been studied using 14C-labelled substrates at non-saturating concentrations (1.3 to 1.8 μmol · l−1). [14C]Acetyl-CoA was formed from [18-14C]oleate metabolized at a yield of up to 80%, and from [U-14C]palmitate and [U-14C]linoleate to an extent indicating that a maximum of 80% and 30%, respectively, of the substrate β-oxidized had been degraded beyond the C4-CoA intermediate level. To obtain the latter values, an acetyl-CoA-removing system was required during β-oxidation. Constant re-oxidation of the NADH formed during the β-oxidation did not replace the effect of acetyl-CoA removal. Neither the completeness of the linoleate β-oxidation nor the rate of reaction were influenced by NADPH. Medium- and short-chain acyl-CoA intermediates were predominantly detected during β-oxidation of the long-chain substrates employed. The degradation of these intermediates appeared to be stimulated mainly in the presence of an acetyl-CoA-removing system. The time courses of the appearance of intermediates corresponded to a precursor-product relationship between intermediates of decreasing chain lengths. Received: 12 December 1997 / Accepted: 26 January 1998  相似文献   

12.
The presence of a mitochondrial fatty acid β-oxidation system in the retina was shown by immunohistochemistry. Fatty acids are considered to serve as a major energy source metabolized by fatty acid β-oxidation together with glucose metabolized by glycolysis in the organs of the entire body, but almost nothing is known about this metabolic system in the retina. Adult rat retinae were subjected to immunofluorescence and immuno-electron microscopy for the localization of fatty acid β-oxidation enzymes, together with western blot analysis for quantitation of the amount of enzyme proteins and DNA microarray analysis for gene expression. All the enzymes examined were shown to be present in the retina, but in small amounts, with the amount of protein and gene expression in the retina being about 1/10 of those in the liver. Immunohistochemistry at light and electron microscopic levels revealed the enzymes to be more preferentially localized to the mitochondria of Müller cells than the retinal neurons. The Müller cells were isolated from the retina and confirmed for the presence of mitochondrial fatty acid β-oxidation enzymes. A mitochondrial fatty acid β-oxidation system was thus shown to be present in the retina heterogeneously.  相似文献   

13.
Summary Palmitate uptake by isolated, calcium-resistant cardiomyocytes was measured by using a stimulation chamber in which cell contraction can be evoked electrically. Experiments were performed in a medium containing physiological interstitial concentration of albumin (2%) and palmitate/albumin (P/A) ratios ranging from 0.03 to 2.5, and were compared to experiments with fixed P/A ratio (– 1).Initial rate of uptake (Vi) was calculated from fitted uptake vs. time curves as measured by accumulation of radioactivity in the cells from 14C-labelled palmitate. Vi-vs.-concentration curves exhibited a saturable component, if albumin concentration was kept constant. Almost no change in Vi was observed in experiments performed at constant P/A. This is in contrast to the albumin receptor hypothesis.The 14C-palmitate content of the myocytes as estimated by thin-layer-chromatography did reach a plateau at 30 s and had the same value at 30 min after administration. The cellular content of labelled palmitate could be attributed to the membrane compartment as calculated from partition coefficient (Kc) of fatty acids (FA) between albumin and membranes. With electrical stimulation Vi-vs.-palmitate concentration kinetics showed a shift in apparent Km from 62 µM (P/A – 0.22) to 23 µM (P/A = 0.08), and presence of 2,4-dinitrophenol increases Vi.Our results suggest that FA-transfer across the sarcolemmal membranes is determined by a physicochemical equilibrium between the compartments of extracellular FA-albumin complex, the membrane lipid phase, intracellular FA binding proteins and the respective aqueous phases. Consequently in cell suspensions the rate of palmitate uptake is controlled by a step of fatty acid metabolism possibly the formation of Fa CoA by the enzyme FA acyl CoA synthetase which is localized in membranes of endoplasmatic reticulum and mitochondria. This step is influenced by the metabolic state of the cells and by FA concentration in membranes.  相似文献   

14.
Cilostazol is a drug licensed for the treatment of intermittent claudication. Its main action is to elevate intracellular levels of cyclic monophosphate (cAMP) by inhibiting the activity of type III phosphodiesterase, a cAMP-degrading enzyme. The effects of cilostazol on fatty acid oxidation (FAO) are as yet unknown. In this study, we report that cilostazol can elevate complete FAO and decrease both triacylglycerol (TAG) accumulation and TAG secretion. This use of cilostazol treatment increases expression of PGC-1α and, subsequently, its target genes, such as ERRα, NOR1, CD36, CPT1, MCAD, and ACO. Expression of these factors is linked to fatty acid β-oxidation but this effect is inhibited by H-89, a specific inhibitor of the PKA/CREB pathway. Importantly, knockdown of PGC-1α using siRNA abolished the effects of cilostazol in fatty acid oxidation (FAO) and TAG metabolism. These findings suggested that the PKA/CREB/PGC-1α pathway plays a critical role in cilostazol-induced fatty acid oxidation and TAG metabolism.  相似文献   

15.
Obesity is associated with hepatic steatosis, partially due to increased lipogenesis and decreased fatty acid β-oxidation in the liver; however, the underlying mechanism of abnormal lipid metabolism is not fully understood. We reported previously that obesity is associated with LCN13 (lipocalin 13) deficiency. LCN13 is a lipocalin family member involved in glucose metabolism, and LCN13 deficiency appears to contribute to hyperglycemia in obese mice. Here, we show that LCN13 is also an important regulator of lipogenesis and β-oxidation in the liver. In primary hepatocytes, recombinant LCN13 directly suppressed lipogenesis and increased fatty acid β-oxidation, whereas neutralization of endogenous LCN13 had an opposite effect. Transgenic overexpression of LCN13 protected against hepatic steatosis in mice with either dietary or genetic (ob/ob) obesity. LCN13 transgenic overexpression also improved hyperglycemia, glucose intolerance, and insulin resistance in ob/ob mice. Short-term LCN13 overexpression via an adenovirus-mediated gene transfer similarly attenuated hepatic steatosis in db/db mice. LCN13 inhibited the expression of important lipogenic genes and stimulated the genes that promote β-oxidation. These results suggest that LCN13 decreases liver lipid levels by both inhibiting hepatic lipogenesis and stimulating β-oxidation. LCN13 deficiency is likely to contribute to fatty liver disease in obese mice.  相似文献   

16.
The gene mutated in X-linked adrenoleukodystrophy (X-ALD) codes for the HsABCD1 protein, also named ALDP, which is a member of the superfamily of ATP-binding cassette (ABC) transporters and required for fatty acid transport across the peroxisomal membrane. Although a defective HsABCD1 results in the accumulation of very long-chain fatty acids in plasma of X-ALD patients, there is still no direct biochemical evidence that HsABCD1 actually transports very long-chain fatty acids. We used the yeast Saccharomyces cerevisiae to study the transport of fatty acids across the peroxisomal membrane. Our earlier work showed that in yeast the uptake of fatty acids into peroxisomes may occur via two routes, either as (1.) free fatty acid or as (2.) acyl-CoA ester. The latter route involves the two peroxisomal half-ABC transporters, Pxa1p and Pxa2p, which form a heterodimeric complex in the peroxisomal membrane. We here report that the phenotype of the pxa1/pxa2Δ yeast mutant, i.e. impaired growth on oleate containing medium and deficient oxidation of oleic acid, cannot only be partially rescued by human ABCD1, but also by human ABCD2 (ALDRP), which indicates that HsABCD1 and HsABCD2 can both function as homodimers. Fatty acid oxidation studies in the pxa1/pxa2Δ mutant transformed with either HsABCD1 or HsABCD2 revealed clear differences suggesting that HsABCD1 and HsABCD2 have distinct substrate specificities. Indeed, full rescue of beta-oxidation activity in cells expressing human ABCD2 was observed with C22:0 and different unsaturated very long-chain fatty acids including C24:6 and especially C22:6 whereas in cells expressing HsABCD1 rescue of beta-oxidation activity was best with C24:0 and C26:0 as substrates.  相似文献   

17.
Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to mitochondrial disease pathogenesis.  相似文献   

18.
The effect of saturated fatty acids from 6∶0 to 16∶0 and oleic acid onLactobacillus leichmanii ATCC 4797 growing in non-skim-milk media was determined. The inhibition by lauric acid was higher than that obtained with any other fatty acid. A mutant (MC12) resistant to the fatty acid inhibition with high β-oxidation activity was also studied. A positive correlation between the ability ofL. leichmanii ATCC 4797 and its derivative MC12 to degrade fatty acids and their resistance to the fatty acid inhibition is shown in this report.  相似文献   

19.
Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4–3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7–13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6–6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth.  相似文献   

20.
Hepatic peroxisomal β-oxidation rates were compared in liver homogenates from cows and rats during different nutritional and physiological states. Peroxisomal oxidation in liver homogenates from cows represented 50% and 77% of the total capacity for the initial cycle of β-oxidation of palmitate and octanoate, respectively, but only 26% and 65% for rats. Lactation or food deprivation did not alter rates of hepatic peroxisomal β-oxidation of palmitate or octanoate in cows. Fasting and clofibrate treatment increased rates of total and peroxisomal β-oxidation of palmitate and octanoate in rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号