首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Historically our ability to identify genetic variants underlying complex behavioral traits in mice has been limited by low mapping resolution of conventional mouse crosses. The newly developed Diversity Outbred (DO) population promises to deliver improved resolution that will circumvent costly fine‐mapping studies. The DO is derived from the same founder strains as the Collaborative Cross (CC), including three wild‐derived strains. Thus the DO provides more allelic diversity and greater potential for discovery compared to crosses involving standard mouse strains. We have characterized 283 male and female DO mice using open‐field, light–dark box, tail‐suspension and visual‐cliff avoidance tests to generate 38 behavioral measures. We identified several quantitative trait loci (QTL) for these traits with support intervals ranging from 1 to 3 Mb in size. These intervals contain relatively few genes (ranging from 5 to 96). For a majority of QTL, using the founder allelic effects together with whole genome sequence data, we could further narrow the positional candidates. Several QTL replicate previously published loci. Novel loci were also identified for anxiety‐ and activity‐related traits. Half of the QTLs are associated with wild‐derived alleles, confirming the value to behavioral genetics of added genetic diversity in the DO. In the presence of wild‐alleles we sometimes observe behaviors that are qualitatively different from the expected response. Our results demonstrate that high‐precision mapping of behavioral traits can be achieved with moderate numbers of DO animals, representing a significant advance in our ability to leverage the mouse as a tool for behavioral genetics .  相似文献   

2.
3.
Significant evidence suggests protective effects of flavonoids against obesity in animal models, but these often do not translate to humans. One explanation for this disconnect is use of a few mouse strains (notably C57BL/6 J) in obesity studies. Obesity is a multifactorial disease. The underlying causes are not fully replicated by the high-fat C57BL/6 J model, despite phenotypic similarities. Furthermore, the impact of genetic factors on the activities of flavonoids is unknown. This study was designed to explore how diverse mouse strains respond to diet-induced obesity when fed a representative flavonoid. A subset of Collaborative Cross founder strains (males and females) were placed on dietary treatments (low-fat, high-fat, high-fat with quercetin, high-fat with quercetin and antibiotics) longitudinally. Diverse responses were observed across strains and sexes. Quercetin appeared to moderately blunt weight gain in male C57 and both sexes of 129S1/SvImJ mice, and slightly increased weight gain in female C57 mice. Surprisingly, quercetin dramatically blunted weight gain in male, but not female, PWK/PhJ mice. For female mice, quercetin blunted weight gain (relative to the high-fat phase) in CAST/PhJ, PWK/EiJ and WSB/EiJ mice compared to C57. Antibiotics did not generally result in loss of protective effects of quercetin. This highlights complex interactions between genetic factors, sex, obesity stimuli, and flavonoid intake, and the need to move away from single inbred mouse models to enhance translatability to diverse humans. These data justify use of genetically diverse Collaborative Cross and Diversity Outbred models which are emerging as invaluable tools in the field of personalized nutrition.  相似文献   

4.
Identification of genes underlying complex traits presents a challenge to which geneticists have responded with many diverse approaches. A common feature of these approaches is that different research groups must, on a case-by-case basis, replicate similar efforts in recruitment, genetic characterization, and analyses. To avoid this expensive “churning,” an alternative approach has been proposed: production of an experimental genetic reference population, the Collaborative Cross, in which both genetic diversity and mapping power are maximized. Since this population consists of inbred mouse strains, further advantages are that it is essentially infinitely reproducible; genetic characterization needs to be performed only once; and the founder strains’ genomes have been or will be sequenced, allowing imputation of allele sequences of all members of the reference population. Here we describe the establishment of such a genetic reference population, which we dub “The Gene Mine.” Over 1000 genetically distinct lines have been established, descended from eight diverse founder strains. Preliminary phenotypic ascertainment of these strains indicates unexpected variability arising from independent assortment of genetic variants. The Gene Mine will be a powerful resource for characterization of essentially any mouse phenotype that has a genetic basis.  相似文献   

5.
We report on the progress of a project funded by the Wellcome Trust to produce over 100 recombinant inbred mouse lines as part of the Collaborative Cross (CC) genetic reference panel. These new strains of mice are being derived from a set of eight genetically diverse founders. The genomes of the finished strains will be mosaics of the founder strains’ genomes with a high density of independent recombination breakpoints. The CC mice will be available for distribution free of any intellectual property constraints to serve as a community resource for systems genetics studies.  相似文献   

6.
The potential utility of the Collaborative Cross (CC) mouse resource was evaluated to better understand complex traits related to energy balance. A primary focus was to examine if genetic diversity in emerging CC lines (pre-CC) would translate into equivalent phenotypic diversity. Second, we mapped quantitative trait loci (QTL) for 15 metabolism- and exercise-related phenotypes in this population. We evaluated metabolic and voluntary exercise traits in 176 pre-CC lines, revealing phenotypic variation often exceeding that seen across the eight founder strains from which the pre-CC was derived. Many phenotypic correlations existing within the founder strains were no longer significant in the pre-CC population, potentially representing reduced linkage disequilibrium (LD) of regions harboring multiple genes with effects on energy balance or disruption of genetic structure of extant inbred strains with substantial shared ancestry. QTL mapping revealed five significant and eight suggestive QTL for body weight (Chr 4, 7.54 Mb; CI 3.32-10.34 Mb; Bwq14), body composition, wheel running (Chr 16, 33.2 Mb; CI 32.5-38.3 Mb), body weight change in response to exercise (1: Chr 6, 77.7Mb; CI 72.2-83.4 Mb and 2: Chr 6, 42.8 Mb; CI 39.4-48.1 Mb), and food intake during exercise (Chr 12, 85.1 Mb; CI 82.9-89.0 Mb). Some QTL overlapped with previously mapped QTL for similar traits, whereas other QTL appear to represent novel loci. These results suggest that the CC will be a powerful, high-precision tool for examining the genetic architecture of complex traits such as those involved in regulation of energy balance.  相似文献   

7.
8.
Most biological traits of human importance are complex in nature; their manifestation controlled by the cumulative effect of many genetic factors interacting with one another and with the individual’s life history. Because of this, mouse genetic reference populations (GRPs) consisting of collections of inbred lines or recombinant inbred lines (RIL) derived from crosses between inbred lines are of particular value in analysis of complex traits, since massive amounts of data can be accumulated on the individual lines. However, existing mouse GRPs are derived from inbred lines that share a common history, resulting in limited genetic diversity, and reduced mapping precision due to long-range gametic disequilibrium. To overcome these limitations, the Collaborative Cross (CC) a genetically highly diverse collection of mouse RIL was established. The CC, now in advanced stages of development, will eventually consist of about 500 RIL derived from reciprocal crosses of eight divergent founder strains of mice, including three wild subspecies. Previous studies have shown that the CC indeed contains enormous diversity at the DNA level, that founder haplotypes are inherited in expected frequency, and that long-range gametic disequilibrium is not present. We here present data, primarily from our own laboratory, documenting extensive genetic variation among CC lines as expressed in broad-sense heritability (H2) and by the well-known “coefficient of genetic variation,” demonstrating the ability of the CC resource to provide unprecedented mapping precision leading to identification of strong candidate genes.  相似文献   

9.
The Collaborative Cross (CC) was designed to facilitate rapid gene mapping and consists of hundreds of recombinant inbred lines descended from eight diverse inbred founder strains. A decade in production, it can now be applied to mapping projects. Here, we provide a proof of principle for rapid identification of major-effect genes using the CC. To do so, we chose coat color traits since the location and identity of many relevant genes are known. We ascertained in 110 CC lines six different coat phenotypes: albino, agouti, black, cinnamon, and chocolate coat colors and the white-belly trait. We developed a pipeline employing modifications of existing mapping tools suitable for analyzing the complex genetic architecture of the CC. Together with analysis of the founders’ genome sequences, mapping was successfully achieved with sufficient resolution to identify the causative genes for five traits. Anticipating the application of the CC to complex traits, we also developed strategies to detect interacting genes, testing joint effects of three loci. Our results illustrate the power of the CC and provide confidence that this resource can be applied to complex traits for detection of both qualitative and quantitative trait loci.  相似文献   

10.
The historical origins of classical laboratory mouse strains have led to a relatively limited range of genetic and phenotypic variation, particularly for the study of behavior. Many recent efforts have resulted in improved diversity and precision of mouse genetic resources for behavioral research, including the Collaborative Cross and Diversity Outcross population. These two populations, derived from an eight way cross of common and wild-derived strains, have high precision and allelic diversity. Behavioral variation in the population is expanded, both qualitatively and quantitatively. Variation that had once been canalized among the various inbred lines has been made amenable to genetic dissection. The genetic attributes of these complementary populations, along with advances in genetic and genomic technologies, makes a systems genetic analyses of behavior more readily tractable, enabling discovery of a greater range of neurobiological phenomena underlying behavioral variation.  相似文献   

11.
The Collaborative Cross Consortium reports here on the development of a unique genetic resource population. The Collaborative Cross (CC) is a multiparental recombinant inbred panel derived from eight laboratory mouse inbred strains. Breeding of the CC lines was initiated at multiple international sites using mice from The Jackson Laboratory. Currently, this innovative project is breeding independent CC lines at the University of North Carolina (UNC), at Tel Aviv University (TAU), and at Geniad in Western Australia (GND). These institutions aim to make publicly available the completed CC lines and their genotypes and sequence information. We genotyped, and report here, results from 458 extant lines from UNC, TAU, and GND using a custom genotyping array with 7500 SNPs designed to be maximally informative in the CC and used a novel algorithm to infer inherited haplotypes directly from hybridization intensity patterns. We identified lines with breeding errors and cousin lines generated by splitting incipient lines into two or more cousin lines at early generations of inbreeding. We then characterized the genome architecture of 350 genetically independent CC lines. Results showed that founder haplotypes are inherited at the expected frequency, although we also consistently observed highly significant transmission ratio distortion at specific loci across all three populations. On chromosome 2, there is significant overrepresentation of WSB/EiJ alleles, and on chromosome X, there is a large deficit of CC lines with CAST/EiJ alleles. Linkage disequilibrium decays as expected and we saw no evidence of gametic disequilibrium in the CC population as a whole or in random subsets of the population. Gametic equilibrium in the CC population is in marked contrast to the gametic disequilibrium present in a large panel of classical inbred strains. Finally, we discuss access to the CC population and to the associated raw data describing the genetic structure of individual lines. Integration of rich phenotypic and genomic data over time and across a wide variety of fields will be vital to delivering on one of the key attributes of the CC, a common genetic reference platform for identifying causative variants and genetic networks determining traits in mammals.  相似文献   

12.
In species with single-locus, chromosome-based mechanisms of sex determination, the laws of segregation predict an equal ratio of females to males at birth. Here, we show that departures from this Mendelian expectation are commonplace in the 8-way recombinant inbred Collaborative Cross (CC) mouse population. More than one-third of CC strains exhibit significant sex ratio distortion (SRD) at wean, with twice as many male-biased than female-biased strains. We show that these pervasive sex biases persist across multiple breeding environments, are stable over time, and are not mediated by random maternal effects. SRD exhibits a heritable component, but QTL mapping analyses fail to nominate any large effect loci. These findings, combined with the reported absence of sex ratio biases in the CC founder strains, suggest that SRD manifests from multilocus combinations of alleles only uncovered in recombined CC genomes. We explore several potential complex genetic mechanisms for SRD, including allelic interactions leading to sex-biased lethality, genetic sex reversal, chromosome drive mediated by sex-linked selfish elements, and incompatibilities between specific maternal and paternal genotypes. We show that no one mechanism offers a singular explanation for this population-wide SRD. Instead, our data present preliminary evidence for the action of distinct mechanisms of SRD at play in different strains. Taken together, our work exposes the pervasiveness of SRD in the CC population and nominates the CC as a powerful resource for investigating diverse genetic causes of biased sex chromosome transmission.  相似文献   

13.
14.
The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived from a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.  相似文献   

15.
16.
The next generation of QTL (quantitative trait loci) mapping populations have been designed with multiple founders, where one to a number of generations of intercrossing are introduced prior to the inbreeding phase to increase accumulated recombinations and thus mapping resolution. Examples of such populations are Collaborative Cross (CC) in mice and Multiparent Advanced Generation Inter-Cross (MAGIC) lines in Arabidopsis. The genomes of the produced inbred lines are fine-grained random mosaics of the founder genomes. In this article, we present a novel framework for modeling ancestral origin processes along two homologous autosomal chromosomes from mapping populations, which is a major component in the reconstruction of the ancestral origins of each line for QTL mapping. We construct a general continuous time Markov model for ancestral origin processes, where the rate matrix is deduced from the expected densities of various types of junctions (recombination breakpoints). The model can be applied to monoecious populations with or without self-fertilizations and to dioecious populations with two separate sexes. The analytic expressions for map expansions and expected junction densities are obtained for mapping populations that have stage-wise constant mating schemes, such as CC and MAGIC. Our studies on the breeding design of MAGIC populations show that the intercross mating schemes do not matter much for large population size and that the overall expected junction density, and thus map resolution, are approximately proportional to the inverse of the number of founders.  相似文献   

17.
Gong Y  Zou F 《Genetics》2012,190(2):475-486
There has been a great deal of interest in the development of methodologies to map quantitative trait loci (QTL) using experimental crosses in the last 2 decades. Experimental crosses in animal and plant sciences provide important data sources for mapping QTL through linkage analysis. The Collaborative Cross (CC) is a renewable mouse resource that is generated from eight genetically diverse founder strains to mimic the genetic diversity in humans. The recombinant inbred intercrosses (RIX) generated from CC recombinant inbred (RI) lines share similar genetic structures of F(2) individuals but with up to eight alleles segregating at any one locus. In contrast to F(2) mice, genotypes of RIX can be inferred from the genotypes of their RI parents and can be produced repeatedly. Also, RIX mice typically do not share the same degree of relatedness. This unbalanced genetic relatedness requires careful statistical modeling to avoid false-positive findings. Many quantitative traits are inherently complex with genetic effects varying with other covariates, such as age. For such complex traits, if phenotype data can be collected over a wide range of ages across study subjects, their dynamic genetic patterns can be investigated. Parametric functions, such as sigmoidal or logistic functions, have been used for such purpose. In this article, we propose a flexible nonparametric time-varying coefficient QTL mapping method for RIX data. Our method allows the QTL effects to evolve with time and naturally extends classical parametric QTL mapping methods. We model the varying genetic effects nonparametrically with the B-spline bases. Our model investigates gene-by-time interactions for RIX data in a very flexible nonparametric fashion. Simulation results indicate that the varying coefficient QTL mapping has higher power and mapping precision compared to parametric models when the assumption of constant genetic effects fails. We also apply a modified permutation procedure to control overall significance level.  相似文献   

18.
The mouse is an irreplaceable model for understanding the precise genetic mechanisms of mammalian physiological pathways. Thousands of quantitative trait loci (QTLs) have been mapped onto the mouse genome during the last two decades. However, only a few genes’ underlying complex traits have been successfully identified, and rapid fine mapping of QTL genes still remains a challenge for mouse geneticists. Currently, the Collaborative Cross (CC) has proceeded to the goal of establishing more than 1,000 recombinant inbred strains for the sub-centimorgan mapping resolution of QTL loci. In this article, a novel complementary strategy, designated as population of specific chromosome substitution strains or PSCSS, is proposed for rapid fine mapping of QTLs on the substituted chromosome. One specific chromosome (Chr 1) of recipient mouse strain C57BL/6 J has been substituted by homologous counterparts from five different inbred strains (C3H/He, FVB/N, AKR, NOD/LtJ, NZW/LacJ), an outbred line Kunmin mouse in China, and 23 wild mice captured in different localities. The primary genetic studies on the structure of these wild donor chromosomes (Chr 1) show that these donor chromosomes harbor extensive genetic polymorphisms, with a high density of SNP distribution, abundant variations of STR alleles, and a high level of historical recombination accumulation. These specific chromosome substitution strains eventually form a special population that has the identical genetic background of the recipient strain and differs only in the donor chromosomes. With simple association studies, known QTLs on the donor chromosome can be rapidly mapped in high resolution without requirement of further crosses. This approach, taking advantage of the extensive genetic polymorphisms of wild resources and chromosome substitution strategy, brings a new outlook for genetic dissection of complex traits.  相似文献   

19.
The northern Swedish population has a history of admixture of three ethnic groups and a dramatic population growth from a relatively small founder population. This has resulted in founder effects that together with unique resources for genealogical analyses provide excellent conditions for genetic mapping of monogenic diseases. Several recent examples of successful mapping of genetic factors underlying susceptibility to complex diseases have suggested that the population of northern Sweden may also be an important tool for efficient mapping of more complex phenotypes. A potential factor contributing to these effects may be population sub-isolates within the large river valleys, constituting a central geographic characteristic of this region. We here provide evidence that marriage patterns as well as the distribution of gene frequencies in a set of marker loci are compatible with this notion. The possible implications of this population structure on linkage- and association based strategies for identifying genes contributing risk to complex diseases are discussed.  相似文献   

20.
Complex traits, like the susceptibility to common diseases, are controlled by numerous genomic regions which individual effect is generally weak. These observations led geneticists to develop an experimental system to dissect the genetic of complex traits in the mouse. The Collaborative Cross (CC) is a genetic reference population of over 300 inbred lines derived from eight inbred strains of three Mus musculus sub-species that captures 90% of the genetic variation known in the mouse genome. We present here the generation and the characteristics of the CC and we report the results of the first experiments with partially inbred CC lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号