首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 1,474-bp stress-inducible CdDREBa promoter was identified from Chrysanthemum dichrum, revealing several candidate stress-related cis-acting elements (MYC-box, MYB site, GT-1, and W-box) within it. In Arabidopsis leaf tissues transformed with a CdDREBa promoter-β-glucuronidase (GUS) gene fusion, serially 5'-deleted CdDREBa promoters were differentially activated by cold and salinity. Histochemical and quantitative assays of GUS expression allowed us to localize a critical part of the promoter located between upstream 430 and 351 nt. This 80-bp fragment enhanced GUS expression under salinity stress when fused to -90/+8 CaMV 35S minimal promoter. Further promoter internal-deletion assays indicated that a low temperature-responsive element was located between positions -430 and -390, and a salinity inducible one between -385 and -351. Our results showed that there was a novel stress-related critical region except for the known cis-acting element (MYC-box, GT-1) in CdDREBa promoter.  相似文献   

2.
In our recent paper in Plant Physiology, we showed that the Arabidopsis thaliana 10-kD acyl-CoA-binding protein, ACBP6, is subcellularly localized to the cytosol and that the overexpression of ACBP6 in transgenic Arabidopsis enhanced freezing tolerance. ACBP6-conferred freezing tolerance was independent of induced cold-regulated (COLD-RESPONSIVE) gene expression, but was correlated to an enhanced expression of phospholipase Dδ (PLDδ). Lipid analyses on cold-acclimated freezing-treated ACBP6-overexpressors revealed a decline in phosphatidylcholine (PC) and an elevation of phosphatidic acid (PA) in comparison to wild type. Furthermore, the His-tagged ACBP6 recombinant protein was observed using in vitro filter-binding assays to bind PC, but not PA or lysophosphatidylcholine. Taken together, our results implicate roles for ACBP6 in phospholipid metabolism that is related to gene regulation and PC-binding/transfer. This represents the first report demonstrating the in vitro binding of an ACBP to a phospholipid. The effect of ACBP6 on PLDδ expression is reminiscent of yeast 10-kD ACBP function in the regulation of genes associated with stress responses, fatty acid synthesis and phospholipid synthesis. However, the yeast ACBP regulates the expression of genes involved in phospholipid synthesis by donation of acyl-CoA esters and its binding to phospholipids remains to be demonstrated.Key words: acyl-CoA-binding protein, freezing tolerance, phosphatidylcholine-binding, phospholipid transfer  相似文献   

3.
4.
Six genes encode proteins with acyl-CoA-binding domains in Arabidopsis thaliana. They are the small 10-kDa cytosolic acyl-CoA-binding protein (ACBP), membrane-associated ACBP1 and ACBP2, extracellularly-targeted ACBP3, and kelch-motif containing ACBP4 and ACBP5. Here, the interaction of ACBP4 with an A. thaliana ethylene-responsive element binding protein (AtEBP), identified in a yeast two-hybrid screen, was confirmed by co-immunoprecipitation. The subcellular localization of ACBP4 and AtEBP, was addressed using an ACBP4:DsRed red fluorescent protein fusion and a green fluorescent protein (GFP):AtEBP fusion. Transient expression of these autofluoresence-tagged proteins in agroinfiltrated tobacco leaves, followed by confocal laser scanning microscopy, indicated their co-localization predominantly at the cytosol which was confirmed by FRET analysis. Immuno-electron microscopy on Arabidopsis sections not only localized ACBP4 to the cytosol but also to the periphery of the nucleus upon closer examination, perhaps as a result of its interaction with AtEBP. Furthermore, the expression of ACBP4 and AtEBP in Northern blot analyses was induced by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, methyl jasmonate treatments, and Botrytis cinerea infection, suggesting that the interaction of ACBP4 and AtEBP may be related to AtEBP-mediated defence possibly via ethylene and/or jasmonate signalling.  相似文献   

5.
桃PpMADS1基因启动子的克隆及功能分析   总被引:3,自引:0,他引:3  
PpMADS1基因属于一类MADS box 基因,在植物的花发育调控中起着重要的作用。通过Genome Walking的方法从桃基因组中分离了长度为1 814bp的PpMADS1基因启动子片段,序列分析表明,在此启动子上不仅含有TATA box 和CAAT box基本元件,而且含有大量的与光调节有关的调控元件,如GT-1,Sp1和as-2-box,另外存在两个CArG-box元件、一个G-box元件和一个TGA-element,说明该启动子可能受光周期和激素的调控。将该启动子通过5′端缺失,分区段与GUS报告基因连接构建表达载体,并转化拟南芥。GUS组织化学染色分析结果表明,在-197到-454bp有促使GUS在花原基中表达的花原基特异性元件,在-454到-678bp之间存在促使GUS在萼片和花瓣表达的特异性元件,在-678到-978bp存在负调控作用元件,阻遏了GUS基因在花药中的表达。  相似文献   

6.
Song F  Goodman RM 《Gene》2002,290(1-2):115-124
Expression of the Sar8.2 gene family is induced by salicylic acid (SA) in tobacco during induction of systemic acquired resistance. Expression of Sar8.2b, one member of this 12-member family, was detected as early as 12 h after treatment with SA and was maximal 36 h after SA treatment. In NahG transgenic tobacco plants, benzothiadiazole and dichloroisonicotinic acid induced expression of Sar8.2b but SA did not, suggesting that expression of the Sar8.2b gene is SA-dependent. Several putative cis-acting elements were found in the Sar8.2b gene promoter region, including an as-1 element and GT-1 and Dof binding sequences. We constructed a series of progressive deletion mutations in the Sar8.2b promoter region linked to the β-glucuronidase (GUS) coding region and analyzed GUS activities by stable expression in transformants of Arabidopsis thaliana. Deletions between −728 and −927 bp or between −351 and −197 bp of the promoter region resulted in a significant reduction in GUS activity induced by SA treatment as shown in stable transformants of A. thaliana. The −197 bp fragment of the promoter region was found to confer a relatively low level of GUS activity induced by SA treatment in stable expression of transformants in A. thaliana. The results suggest that 927 bp of the Sar8.2b gene promoter confers full promoter activity and that cis-acting elements required for high-level SA-inducible expression of the Sar8.2b gene may exist within the regions −728 to −927 bp and −197 to −351 bp.  相似文献   

7.
8.
In Arabidopsis thaliana , a family of six genes encodes acyl-CoA-binding proteins (ACBPs) that show conservation at the acyl-CoA-binding domain. They are the membrane-associated ACBP1 and ACBP2, extracellularly targeted ACBP3, kelch-motif-containing ACBP4 and ACBP5, and 10-kDa ACBP6. The acyl-CoA domain in each of ACBP1 to ACBP6 binds long-chain acyl-CoA esters in vitro , suggestive of possible roles in plant lipid metabolism. We addressed here the use of Arabidopsis ACBPs in conferring lead [Pb(II)] tolerance in transgenic plants because the 10-kDa human ACBP has been identified as a molecular target for Pb(II) in vivo . We investigated the effect of Pb(II) stress on the expression of genes encoding Arabidopsis ACBP1, ACBP2 and ACBP6. We showed that the expression of ACBP1 and ACBP2 , but not ACBP6 , in root is induced by Pb(II) nitrate treatment. In vitro Pb(II)-binding assays indicated that ACBP1 binds Pb(II) comparatively better, and ACBP1 was therefore selected for further investigations. When grown on Pb(II)-containing medium, transgenic Arabidopsis lines overexpressing ACBP1 were more tolerant to Pb(II)-induced stress than the wild type. Accumulation of Pb(II) in shoots of the ACBP1 -overepxressing plants was significantly higher than wild type. The acbp1 mutant showed enhanced sensitivity to Pb(II) when germinated and grown in the presence of Pb(II) nitrate and tolerance was restored upon complementation using an ACBP1 cDNA. Our results suggest that ACBP1 is involved in mediating Pb(II) tolerance in Arabidopsis with accumulation of Pb(II) in shoots. Such observations of Pb(II) accumulation, rather than Pb(II) extrusion, in the ACBP1 -overexpressing plants implicate possible use of ACBP1 in Pb(II) phytoremediation.  相似文献   

9.
10.
Liu XY  Wuyun TN  Zeng HY 《Gene》2012,505(2):246-253
The 5'-flanking region of the S(12)-, S(13)-, S(21)-RNase with a length of 854 bp, 1448 bp and 1137 bp were successfully isolated by TAIL-PCR from genomic DNA from 'Jinhua', 'Maogong' (Pyrus pyrifolia) and 'Yali' (Pyrus bretschneideri) genomic DNA. Sequence alignment and analysis of S(13)-, S(12)-, S(21)-RNase gene promoter sequences with S(2)-, S(3)-, S(4)-, S(5)-RNase 5'-flanking sequences indicated that a homology region of about 240 bp exists in the regions just upstream of the putative TATA boxes of the seven Chinese/Japanese pear S-RNase genes. Phylogenetic tree suggests that the homology region between the Chinese/Japanese pear and apple S-RNase gene promoter regions reflects the divergence of S-RNase gene was formed before the differentiation of subfamilies. Full length and a series of 5'-deletion fragments-GUS fusions were constructed and introduced into Arabidopsis thaliana plants. GUS activity were detected in S(12)-pro-(1 to 5)-GUS-pBll01.2 transgenic pistils and progressively decreased from S(12)-pro-1-GUS-pBI l01.2 to S(12)-pro-5-GUS-pBll01.2. No GUS activity was detected in S(12)-pro-6-GUS-pBll01.2 transgenic pistil and other tissues of non-transformants and all transgenic plants. The result suggested S(12)-RNase promoter is pistil specific expression promoter.  相似文献   

11.
12.
13.
In our recent paper in Plant Physiology and Biochemistry, we reported that the mRNAs encoding Arabidopsis thaliana cytosolic acyl-CoA-binding proteins, ACBP4 and ACBP5, but not ACBP6, are modulated by light/dark cycling. The pattern of circadian-regulated expression in ACBP4 and ACBP5 mRNAs resembles that of FAD7 which encodes omega-3-fatty acid desaturase, an enzyme involved in plastidial fatty acid biosynthesis. Recombinant ACBP4 and ACBP5 proteins were observed to bind oleoyl-CoA ester comparably better than recombinant ACBP6, suggesting that ACBP4 and ACBP5 are promising candidates in the trafficking of oleoyl-CoA from the plastids to the endoplasmic reticulum (ER) for the biosynthesis of non-plastidial membrane lipids. By western blot analyses using the ACBP4 and ACBP5-specific antibodies, we show herein that the levels of ACBP4 and ACBP5 proteins peak at the end of the light period, further demonstrating that they, like their corresponding mRNAs, are tightly controlled by light to satisfy demands of lipids in plant cells.Key words: acyl-CoA-binding protein, ACBP4, ACBP5, lipid trafficking, phosphatidylcholine-binding  相似文献   

14.
《Autophagy》2013,9(6):802-804
Bulk degradation and nutrient recycling are events associated with autophagy. The core components of the autophagy machinery have been elucidated recently using molecular and genetic approaches. In particular, two ubiquitin-like proteins, ATG8 and ATG12, which conjugate with phosphatidylethanolamine (PE) and ATG5, respectively, forming ATG8-PE and ATG12-ATG5 complexes, were shown to be essential in autophagosome formation. Our recent findings reveal that the Arabidopsis thaliana acyl-CoA-binding protein ACBP3 binds the phospholipid PE in vitro and that ACBP3 overexpression and downregulation correlate with PE composition in rosettes. Furthermore, ACBP3-overexpressors (ACBP3-OEs) display accelerated salicylic acid-dependent leaf senescence resembling the phenotype of Arabidopsis knockout (KO) mutants defective in autophagy-related (ATG) proteins. Consistently, downregulation of ACBP3 (ACBP3-KOs) delays dark-induced leaf senescence. By analysis of transgenic Arabidopsis expressing GFP-ATG8e as well as those co-expressing ACBP3-OE and GFP-ATG8e, we showed that ACBP3-overexpression disrupts autophagosome formation and enhanced degradation of ATG8 under starvation conditions, suggesting that ACBP3 is an important regulator of the ATG8-PE complex via its interaction with PE. Here, a working model for the role of ACBP3 in the regulation of autophagy-mediated leaf senescence is presented.  相似文献   

15.
In our recent paper in the Plant Journal, we demonstrated that Arabidopsis thaliana acyl-CoA-binding protein ACBP1 binds lead [Pb(II)], its mRNA is induced by Pb(II)-treatment and transgenic Arabidopsis overexpressing ACBP1 are conferred Pb(II) tolerance and accumulate Pb(II). Our results suggest that ACBP1 overexpressors are potentially useful for applications in phytoremediation. Since very few plant proteins that bind and accumulate Pb(II) have been identified, our findings provide a feasible method in phytoremediating Pb(II).Key words: acyl-CoA-binding proteins, heavy metals, Pb(II) accumulation, phytoremediation, plasma membrane  相似文献   

16.
In Arabidopsis thaliana, acyl-CoA-binding proteins (ACBPs) are encoded by six genes, and they display varying affinities for acyl-CoA esters. Recombinant ACBP4 and ACBP5 have been shown to bind oleoyl-CoA esters in vitro. In this study, the subcellular localizations of ACBP4 and ACBP5 were determined by biochemical fractionation followed by western blot analyses using anti-ACBP4 and anti-ACBP5 antibodies and immuno-electron microscopy. Confocal microscopy of autofluorescence-tagged ACBP4 and ACBP5, expressed transiently in onion epidermal cells and in transgenic Arabidopsis, confirmed their expression in the cytosol. Taken together, ACBP4 and ACBP5 are available in the cytosol to bind and transfer cytosolic oleoyl-CoA esters. Lipid profile analysis further revealed that an acbp4 knockout mutant showed decreases in membrane lipids (digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol) while acbp4-complemented lines attained levels similar to wild type, suggesting that ACBP4 plays a role in the biosynthesis of membrane lipids including galactolipids and phospholipids.  相似文献   

17.
Hydroxyproline-rich glycoproteins (HRGP) are structural components of the plant cell wall. Hrgp genes from maize and related species have a conserved 500 bp sequence in the 5'-flanking region, and all Hrgp genes from monocots have an intron located in the 3' untranslated region. To study the role of these conserved regions, several deletions of the Hrgp gene were fused to the beta-glucuronidase ( GUS) gene and used to transform maize tissues by particle bombardment. The overall pattern of GUS activity directed by sequential deletions of the Hrgp promoter was different in embryos and young shoots. In embryos, the activity of the full-length Hrgp promoter was in the same range as that of the p35SI promoter construct, based on the strong 35S promoter, whereas in the fast-growing young shoots it was 20 times higher. A putative silencer element specific for young shoots was found in the -1,076/-700 promoter region. Other major cis elements for Hrgp expression are probably located in the regions spanning -699/-510 and -297/-160. Sequences close to the initial ATG and mRNA leader were also important since deletion of the region -52/+16 caused a 75% reduction in promoter activity. The presence of the Hrgp intron in the 3' untranslated region changed the levels of GUS activity directed by the Hrgp and the 35S promoters. This pattern of activity was complex, and was dependent on the promoter and cell type analysed.  相似文献   

18.
19.
The genomic clone for BN115, a low-temperature-responsive gene, was isolated from winter Brassica napus and its sequence was determined. A 1.2-kb fragment of the 5' regulatory region (from bp -1107 to +100) was fused to the beta-glucuronidase (GUS) reporter gene and BN115-promoted GUS expression was observed in green tissues of transgenic B. napus plants only after incubation at 2 degrees C. No expression was observed after incubation at 22 degrees C, either in the presence or the absence of ABA. Microprojectile bombardment of winter B. napus leaves with a BN115 promoter/GUS construct yielded similar results and was used to analyze a series of deletions from the 5' end of the promoter. Results obtained from transient expression studies showed that the low-temperature regulation of BN115 expression involves a possible enhancer region between bp -1107 and -802 and a second positive regulatory region located between bp -302 and -274. Deletion analyses and results from replacement with a truncated cauliflower mosaic virus 35S promoter suggest that the minimal size required for any maintenance of low-temperature GUS expression is a -300-bp fragment. Within this fragment are two 8-bp elements with the sequence TGGCCGAC, which are identical to those present in the positive regulatory region of the promoter of the homologous Arabidopsis cor15a gene and to a 5-bp core sequence in the low-temperature- and dehydration-responsive elements identified in the promoter regions of several cold-responsive Arabidopsis thaliana genes.  相似文献   

20.
Cytosolic acyl-CoA-binding proteins (ACBP) bind long-chain acyl-CoAs and act as intracellular acyl-CoA transporters and maintain acyl-CoA pools. Arabidopsis thaliana ACBP2 shows conservation at the acyl-CoA-binding domain to cytosolic ACBPs but is distinct by the presence of an N-terminal transmembrane domain and C-terminal ankyrin repeats. The function of the acyl-CoA-binding domain in ACBP2 has been confirmed by site-directed mutagenesis and four conserved residues crucial for palmitoyl-CoA binding have been identified. Results from ACBP2:GFP fusions transiently expressed in onion epidermal cells have demonstrated that the transmembrane domain functions in plasma membrane targeting, suggesting that ACBP2 transfers acyl-CoA esters to this membrane. In this study, we investigated the significance of its ankyrin repeats in mediating protein-protein interactions by yeast two-hybrid analysis and in vitro protein-binding assays; we showed that ACBP2 interacts with the A. thaliana ethylene-responsive element-binding protein AtEBP via its ankyrin repeats. This interaction was lacking in yeast two-hybrid analysis upon removal of the ankyrin repeats. When the subcellular localizations of ACBP2 and AtEBP were further investigated using autofluorescent protein fusions in transient expression by agroinfiltration of tobacco leaves, the DsRed:ACBP2 fusion protein was localized to the plasma membrane while the GFP:AtEBP fusion protein was targeted to the nucleus and plasma membrane. Co-expression of DsRed:ACBP2 and GFP:AtEBP showed a common localization of both proteins at the plasma membrane, suggesting that ACBP2 likely interacts with AtEBP at the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号